

The Odan/Detech Group Inc.
P: (905) 632-3811
F: (905) 632-3363
5230, SOUTH SERVICE ROAD, UNIT 107
BURLINGTON, ONTARIO, L7L 5K2
www.odandetech.com

PROPOSED 27-STOREY PURPOSE-BUILT RENTAL APARTMENT BUILDING 50 SPEERS RD TOWN OF OAKVILLE

PROJECT No.: 22211

FUNCTIONAL SERVICING & STORMWATER MANAGEMENT REPORT

Prepared For:

HELBERG PROPERTIES LIMITED

Prepared By:

The Odan/Detech Group Inc.

Version 1: August 25th, 2022 Issued for Rezoning

TABLE OF CONTENTS

DES	CRIPTION	page
1.0	INTRODUCTION	3
2.0	SCOPE OF WORK	3
3.0	SANITARY SEWERS	4
i)	Existing Condition	4
ii)	Proposed Condition	4
iii)	Downstream Sanitary Sewer Capacity	6
4.0	WATER DISTRIBUTION	10
i)	Existing Condition	10
ii)	Proposed Condition	10
5.0	STORM WATER MANAGEMENT	14
i)	Existing Infrastructure & Drainage	14
ii)	Design Criteria	16
iii)	Allowable Discharge Flow Rate	16
iv)	Post Development Flow Analysis	17
v)	Water Quality	21
vi)	Erosion Control	21
6.0	CONCLUSIONS	22
7.0	REFERENCES	23

LIST OF FIGURES

Figure 1 - Visual OTTHYMO Model (Showing Flows in 100-Year Storm)	20
LIST OF TABLES	
Table 1 – Proposed Sanitary Flows	5
Table 2 - Sanitary Flow Calculations	6
Table 3 – Total Water Demand	11
Table 4 – Allowable Flows	16
Table 5 – Catchment Characteristics for the site Post-Development	17
Table 6 – Summary of Flows from Site	19
Table 7 – Stormwater Storage	19

APPENDIX A

Existing Site Aerial view of Site and surrounding area Site Plan & Statistics by BDP. Quadrangle Architects Limited

APPENDIX B

Pre-Development Sanitary Sewer Catchment Plan Post-Development Sanitary Sewer Catchment Plan

APPENDIX C

Visual OTTHYMO Model Output – (5-Year & 100-Year storms)
Sanitary & Storm Sewer Video Inspection Report by Aquaflow Technology

APPENDIX B

Functional Servicing Plan Functional Grading & Drainage Plan

1.0 INTRODUCTION

The subject of this report is a 0.418 Ha (1.033 acre) parcel of land bound by the following.

- To the east: There is a Public School (Oakwood Public School) and residential properties.
- To the south: There is Bartos Drive, residential properties and residential apartment.
- To the west: There is Speers Road.
- To the north: There is a residential apartment.

Presently the site is occupied by an existing 7-storey Apartment building with underground parking and an above grade parking lot on the south side.

The site has municipal address 50 Speers Road and postal code L6K 2E5.

There is an easement in favour of the Town of Oakville for underground services within the adjacent property at 80 Speers Road. The easement abuts the subject site and has instrument # 194536.

Refer to the Key Plan in Appendix A for the site's layout and adjacent properties.

It is proposed to construct a 27-Storey (plus mechanical penthouse) Apartment building. A three-level below-grade parking structure is proposed beneath. The Development has frontage to Speers Road and Bartos Drive to the south. Access to the below-grade parking structure is from a driveway connecting to Speers Road.

Refer to the architectural site plan in Appendix A for the proposed development's layout.

For detailed topography of the existing site conditions, as of August 23, 2022, refer to the topographic survey prepared by J. D. Barnes Limited.

This report evaluates the serviceability of the site with respect to sanitary waste water, water and storm water management (SWM) and will implement the servicing criteria identified by Region of Halton and Town of Oakville.

2.0 SCOPE OF WORK

THE ODAN/DETECH GROUP INC. was retained by **Helberg Properties Limited** to review the Site, collect data, evaluate the Site for the proposed use and present the findings in a Functional Servicing and Storm Water Management Report in support of an OPA and Rezoning application. The scope of work in brief involves the following:

- a) Collecting existing servicing drawings from the TOWN in order to establish availability and feasibility of Site servicing;
- b) Meetings/conversations with TOWN Engineers and Design Team.
- c) Evaluation of the data and presentation of the findings in a Functional Servicing and Storm Water Management Report in support of an OPA and Rezoning application.

3.0 SANITARY SEWERS

i) Existing Condition

There is an existing 200 diameter sanitary sewer on Bartos Drive, south of the property, which flows southeasterly towards Stewart St. and eventually flows to the 900mm Trunk sewer on Rebecca Street.

The existing 7 storey apartment bldg. is connected to this existing sewer in an easement along 80 Speers Road via 150mm sanitary lateral connections. There is also an existing 200mm sanitary sewer inside the subject site which is used to service the adjacent Apartment building at 30 Speers Road (refer to Appendix D for the Servicing Plan). Currently there is no easement for the 30 Speers sewer running through the subject site. A solution on moving/adjusting the existing 200mm sanitary (inside the subject site) is under investigation. The existing 200mm sanitary and lateral connection was verified through a video inspection by Aquaflow Technology, see Appendix C for the full report.

ii) Proposed Condition

The site will propose a 5m 200mm sanitary @ 2% to extend the existing sanitary sewer on Bartos Drive along the adjacent easement. A 150mm diameter lateral @ 2% will be used to capture the flow from the proposed 27 storey apartment building.

The proposed development will consist of 28 studios, 147 1-bedroom units, 107 2-bedroom units, 32 3-bedroom units and a mechanical penthouse. There will be 3 level of underground parking in total.

The above statistics were compiled by BDP. Quadrangle Architects Limited. Refer to the Site Statistics and the Site Plan by BDP. Quadrangle Architects Limited in Appendix A for further details.

The sanitary sewer design criteria and unit flow is provided in the Regional Municipality of Halton's *Water and Wastewater Linear Design Manual* (July 2017). The following information is provided in Section 3.2 of the foregoing manual.

- Unit flow: q = average daily residential per capita dry weather unit flow = 0.275 m³/cap/day
- I/I = Unit of peak inflow/infiltration = 0. 286 L/s/ha

Peaking Factor (Residential)

$$M = 1 + \frac{14}{4 + \sqrt{P}}$$

The peak sanitary flow from the proposed development is thus calculated as follows:

- 1.0 persons/bed x 485 beds = 485 persons
- TOTAL population P of 485 persons
- Site Area = 0.418 ha

Peaking factor (Harmon)

 $PF = 1 + [14/(4 + (P/1000)^0.5)] = 3.98$

Total extraneous flow: $0.418 \times 0.286 = 0.12 \text{ L/sec.}$

Population, average flow: $275 \times 485 \div (24 \times 3600) = 1.54 \text{ L/sec.}$

Population, Peak Flow: Average flow x PF = 6.13 L/sec.

Total Peak Flow: 6.13 + 0.12 = 6.25 L/sec.

The Peak sanitary flow from this Site (27 storey apartment bldg.) is **6.25 L/sec.**

See Table 1 below for a summary of the proposed sanitary flows.

TABLE 1 – Propo	sed Sanitary	Flows				
	Population (P)	Average Flow (L/s)	Peak Factor	Peak Sanitary (L/s)	Infiltration Allowance (L/s)	Total Flow (L/s)
27-Storey Apartment Bldg.	485	1.54	3.98	6.13	0.12	6.25

A 150mm @ 2.0% sanitary sewer connection is proposed to the 200mm sanitary sewer beneath the easement on 80 Speers Rd. which drains towards Bartos Drive. The proposed 150mm sanitary lateral pipe has a capacity of 22 L/s, which is adequate to convey the above post-development sanitary flow of 6.25 L/s. Refer to the Site Servicing Plan for the waste water servicing scheme.

iii) Downstream Sanitary Sewer Capacity

Region engineering staff have stated that an independent downstream sanitary sewer analysis is required to confirm the capacity of the receiving sanitary sewers to receiving flows from the subject development.

The following downstream sanitary sewer analysis shows that the receiving sanitary sewers have capacity for the proposed development and no offsite infrastructure improvements are necessary to accommodate the flows from the proposed development.

The Odan/Detech Group subsequently prepared an original analysis. The methodology for the analysis is as follows.

- 1) The Pre & Post downstream sewer catchment plan on Appendix B was prepared to show the tributary catchment areas for sanitary flow, path of the sewer pipe, etc. down to the 900mm Trunk sewer on Rebecca Street.
- 2) Population density and unit flow was established as given in Tables 3-1 and 3-2 in the Regional Municipality of Halton's Water and Wastewater Linear Design Manual (July 2017).
- 3) Downstream sewer design sheets were prepared in pre-development and postdevelopment scenarios as shown on pages 8 & 9.

Pre-development Conditions

Under pre-development conditions, the existing 200mm Sanitary Sewer on Bartos Drive is subjected to flows from the 7-storey apartment building on #50 Speers Rd. and the adjacent apartment buildings on #30 & #80 Speers Rd. Which then flows southeasterly towards Stewart St. and eventually flows to the 900mm sanitary trunk sewer on Rebecca Street. See Appendix B for the Pre-Development sanitary sewer catchment plan, and page 8 for the Pre-Development sanitary sewer design sheet.

Post-Development Conditions

As explained in Section ii above, sanitary calculations for the proposed 27 storey apartment building will follow the equivalent residential population method. A total population of 485 persons shall be used for this catchment area. See Appendix B for the Post-Development sanitary sewer catchment plan, and page 9 for the Post-Development sanitary sewer design sheet.

Table 2 below shows a summary of the existing and proposed sanitary flow calculations.

TABLE 2 - Sanitary Flow Calculations

	Existing	Proposed
Area (Ha)	0.418	0.418
Population Density (per/Ha)	285	N/A
Equivalent Population	120	485 (1Person/Bed)

Unit Sewage Flow	275 L/pc/d	275 L/pc/d
Dry Weather Flow (L/s)	0.38	1.54
Peaking Factor	4.22	3.98
Peak Flow (L/s)	1.60	6.13
Infiltration (L/s)	0.12	0.12
Total Flow = Peak Flow + Infiltration (L/s)	1.72	6.25
Sanitary Flow before the 900mm Trunk sewer on Rebecca St. (L/s)	157.47	160.48
% of Capacity Used before the 900mm Trunk sewer on Rebecca St. (L/s)	45.10%	45.96%

Existing flows in the 200mm sanitary on Bartos Drive down to the 450mm sanitary sewer on Forsythe St. (just before the trunk sanitary sewer on Rebecca St.) were calculated based on Halton Region's equivalent population densities.

As per the sanitary design sheets on pages 10 and 11, the following comments are provided;

- 1) Pre-development, the last segment of pipe before the trunk sewer on Rebecca St. is flowing 45.10% of its capacity.
- 2) Post-development, with the additional flow from the subject development, the flow on the last segment of pipe before the trunk sewer on Rebecca St. is only increase by 0.86% from 45.10% to 45.96% of its capacity.
- 3) All flow from the downstream pipes up to the 450mm Sanitary on Forsythe Street are less than 65% of their capacity, therefore no infrastructure improvements are necessary to service the subject development.

PROJECT: Proposed Reside PROJECT No: 22211 LOCATION: 50 Speers Rd. MINICIPALITY: City of Calville Date: 18-May-22 STREET NAME AREA Subject Site # 50 Speers Rd. Subject Site # 80 Speers Rd. # 30 Speers Rd. # 80 Speers Rd. Bartos Dr Bartos Dr Bartos Dr Bartos Dr Bartos Dr Bartos Dr Stewart St. UPSTREAM @ Stewart St. Stewart St. Stewart St. Stewart St. Queen Mary Dr Queen Mary D	FROM MANHOLE 6 11A 2A 3A 4A 5A 6A 6A 6A 6A	2A 3A 4A 5A 6A 7A	POP. DENSITY N/A N/A N/A N/A	AREA (hect.) 0.418 0.805 0.527 1.750 0.700 0.860 0.950	Peaking Factor:	POP. INCR. 120 230 150 500.0 29.0 36.0	M=1+14/(4+(P/1000^0.5) 0.286 275 CUM. POP.	L/cap/day PEAKING FACTOR		Mannings Equatio Qcap=(D/1000)^2 D: pipe size (rm) S: slope (grade) o n = roughness cc Q. PEAK L.P.S.	2.667*(S/100)^0. of pipe (%)	5/(3.211*n)*1000(L 3) TOTAL FLOW L.P.S.	DIAMETER (mm)	GRADE PER CENT	CAPACITY L.P.S	VELOCITY M.P.S.	% OF CAP USED
PROJECT: Proposed Reside PROJECT No.: 22211 LOCATION: 50 Speers Rd. UNICIPALITY: City of Calcille 18-May-22 STREET NAME AREA Subject Site # 50 Speers Rd. Subject Site # 80 Speers Rd. Bartos Dr UPSTREAM @ Stewart St. Stewart St. Stewart St. Stewart St. Stewart St. Queen Mary Dr UPSTREAM @ Queen Mary Dr	FROM MANHOLE 6 11A 2A 3A 4A 5A 6A 6A 6A 6A	2A 3A 4A 5A 6A 7A	POP. DENSITY N/A N/A N/A N/A	AREA (hect.) 0.418 0.805 0.527 1.750 0.700 0.860 0.950	Peaking Factor: Infiltartion Unit Fac Q Avg (I/s) CUM. AREA (hect.) 1.75 2.45 3.31	POP. INCR. 120 230 150 500.0 29.0 36.0	M = 1 + 14/(4+(P/1000^0.5) 0.286 275 CUM. POP.	L/cap/day PEAKING FACTOR	Q. AVG	Qcap=(D/1000)^2 D: pipe size (mm) S: slope (grade) of n = roughness co	2.667*(S/100)^0. of pipe (%) pefficient (0.01)	TOTAL FLOW	DIAMETER				
PROJECT: Proposed Reside PROJECT No.: 22211 LOCATION: 50 Speers Rd. WhiNICIPALITY: City of Cakville Date: 18-May-22 STREET NAME AREA # 50 Speers Rd. # 30 Speers Rd. # 30 Speers Rd. Bartos Dr Bar	FROM MANHOLE 6 11A 2A 3A 4A 5A 6A 6A 6A 6A	2A 3A 4A 5A 6A 7A	POP. DENSITY N/A N/A N/A N/A	AREA (hect.) 0.418 0.805 0.527 1.750 0.700 0.860 0.950	Peaking Factor: Infiltartion Unit Fac Q Avg (I/s) CUM. AREA (hect.) 1.75 2.45 3.31	POP. INCR. 120 230 150 500.0 29.0 36.0	M = 1 + 14/(4+(P/1000^0.5) 0.286 275 CUM. POP.	L/cap/day PEAKING FACTOR	Q. AVG	Qcap=(D/1000)^2 D: pipe size (mm) S: slope (grade) of n = roughness co	2.667*(S/100)^0. of pipe (%) pefficient (0.01) Q. INFIL.	TOTAL FLOW	DIAMETER				
PROJECT No.: 22211 JOCATION: 50 Speers Rd MUNICIPALITY: City of Oakville Date: 18-May-22 STREET NAME AREA # 50 Speers Rd. # 30 Speers Rd. # 30 Speers Rd. Bartos Dr Ba	FROM MANHOLE 6 11A 2A 3A 4A 5A 6A 6A 6A 6A	2A 3A 4A 5A 6A 7A	N/A N/A N/A	AREA (hect.) 0.418 0.805 0.527 1.750 0.700 0.860 0.950	Infiltration Unit Fac Q Avg (I/s) CUM. AREA (hect.) 1.75 2.45 3.31	POP. INCR. 120 230 150 500.0 29.0 36.0	0.286 275 CUM. POP.	L/cap/day PEAKING FACTOR	Q. AVG	Qcap=(D/1000)^2 D: pipe size (mm) S: slope (grade) of n = roughness co	2.667*(S/100)^0. of pipe (%) pefficient (0.01) Q. INFIL.	TOTAL FLOW	DIAMETER				
PROJECT No.: 22211 JOCATION: 50 Speers Rd MUNICIPALITY: City of Oakville Date: 18-May-22 STREET NAME AREA # 50 Speers Rd. # 30 Speers Rd. # 30 Speers Rd. Bartos Dr Ba	FROM MANHOLE 6 11A 2A 3A 4A 5A 6A 6A 6A 6A	2A 3A 4A 5A 6A 7A	N/A N/A N/A	AREA (hect.) 0.418 0.805 0.527 1.750 0.700 0.860 0.950	Infiltration Unit Fac Q Avg (I/s) CUM. AREA (hect.) 1.75 2.45 3.31	POP. INCR. 120 230 150 500.0 29.0 36.0	0.286 275 CUM. POP.	L/cap/day PEAKING FACTOR	Q. AVG	Qcap=(D/1000)^2 D: pipe size (mm) S: slope (grade) of n = roughness co	2.667*(S/100)^0. of pipe (%) pefficient (0.01) Q. INFIL.	TOTAL FLOW	DIAMETER				
PROJECT No.: 22211 JOCATION: 50 Speers Rd MUNICIPALITY: City of Oakville Date: 18-May-22 STREET NAME AREA # 50 Speers Rd. # 30 Speers Rd. # 30 Speers Rd. Bartos Dr Ba	FROM MANHOLE 6 11A 2A 3A 4A 5A 6A 6A 6A 6A	2A 3A 4A 5A 6A 7A	N/A N/A N/A	AREA (hect.) 0.418 0.805 0.527 1.750 0.700 0.860 0.950	Q Avg (Vs) CUM. AREA (hect.) 1.75 2.45 3.31	POP. INCR. 120 230 150 500.0 29.0 36.0	CUM. POP.	PEAKING FACTOR	Q. AVG	D: pipe size (mm) S: slope (grade) o n = roughness co	of pipe (%) pefficient (0.01) Q. INFIL.	TOTAL FLOW	DIAMETER				
LOCATION: 50 Speers Rd MUNICIPALITY: City of Cakville Date: 18-May-22 STREET NAME AREA # 50 Speers Rd. Subject Site # 30 Speers Rd. Bartos Dr Stewart St. Stewart St. Stewart St. Stewart St. Queen Mary Dr	MANHOLE e 1A 2A 3A 4A 5A 6A 6A	2A 3A 4A 5A 6A 7A	N/A N/A N/A	AREA (hect.) 0.418 0.805 0.527 1.750 0.700 0.860 0.950	Q Avg (Vs) CUM. AREA (hect.) 1.75 2.45 3.31	POP. INCR. 120 230 150 500.0 29.0 36.0	CUM. POP.	PEAKING FACTOR	Q. AVG	S: slope (grade) on = roughness co	of pipe (%) pefficient (0.01) Q. INFIL.	TOTAL FLOW					
MUNICIPALITY: Date: STREET NAME # 50 Speers Rd. # 30 Speers Rd. # 30 Speers Rd. # 80 Speers Rd. Bartos Dr Bartos Dr Bartos Dr Bartos Dr Bartos Dr Stewart St. UPSTREAM @ Stewart St. Stewart St. Queen Mary Dr Queen Mary Dr UPSTREAM @ Washington Avenue Queen Mary Dr	MANHOLE e 1A 2A 3A 4A 5A 6A 6A	2A 3A 4A 5A 6A 7A	N/A N/A N/A	AREA (hect.) 0.418 0.805 0.527 1.750 0.700 0.860 0.950	CUM. AREA (hect.) 1.75 2.45 3.31	POP. INCR. 120 230 150 500.0 29.0 36.0	CUM. POP.	PEAKING FACTOR	Q. AVG	n = roughness co	Q. INFIL.	TOTAL FLOW					
Date: 18-May-22 STREET NAME AREA # 50 Speers Rd. Subject Site # 30 Speers Rd. # 80 Speers Rd. Bartos Dr Bartos Dr Bartos Dr Bartos Dr Bartos Dr Stewart St UPSTREAM @ Stewart St. Stewart St. Queen Mary Dr Queen Mary Dr UPSTREAM @ Washington Avenue Queen Mary Dr	MANHOLE e 1A 2A 3A 4A 5A 6A 6A	2A 3A 4A 5A 6A 7A	N/A N/A N/A	(hect.) 0.418 0.805 0.527 1.750 0.700 0.860 0.950	(hect.) 1.75 2.45 3.31	120 230 150 500.0 29.0 36.0	POP. 500	FACTOR	Q. AVG	Q. PEAK	Q. INFIL.	TOTAL FLOW					
# 50 Speers Rd. # 30 Speers Rd. # 30 Speers Rd. # 80 Speers Rd. Bartos Dr Bartos Dr Bartos Dr Bartos Dr Bartos Dr Bartos Dr Stewart St UPSTREAM @ Stewart St. Stewart St. Queen Mary Dr Queen Mary Dr Queen Mary Dr UPSTREAM @ Washington Avenue Queen Mary Dr	MANHOLE e 1A 2A 3A 4A 5A 6A 6A	2A 3A 4A 5A 6A 7A	N/A N/A N/A	(hect.) 0.418 0.805 0.527 1.750 0.700 0.860 0.950	(hect.) 1.75 2.45 3.31	120 230 150 500.0 29.0 36.0	POP. 500	FACTOR									
# 50 Speers Rd. # 30 Speers Rd. # 30 Speers Rd. # 80 Speers Rd. Bartos Dr Bartos Dr Bartos Dr Bartos Dr Bartos Dr Bartos Dr Stewart St UPSTREAM @ Stewart St. Stewart St. Queen Mary Dr Queen Mary Dr Queen Mary Dr UPSTREAM @ Washington Avenue Queen Mary Dr	MANHOLE e 1A 2A 3A 4A 5A 6A 6A	2A 3A 4A 5A 6A 7A	N/A N/A N/A	(hect.) 0.418 0.805 0.527 1.750 0.700 0.860 0.950	(hect.) 1.75 2.45 3.31	120 230 150 500.0 29.0 36.0	POP. 500	FACTOR									
# 50 Speers Rd. # 30 Speers Rd. # 30 Speers Rd. # 80 Speers Rd. Bartos Dr Bartos Dr Bartos Dr Bartos Dr Bartos Dr Bartos Dr Stewart St UPSTREAM @ Stewart St. Stewart St. Queen Mary Dr Queen Mary Dr Queen Mary Dr UPSTREAM @ Washington Avenue Queen Mary Dr	1A 2A 3A 4A 5A 6A 6A 6A 6A	2A 3A 4A 5A 6A 7A	N/A N/A N/A N/A	0.418 0.805 0.527 1.750 0.700 0.860 0.950	1.75 2.45 3.31	120 230 150 500.0 29.0 36.0	500		L.P.S.	L.P.S.	L.P.S.	L.P.S.	(mm)	PER CENT	L.P.S	M.P.S.	USED
# 30 Speers Rd. # 80 Speers Rd. Bartos Dr Bartos Dr Bartos Dr Bartos Dr Bartos Dr Bartos Dr Stewart St UPSTREAM @ Stewart St. Stewart St. Queen Mary Dr Queen Mary Dr UPSTREAM @ Washington Avenue Queen Mary Dr	1A 2A 3A 4A 5A 6A 6A	3A 4A 5A 6A 7A	N/A N/A N/A	0.805 0.527 1.750 0.700 0.860 0.950	2.45 3.31	230 150 500.0 29.0 36.0											
# 80 Speers Rd. Bartos Dr Stewart St UPSTREAM @ Stewart St. Stewart St. Stewart St. Queen Mary Dr UPSTREAM @ Queen Mary Dr Queen Mary Dr UPSTREAM @ Washington Avenue Queen Mary Dr	2A 3A 4A 5A 6A 6A	3A 4A 5A 6A 7A	N/A N/A N/A	0.527 1.750 0.700 0.860 0.950	2.45 3.31	150 500.0 29.0 36.0				Į.							
Bartos Dr Stewart St UPSTREAM @ Stewart St. Stewart St. Queen Mary Dr Queen Mary Dr Queen Mary Dr UPSTREAM @ Washington Avenue Queen Mary Dr	2A 3A 4A 5A 6A 6A	3A 4A 5A 6A 7A	N/A N/A N/A	1.750 0.700 0.860 0.950	2.45 3.31	500.0 29.0 36.0											
Bartos Dr Stewart St UPSTREAM @ Stewart St. Stewart St. Stewart St. Queen Mary Dr Queen Mary Dr Queen Mary Dr UPSTREAM @ Washington Avenue Queen Mary Dr Queen Mary Dr Queen Mary Dr Queen Mary Dr	2A 3A 4A 5A 6A 6A	3A 4A 5A 6A 7A	N/A N/A N/A	0.700 0.860 0.950 3.19	2.45 3.31	29.0 36.0			1.59	6.31	0.50	6.81	200	1.50	40.17	1.28	16.95
Bartos Dr Bartos Dr Bartos Dr Bartos Dr Bartos Dr Stewart St UPSTREAM @ Stewart St. Stewart St. Stewart St. Queen Mary Dr Queen Mary Dr Queen Mary Dr UPSTREAM @ Washington Avenue Queen Mary Dr Queen Mary Dr Queen Mary Dr Queen Mary Dr	3A 4A 5A 6A 6A	4A 5A 6A 7A	N/A N/A	0.860 0.950 3.19	3.31	36.0	329	3.97 3.96	1.59	6.65	0.50	7.35	200	1.50	40.17	1.28	18.30
Bartos Dr Bartos Dr Bartos Dr Bartos Dr Stewart St UPSTREAM @ Stewart St. Stewart St. Stewart St. Queen Mary Dr UPSTREAM @ Queen Mary Dr Queen Mary Dr Queen Mary Dr UPSTREAM @ Washington Avenue Queen Mary Dr Queen Mary Dr Queen Mary Dr Queen Mary Dr	5A 6A 6A	5A 6A 7A	N/A N/A	0.950 3.19			565		1.80	7.11	0.70	8.06	200	1.50	40.17	1.28	20.06
Bartos Dr Bartos Dr Stewart St UPSTREAM @ Stewart St. Stewart St. Stewart St. Queen Mary Dr UPSTREAM @ Queen Mary Dr Queen Mary Dr UPSTREAM @ Washington Avenue Queen Mary Dr Queen Mary Dr Queen Mary Dr Queen Mary Dr	5A 6A 6A	6A 7A	N/A	3.19	1	38.0	603	3.93	1.92	7.55	1.22	8.77	200	0.56	24.54	0.78	35.74
Bartos Dr Stewart St UPSTREAM @ Stewart St. Stewart St. Stewart St. Queen Mary Dr UPSTREAM @ Queen Mary Dr Queen Mary Dr Queen Mary Dr UPSTREAM @ Washington Avenue Queen Mary Dr Queen Mary Dr Queen Mary Dr	6A 6A 6A	7A			1	30.0		2.00			.,						
UPSTREAM @ Stewart St. Stewart St. Stewart St. Queen Mary Dr UPSTREAM @ Queen Mary Dr Queen Mary Dr Queen Mary Dr UPSTREAM @ Washington Avenue Queen Mary Dr Queen Mary Dr Queen Mary Dr	6A 6A		N/A		7.45	277	880	3.84	2.80	10.75	2.13	12.88	200	0.56	24.54	0.78	52.49
Stewart St. Stewart St. Queen Mary Dr UPSTREAM @ Queen Mary Dr Queen Mary Dr Queen Mary Dr UPSTREAM @ Washington Avenue Queen Mary Dr Queen Mary Dr Queen Mary Dr	6A	7A		0.66	8.11	30	910	3.83	2.90	11.11	2.32	13.43					
Stewart St. Stewart St. Queen Mary Dr UPSTREAM @ Queen Mary Dr Queen Mary Dr Queen Mary Dr UPSTREAM @ Washington Avenue Queen Mary Dr Queen Mary Dr	6A	7A							,								
Stewart St. Queen Mary Dr UPSTREAM @ Queen Mary Dr Queen Mary Dr Queen Mary Dr UPSTREAM @ Washington Avenue Queen Mary Dr Queen Mary Dr Queen Mary Dr			N/A	12.400	12.40	1146.0	1146	3.76	3.65	13.72	3.55	17.27					
Stewart St. Queen Mary Dr UPSTREAM @ Queen Mary Dr Queen Mary Dr Queen Mary Dr UPSTREAM @ Washington Avenue Queen Mary Dr Queen Mary Dr Queen Mary Dr	71	7A	N/A		20.51		2056	3.58	6.54	23.41	5.87	29.28	300	0.30	52.97	0.75	55.28
Queen Mary Dr UPSTREAM @ Queen Mary Dr Queen Mary Dr Queen Mary Dr UPSTREAM @ Washington Avenue Queen Mary Dr Queen Mary Dr Queen Mary Dr	7A	8A	N/A	0.810	21.32	33.0	2089	3.57	6.65	23.74	6.10	29.84	300	0.30	52.97	0.75	56.33
Queen Mary Dr Queen Mary Dr UPSTREAM @ Washington Avenue Queen Mary Dr Queen Mary Dr	8A	9A	N/A	0.980	22.30	47.0	2136	3.56	6.80	24.21	6.38	30.59					
Queen Mary Dr UPSTREAM @ Washington Avenue Queen Mary Dr Queen Mary Dr	8A	9A	N/A	17.140	17.14	1656.0	1656	3.65	5.27	19.24	4.90	24.14					
Queen Mary Dr UPSTREAM @ Washington Avenue Queen Mary Dr Queen Mary Dr	8A	9A	N/A		39.44		3792	3.35	12.07	40.43	11.28	51.71	300	1.50	118.43	1.68	43.66
UPSTREAM @ Washington Avenue Queen Mary Dr Queen Mary Dr	9A	10A	N/A	0.960	40.40	40.0	3792	3.35	12.07	40.43	11.55	52.42	300	1.50	118.43	1.08	43.00
Queen Mary Dr Queen Mary Dr		10/1	1471	0.000	40.40	40.0	0002	0.00	12.20	40.07	11.00	02.4Z					
Queen Mary Dr	9A	10A	N/A	12.400	12.40	1146.0	1146	3.76	3.65	13.72	3.55	17.27					
Queen Mary Dr	9A	10A	N/A		52.80		4978	2.25	45.04	51.48	15.10	66.58	300	1.50	118.43	1.68	56.22
	10A	10A 11A	N/A	0.520	53.32	20.0	4978	3.25 3.25	15.84 15.91	51.48	15.10	66.96	300	1.50	118.43	1.00	30.22
LIDCTDE AM @ Florence D:	TOA	IIA	IV/A	0.320	33.32	20.0	4330	3.23	10.01	31.71	10.20	00.30					
UPSTREAM @ Florence Dr	10A	11A	N/A	1.870	1.87	100.0	100	4.24	0.32	1.36	0.53	1.89					
Queen Mary Dr	10A	11A	N/A		55.19		5098	3.24	16.23	52.59	15.78	68.37	300	1.50	118.43	1.68	57.73
Queen Mary Dr	11A	12A	N/A	0.700	55.89	29.0	5127	3.24	16.32	52.59	15.78	68.69	525	0.41	275.37	1.08	24.94
Queen Mary Di	11/4	IZA	IVA	0.700	33.09	29.0	3121	3.23	10.32	J2.7 1	13.30	00.09	323	0.41	213.31	1.27	24.34
UPSTREAM @ Normandy PI	12A	13A	N/A	5.470	5.47	608.0	608	3.93	1.94	7.62	1.56	9.18					
Oueen Many Dr	404	404	K1/ A		04.00		EZOE	2.40	40.05	E0.00	47.55	75 77	EOF	0.42	155.00	0.70	40.00
Queen Mary Dr Queen Mary Dr	12A 13A	13A 14A	N/A N/A	0.450	61.36 61.81	15.0	5735 5750	3.19 3.19	18.25 18.30	58.22 58.38	17.55 17.68	75.77 76.06	525 525	0.13 0.50	155.06 304.10	0.72 1.40	48.86 25.01
				0.430	01.01	15.0	3730	3.19	10.30	30.30	17.00						
PUMP @ Riverside Dr	23A	22A	N/A							,		73.00	450	0.50	201.60	1.27	36.21
Riverside Dr	22A	14A	N/A	0.570	0.57	25.0	25	4.37	0.08	0.35	0.16	73.51	450	0.50	201.60	1.27	36.46
Queen Mary Dr	14A	15A	N/A	0.430	62.81	17.0	5792	3.19	18.44	58.82	17.96	149.78	600	0.42	397.92	1.41	37.64
Queen Mary Dr	15A	16A	N/A	0.590		14.0	5806	3.18	18.48	58.77	18.13	149.90	600	0.19	267.64	0.95	56.01
Queen Mary Dr	101	17A	N/A	1.000		272.0	6078	3.17	19.35	61.34	18.42	152.76	600	0.19	267.64	0.95	57.08
Queen Mary Dr	16A	18A	N/A	1.770		405.0	6483	3.14	20.63	64.78	18.92	156.70	600	0.18	260.50	0.92	60.15
Forsythe St	17A	19A	N/A	0.640	66.81	24.0	6507	3.14	20.71	65.03	19.11	157.14	450	1.50	349.18	2.20	45.00
Forsythe St	17A 18A	20A 21A	N/A N/A	0.490 0.000		20.0	6527	3.14 3.14	20.77 20.77	65.22 65.22	19.25 19.25	157.47	450	1.50	349.18	2.20	45.10
Forsythe St	17A		IVA	0.000	67.30	0.0	6527	3.14	20.77	65.22	19.25	157.47	450	1.50	349.18	2.20	45.10

ODAN DETE	.			PROPOSI	D DWF S	ANITARY SE	WER DES	IGN										
ODAN-DETE	H			i Koi ooi	_D DW1 0	AMITANTOL	WENDEO	ion .										
00113011110 11101111	E-R-9																	
						Peaking Factor:		M = 1 + 14/(4+(P/1000^0.5)	Residential Only		Mannings Equat							
PROJECT:	Proposed Resident	ial										. ,	.5/(3.211*n)*1000(l	L/s)				
PROJECT No.:	22211					Infiltartion Unit Fact		0.286 275	I /aaa/da		D: pipe size (mn							-
LOCATION: MUNICIPALITY:	50 Speers Rd City of Oakville					Q Avg (l/s)	Residential	2/5	L/cap/day		S: slope (grade)		3)					
Date:	22-Aug-22										II = Tougrilless (Joennoleni (0.01						
Suit.	LE Mag LE																	
STREET NAME	AREA	FROM MANHOLE	TO MANHOLE	POP. DENSITY	AREA (hect.)	CUM. AREA (hect.)	POP. INCR.	CUM. POP.	PEAKING FACTOR	Q. AVG L.P.S.	Q. PEAK L.P.S.	Q. INFIL. L.P.S.	TOTAL FLOW	DIAMETER (mm)	GRADE PER CENT	CAPACITY L.P.S	VELOCITY M.P.S.	% OF CAP USED
# 50 Speers Rd.	Subject Site	PROP MH2	1A	DEMONI	0.418	0.418	485	485		1.54		0.12	6.25	200	2.00	46.38	1.48	13.48
# 30 Speers Rd.					0.805		230											
# 80 Speers Rd.					0.527		150											
Bartos Dr		1A	2A	N/A	1.750	1.75	865.0	865		2.75	10.56	0.50	11.06	200	1.50	40.17	1.28	27.53
Bartos Dr		2A	3A	N/A	0.700	2.45	29.0	894	3.83	2.85	10.92	0.70	11.62	200	1.50	40.17	1.28	28.93
Bartos Dr		3A	4A	N/A	0.860	3.31	36.0	930	3.82	2.96		0.95	12.26	200	1.50	40.17	1.28	30.52
Bartos Dr		4A	5A	N/A	0.950	4.26	38.0	968	3.81	3.08	11.73	1.22	12.95	200	0.56	24.54	0.78	52.77
Bartos Dr		F ^	6A	NI/A	3.19	7.45	277	1245	3.74	2.00	44.04	2.13	16.04	200	0.50	24.54	0.70	60.00
Bartos Dr Stewart St		5A 6A	7A	N/A N/A	3.19 0.66	7.45 8.11	30		3.74	3.96 4.06	14.81 15.14	2.13	16.94 17.46	200	0.56	24.54	0.78	69.03
Stewart St		- OA	7.4	IN/A	0.00	0.11	30	1275	3.73	4.00	15.14	2.32	17.40					
UPSTREAM @ Stewart St.		6A	7A	N/A	12.400	12.40	1146.0	1146	3.76	3.65	13.72	3.55	17.27					
Stewart St.		6A	7A	N/A		20.51		2421	3.52	7.71	27.14	5.87	33.01	300	0.30	52.97	0.75	62.32
Stewart St.		7A	8A	N/A	0.810	21.32	33.0	2454	3.52	7.81	27.49	6.10	33.59	300	0.30	52.97	0.75	63.41
Queen Mary Dr		8A	9A	N/A	0.980	22.30	47.0	2501	3.51	7.96		6.38	34.32					
UPSTREAM @ Queen Mary Dr		8A	9A	N/A	17.140	17.14	1656.0	1656	3.65	5.27	19.24	4.90	24.14					
Queen Mary Dr		8A	9A	N/A		39.44		4157	3.32	13.23	43.92	11.28	55.20	300	1.50	118.43	1.68	46.61
Queen Mary Dr		9A	10A	N/A	0.960	40.40	40.0	4197	3.31	13.36	44.22	11.55	55.77	300	1.50	110.40	1.00	40.01
UPSTREAM @ Washington Avenue		9A	10A	N/A	12.400	12.40	1146.0	1146	3.76	3.65	13.72	3.55	17.27					-
Queen Mary Dr		9A	10A	N/A		52.80		5343	3.22	17.01	54.77	15.10	69.87	300	1.50	118.43	1.68	59.00
Queen Mary Dr		10A	11A	N/A	0.520	53.32	20.0	5363	3.22	17.07	54.97	15.25	70.22					
UPSTREAM @ Florence Dr		10A	11A	N/A	1.870	1.87	100.0	100	4.24	0.32	1.36	0.53	1.89					
Queen Mary Dr		10A	11A	N/A		55.19		5463	3.21	17.39	55.82	15.78	71.60	300	1.50	118.43	1.68	60.46
Queen Mary Dr		11A	12A	N/A	0.700	55.89	29.0	5492		17.48		15.98	72.09	525	0.41	275.37	1.27	26.18
UPSTREAM @ Normandy PI		12A	13A	N/A	5.470	5.47	608.0	608	3.93	1.94	7.62	1.56	9.18					
Queen Mary Dr	-	12A	13A	N/A	-	61.36		6100	3.16	19.42	61.37	17.55	78.92	525	0.13	155.06	0.72	50.90
Queen Mary Dr		13A	14A	N/A	0.450	61.81	15.0	6115		19.42			79.17	525	0.50	304.10	1.40	26.03
PUMP @ Riverside Dr		23A	22A	N/A				1			-		73.00	450	0.50	201.60	1.27	36.21
Riverside Dr		23A 22A	14A	N/A N/A	0.570	0.57	25.0	25	4.37	0.08	0.35	0.16	73.51	450	0.50	201.60	1.27	36.46
Queen Mary Dr		14A	15A	N/A	0.430	62.81	17.0	6157	3.16	19.60	61.94	17.96	152.90	600	0.42	397.92	1.41	38.42
Queen Mary Dr	1	15A	16A	N/A	0.430	63.40	14.0	6171	3.16	19.60		18.13	152.90	600	0.42	267.64	0.95	57.24
Queen Mary Dr	1	16A	17A	N/A	1.000	64.40	272.0	6443	3.14	20.51	64.40	18.42	155.82	600	0.19	267.64	0.95	58.22
Queen Mary Dr		17A	18A	N/A	1.770	66.17	405.0	6848	3.12	21.80	68.02	18.92	159.94	600	0.18	260.50	0.92	61.40
Forsythe St		18A	19A	N/A	0.640	66.81	24.0	6872	3.11	21.87	68.02	19.11	160.13	450	1.50	349.18	2.20	45.86
Forsythe St		19A	20A	N/A	0.490	67.30	20.0	6892	3.11	21.94	68.23	19.25	160.48	450	1.50	349.18	2.20	45.96
Forsythe St	1	20A	21A	N/A	0.000	67.30	0.0	6892	3.11	21.94	68.23	19.25	160.48	450	1.50	349.18	2.20	45.96
								Į						Į			Į	<u></u>

4.0 WATER DISTRIBUTION

i) Existing Condition

There is an existing 200mm dia. watermain along the existing easement inside 80 Speers Road which connects to 200mm dia. watermain on Bartos Drive and 300mm dia. watermain located on Speers Road.

The existing 7 storey apartment building is serviced by a 100mm dia to the 200mm dia watermain along the adjacent existing easement on 80 Speers Road.

There are existing fire hydrants located in front of #413 Bartos Drive (south side of the property), and two fire hydrants along Speers Road on the north side of the property. These existing fire hydrants will sufficiently cover the entire property.

ii) Proposed Condition

It is proposed to connect the site to the existing 200mm dia. watermain located along the existing easement on #80 Speers Road. Refer to the Site Servicing Plan for the location of the 200mm fire service and 150mm domestic water service connection to the above main.

The unit rate and peaking factors of water consumption, minimum pipe size and allowable pressure in line were established from the Region Design Manual Standards. The pressures and volumes must be sufficient for peak hour conditions and under fire conditions as established by the Ontario Building Code 2006. The minimal residual pressure under fire conditions is 140 kpa. (or 20.3 psi).

Fire flow demand is calculated using the Fire Underwriters' Survey Fire Flow calculation, on page 12.

The allowable pressures are as follows:

Condition	Allowable	e Pressures (kpa)
	min.	max.
1) Min. Hour	275	700
2) Peak Hour	275	700
3) Peak Day + Fire Flow	140	700

The water demand for the building is calculated as follows:

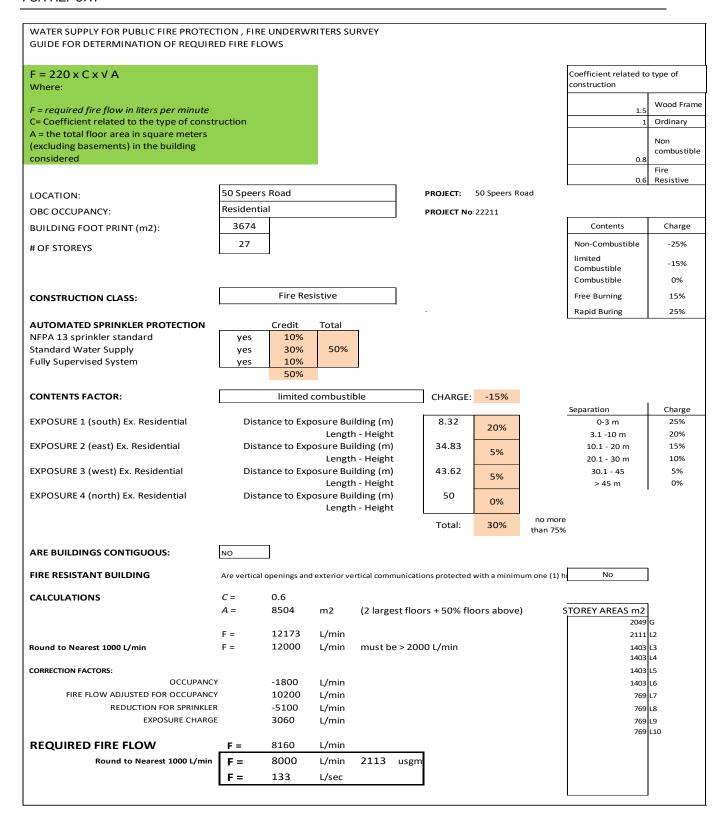

a)	Average Day domestic demand -	using 275 L/cap/day (485 persons, from sanitary calculations)	1.54 L/s
b)	Peak day demand -	2.25 x average daily demand	3.46 L/s
c)	Fire flow as per FUS 1999 manual		133 L/s

TABLE 3 – Total Water Demand		
	L/sec	USGM
Peak Domestic Flow Demand	3.46	55
Fire Flow Demand (FUS)	133	2113
Total Water Demand	136.46	2168
Available Flow at 20 PSI Residual Pressure	381	6042

The following assumptions were made in the Fire Underwriters' Survey fire flow calculation:

- The building will be of non-combustible construction.
- The contents will be limited-combustible (residences).
- The building will be sprinklered as per NFPA 13 and the sprinklers fully monitored.

A hydrant flow test was prepared by Flowmetrix (2022) to the NFPA 291 standard. The flow test report is on the following page. The hydrant flow test shows that there is a flow rate of 6,042 USGM available at residual pressure 20 psi, which is greater than the development's water demand (2168 USGM) therefore it follows that the existing main is sufficient to provide fire protection to the subject development and no infrastructure improvements are necessary to service the subject development.

Fire Flow Testing Report

April 19, 2022 11:00 AM 50 Speers Road

Oakville, ON L6K 2E5

200

PVC

FLOWMETRIX INDU-TECH PROCESS

Residual Hydrant # Residual Hydrant NFPA Colour Code BLUE

RESIDUAL HYDRANT INFO.

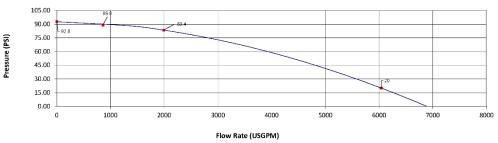
HYDRANT # N.F.P.A. COLOUR CODE Residual Hydrant BLUE STATIC PRESSURE 92.8 RESIDUAL PRESSURE - ONE PORT OPEN 89.0 psi RESIDUAL PRESSURE - TWO PORTS OPEN 83.4 PRESSURE DROP % PRESSURE DROP 10.1 Flow on Water Main At Test Hydrant 20 psi 6042 USGPM DATE
TIME
ADDRESS

SIZE-inches/mm 8

 CONTACT INFO
 Kevin Osinga

 The Odan/Detech Group Inc.
 (905) 632-3811 ext.1275

	(905) 632-3811 ext.127S
	kevin@odandetech.com
,	


MATERIAL

FLOW HYDRANT(S) INFO.

HYDRANT	HYD.	OUTLET	NOZZLE	DIFFUSER	DIFFUSER	PITOT	PITOT	FLOW
ASSET	#	DIAMETER	COEFFICIENT	TYPE	COEFFICIENT	READING	FLOW	METER
ID	PORTS	(INCHES)				(psi)	(USGPM)	(USGPM)
Flow Hydrant	unt 1	2.5	Round	LPD250	0.90	68.4	1249	0
Flow Hydralit	1						1249	0
Flow Hydrant	2	2.5	Round	LPD250	0.90	43.5	1993	0
Flow Hydrant	2	2.5	Round	LPD250	0.90	43.5	1995	0

FIRE FLOW CHART

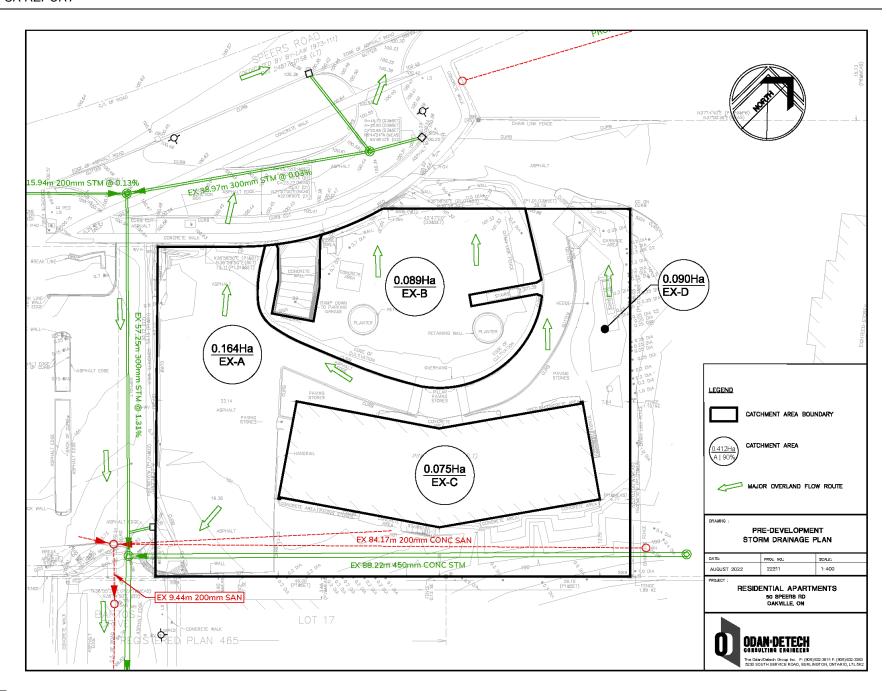
 COMMENTS
 OPERATOR OPERATOR OPERATOR
 FMIX OPERATOR
 Ryan Ritchie

 OPERATOR
 OPERATOR
 Halton Region

ODG_FireFlowTestingReport_Speers road_Oakville

"If we don't measure it, how do you manage it?"

5.0 STORM WATER MANAGEMENT


i) Existing Infrastructure & Drainage

There is an existing 300mm storm sewer on the west side of the property and a 450mm on the east side, which both flows towards the existing 525mm storm on Bartos Drive. The 450mm is used to service the storm lateral on 30 Speers Road (adjacent apartment building). This was verified through a video inspection by Aquaflow Technology, see Appendix C for the full report. Similar to the sanitary a relocation is being investigated.

Existing drainage patterns are identified on the Pre-Development Drainage Plan on the following page. Presently the site comprises existing 7 storey apartment building with related asphalt parking areas, etc. Overland flow routes are identified on the Pre-Development Drainage Plan.

Pre-development storm drainage patterns are described as follows.

- Catchment Ex-A: comprises paved ground-level areas which drain to the existing 300mm storm on the west side of the property and eventually drain to the 525mm storm sewer on Bartos Drive.
- Catchment Ex-B: comprises landscape areas which drain to the existing 300mm storm on the west side of the property and eventually drain to the 525mm storm sewer on Bartos Drive
- Catchment Ex-C: comprises roofs of the existing buildings on the site which drain to the existing 300mm storm on the west side of the property and eventually drain to the 525mm storm sewer on Bartos Drive.
- Catchment Ex-D: comprises grassed areas which drain to the adjacent property on #30 Speers Road and #357 Bartos Drive.

ii) Design Criteria

Storm water management for the proposed development will follow the requirements as specified by the Town of Oakville.

The allowable post-development peak flow for the site up to the 100 year storm event will be set to match the allocated flow rate for the 5 year storm event. Section 3.1.3.07 of the Town of Oakville's Development Engineering Procedures and Guidelines Manual specifies a minimum runoff coefficient (C) of 0.80 for the existing site usage (condo/highrise). But since the existing site has a significant landscape, a runoff coefficient (C) of 0.60 will be used to determine the target flow rate.

Design storm data for the Town of Oakville 5 year and 100 year storms are shown below. Using Visual Otthymo 2.3.2 to perform stormwater runoff analysis, these storms will be used to show that the storm drainage up to the 100 year event will be accommodated on-site. The 100 year storm will be used to determine the total ponding achieved on orifice controlled areas.

5 Year $I_5 = 1170 / (T + 5.8)^{0.843}$ where: I = intensity (mm/hr)

Storm: T = time of concentration (min)

100 Year $I_{100} = 2150 / (T + 5.7)^{0.861}$

Storm:

iii) Allowable Discharge Flow Rate

Allowable discharge from the site will be determined by calculating the allocated flow for the 5 year design storm using the rational method. As mentioned about a runoff coefficient of 0.60 will be used to determine the allowable flow for the storm outlet. Please refer to Figure 1 in Appendix A for the pre-development storm tributary area of sit

The allowable release rate is therefore taken as 80 L/s, as follows.

TABLE 4 – Allowable Flo	ws			
Design Storm	Run-off Coefficient	Rainfall Intensity (mm/hr)	Area of Development (ha)	Site Allowable Flow (L/s)
5 Year	0.60	114.21	0.418	80

iv) Post Development Flow Analysis

The proposed development will control the post development flows to the allowable flow rate calculated above; on-site storage will be required.

The adjacent properties have self-contained storm drainage and runoff from the adjacent properties does not enter the subject site based on pre-development drainage patterns. Refer to the Pre-Development Drainage Plan for pre-development drainage patterns.

The site's storm drainage and stormwater quantity controls will be provided as follows:

- Storm runoff from all above-grade open-to-above surfaces will drain uncontrolled by mechanical storm drains to the 100-year storm tank located in the P1 level.
- The following is a summary of the quantity controls: Stormwater Pump and Orifice Device (To be designed at the SPA stage) provides attenuation in the 100-Y Storm Detention tank.
- Stormwater will be attenuated by the pump and orifice device and back up inside the above tank. It will not be possible to control storm flows with only a gravity-driven orifice tube because the existing 300mm storm sewer is too shalllow (cover on the service connection is approximately 1.5m refer to Cross Section A-A on the Functional Servicing Plan). The tank would be impracticably shallow if it were gravity-driven, therefore a pumped tank will be required. The tank will be designed at the SPA stage.
- Controlled discharge will thereafter drain by a proposed 200mm @ 2.0% storm sewer connection to the adjacent existing 300mm Storm sewer along the existing easement which eventually drain to the 525mm storm sewer on Bartos Drive.

Visual OTTHYMO 2.3.2. will be used to model and determine the detention volume required. For drainage areas with significant imperviousness the calculation of effective rainfall in Visual OTTHYMO is accomplished using the "Standhyd" method. This method is used in urban watersheds to simulate runoff by combining two parallel standard unit hydrographs resulting from the effective rainfall intensity over the pervious and impervious surfaces. For pervious surfaces, losses are calculated using the SCS modified CN method.

The following table summarizes the parameters used in Visual OTTHYMO to characterize the post development catchment areas. Refer to the Post-Development Visual OTTHYMO Model in Fig. 3, below, and the output in Appendix C.

Post-Development catchment areas appear in the Post-Development Catchment plan, below.

TABLE 5 - Catchment Characteristics for the site Post-Development

Area I.D.	Area (ha)	Hydrograph Method	% impervious	imperviousness directly connected %	Loss Method for Pervious Area	CN for Pervious Area	Initial Abstraction for Pervious (mm)	Time to peak (T _p)
Catchment A – Green & Regular Roof	0.225	StandHYD	74	. <u>=</u> 74	scs	80	5	-
Catchment B – Planters and Paved Areas	0.193	StandHYD	80	80	SCS	80	5	-

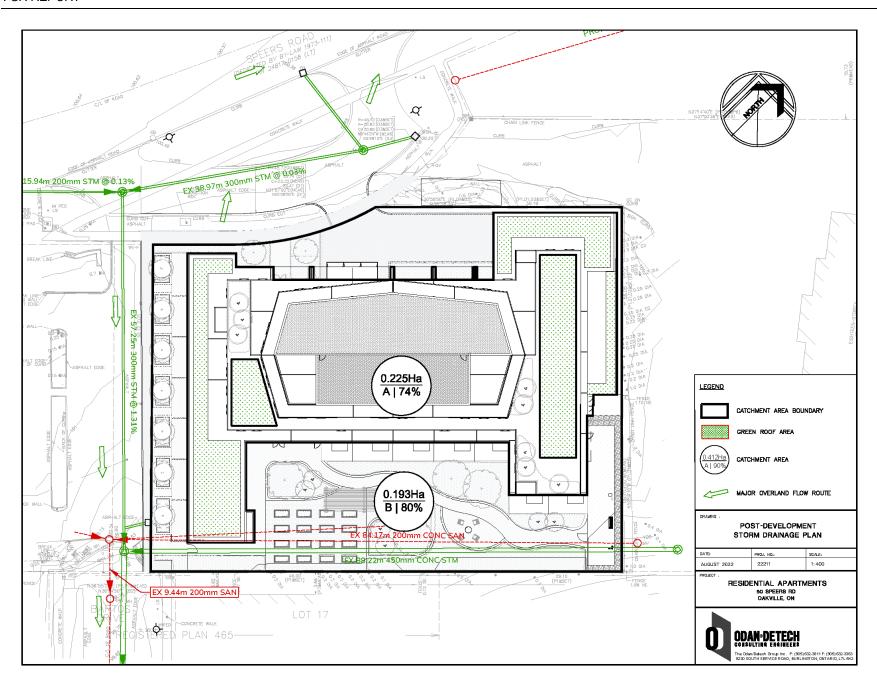
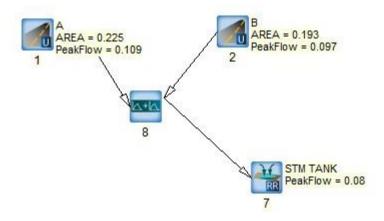



Figure 1 - Visual OTTHYMO Model (Showing Flows in 100-Year Storm)

As shown above, the 100-year storm flows are controlled to 80 L/s. The post-development flows are summarized as follows.

TABLE 6 - Summary of Flows from Site		
	5 Yr. Storm (L/s)	100 Yr. Storm (L/s)
Total Controlled Flow	80	80
Allowable Flow Rate	8	30

The stormwater storage that occurs in 5-year and 100-year storms is as follows. Refer to the Visual OTTHYMO Output in Appendix C for the storage volume calculation

TABLE 7 - Stormwater Storage		
	5 Yr. Storm (m³)	100 Yr. Storm (m³)
Required Storage Volume	30	82
Provided Volume (100-Y Storm tank)		90

The proposed stormwater quantity control is such that the controlled discharge in a 100-year storm is equal-to the allowable release rate. The stormwater storage is provided such that the volume provided is greater than the required 100-year storm volume.

Refer to the Functional Servicing Plan for the location of the storm tank, storm connection and control manhole.

v) Water Quality

The City of Oakville's *Development Engineering Procedures & Guidelines Manual* states in Section 6.2.4, *Storm Drainage Criteria*, that:

Quality treatment of stormwater is required. The level of treatment is to be determined per the receiving system (see Halton Conservation). Wet Ponds, Oil/Grit Separators and Landscape Filter Strips are acceptable methods.

Since the majority of the site area consists of roof and landscape area, an OGS unit is not required. The table below provides a summary of the surface types and associated TSS removal.

TABLE 8 – TSS Removal Summary

Surface Type	Initial Abstraction	TSS Removal	Ronoff Coefficient
Impervious roof	1mm	80%	0.90
Asphalt pavement	1mm	0%	0.90
Landscape	5mm	80%	0.25
Green Roof	7mm max for intensive roofs otherwise 5mm	80%	0.45-0.5
Permeable Pavers	5mm	80% with storage bed otherwise 50%	0.40
Concrete pavers	1mm	0%	0.9
Grassed swale	5mm	50% for a min length of 16m	0.25

vi) Erosion Control

Erosion and sediment control will be implemented on-site prior to construction and be maintained through the entire duration of construction. Erosion control measures to be implemented are:

- silt fence around the entire site
- sediment socks within existing and proposed catchbasins
- entrance mud mat for trucks
- daily cleaning and weekly washing of roads

6.0 CONCLUSIONS

From the foregoing investigation, the site is serviceable utilizing existing storm, sanitary sewer and watermain infrastructure adjacent to the site. Storm water management can be accommodated with on-site storage as described in this report.

The following table summarizes the SWM and Servicing components of the proposed development.

Table 9	- Sı	ummary
---------	------	--------

	Proposed Building
Peak Sanitary Discharge(L/s)	6.25
Proposed Sanitary Service	150mm @ 2.0%
Receiving Sanitary Sewer	Bartos Drive 200mm Sanitary sewer
Development Water Demand (Fire + Domestic)	2168 USGM
Available Flow Rate	6042 USGM
Proposed Fire Service	200mm
Proposed Domestic Service	150mm
Allowable release rate from site	80 L/s
Proposed release rate from site (100-year storm)	80 L/s
Required Storage Tank Volume	82 m ³
Provided Volume (100Y Storm Tank)	90 m ³
Quantity Control	Pump & Orifice (to be design in SPA)

7.0REFERENCES

- 1. Town of Oakville Development Engineering Procedures and Guidelines Manual (May 2005).
- 2. Storm water Management Planning and Design Manual, Ontario Ministry of the Environment, March 2003.
- 3. Visual OTTHYMO v2.0 Reference Manual, July 2002

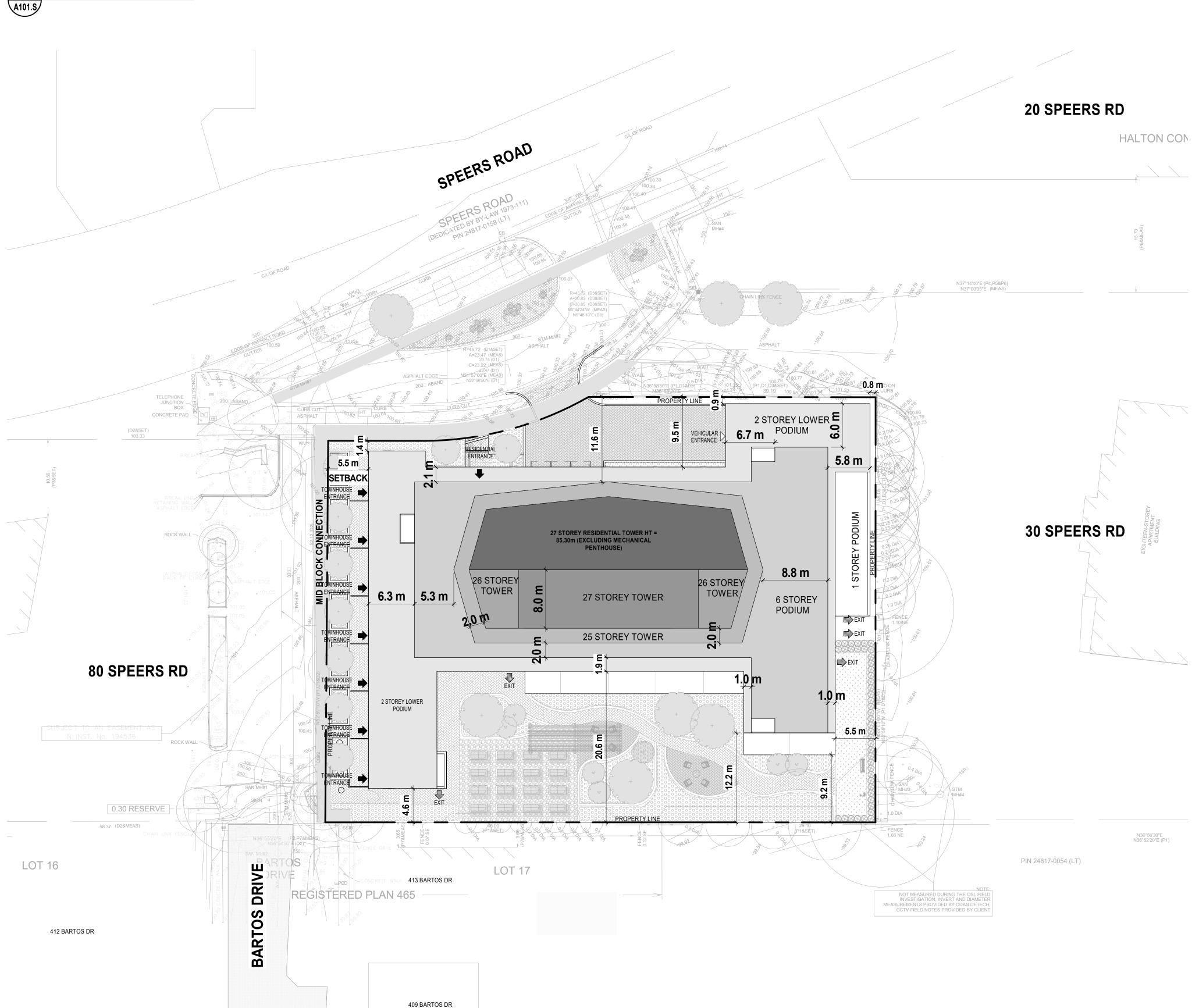
Respectfully Submitted;

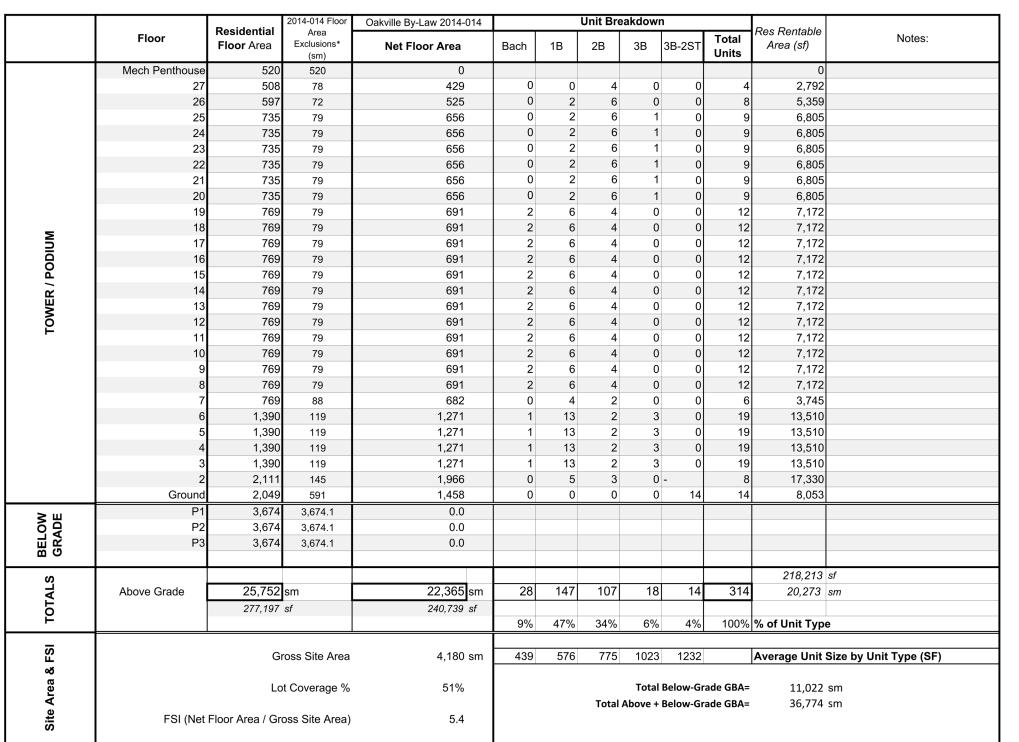
The Odan Detech Group Inc.

August 25, 2022

John Krpan, M.S.C.E. P.Eng. (Civil)

Harold Ortal, E.I.T.


APPENDIX A


Existing Site Site Plan & Statistics Aerial view of Site and surrounding area by BDP. Quadrangle Architects Limited

SITE PLAN
SCALE: 1:300

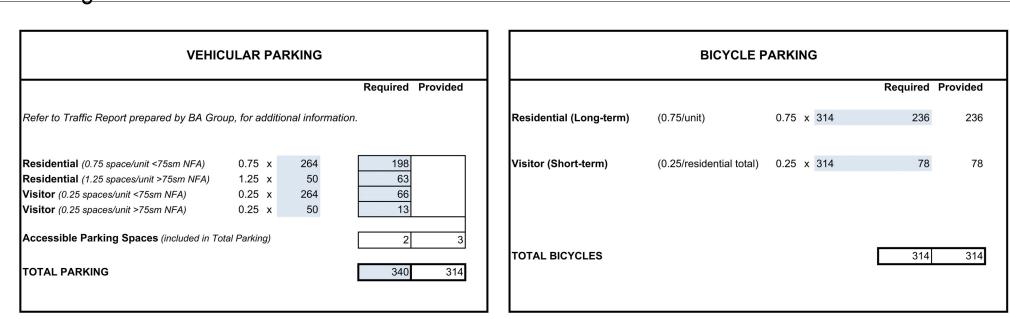
Floor Area: means the aggregate area of a building contained within the exterior walls, but does not include attic or basement space

Residential Floor Area:

Net Floor Area:

Net Floor Area:

*means the aggregate area of a residential building containing a dwelling measured from the exterior of the outside walls, but shall not include a private garage, basement, or attic.

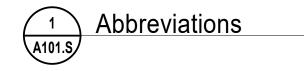

*means the aggregate area of a residential building containing a dwelling measured from the exterior of the outside walls, but shall not include a private garage, basement, or attic.

*means the aggregate area of a residential building containing a dwelling measured from the exterior of the outside walls, but shall not include a private garage, basement, or attic.

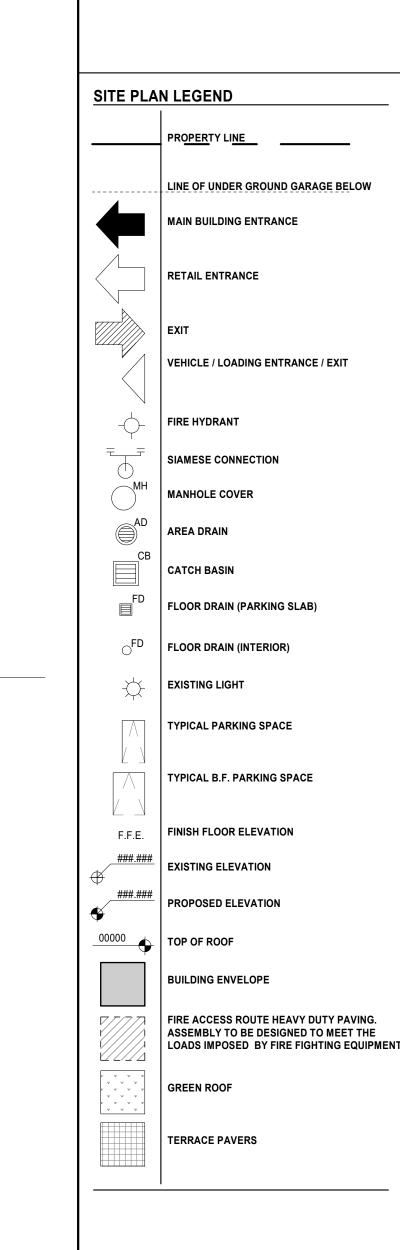
*means the aggregate area of a residential building containing a dwelling measured from the exterior walls or demising walls, but does not include the area of stair wells, elevators, escalators, ventilation shafts, attics, concourses, washrooms, attached enclosed and covered loading docks and related enclosed corridors used for loading purposes, above and below grade parking structures, storage rooms, rooms for garbage containment and mechanical rooms.

All open to below areas are <u>included</u> in Floor Area and Net Floor Area, unless otherwise indicated in the Notes column above.

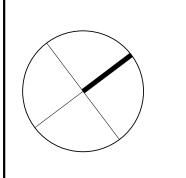




LOADING / GARBAGE		AMENITY AREA	A
Loading Spaces	Provided		
Refer to Traffic Report prepared by BA Group, for additional information.			
Residential (Loading Space 3.5m x 12m, 4.2m vertical clearance)	1	Indoor Amenity	
TOTAL LOADING SPACES	1	Outdoor Amenity	
Garbage Room Size	80	Level GF	
Bulk Waste Storage Room	10		
Garbage Staging Area	30		


Parking and Amenity Stats

A101.S


FHC Fire hose cabinet

Date No. Description

REVISION RECORD

2022-10-12 Rezoning & Official Plan Amendment

BDP. Quadrangle

Quadrangle Architects Limited
901 King Street West, Suite 701 Toronto, ON M5V 3H5
t 416 598 1240 www.bdpquadrangle.com

50 Speers Road

20023

PROJECT SCALE

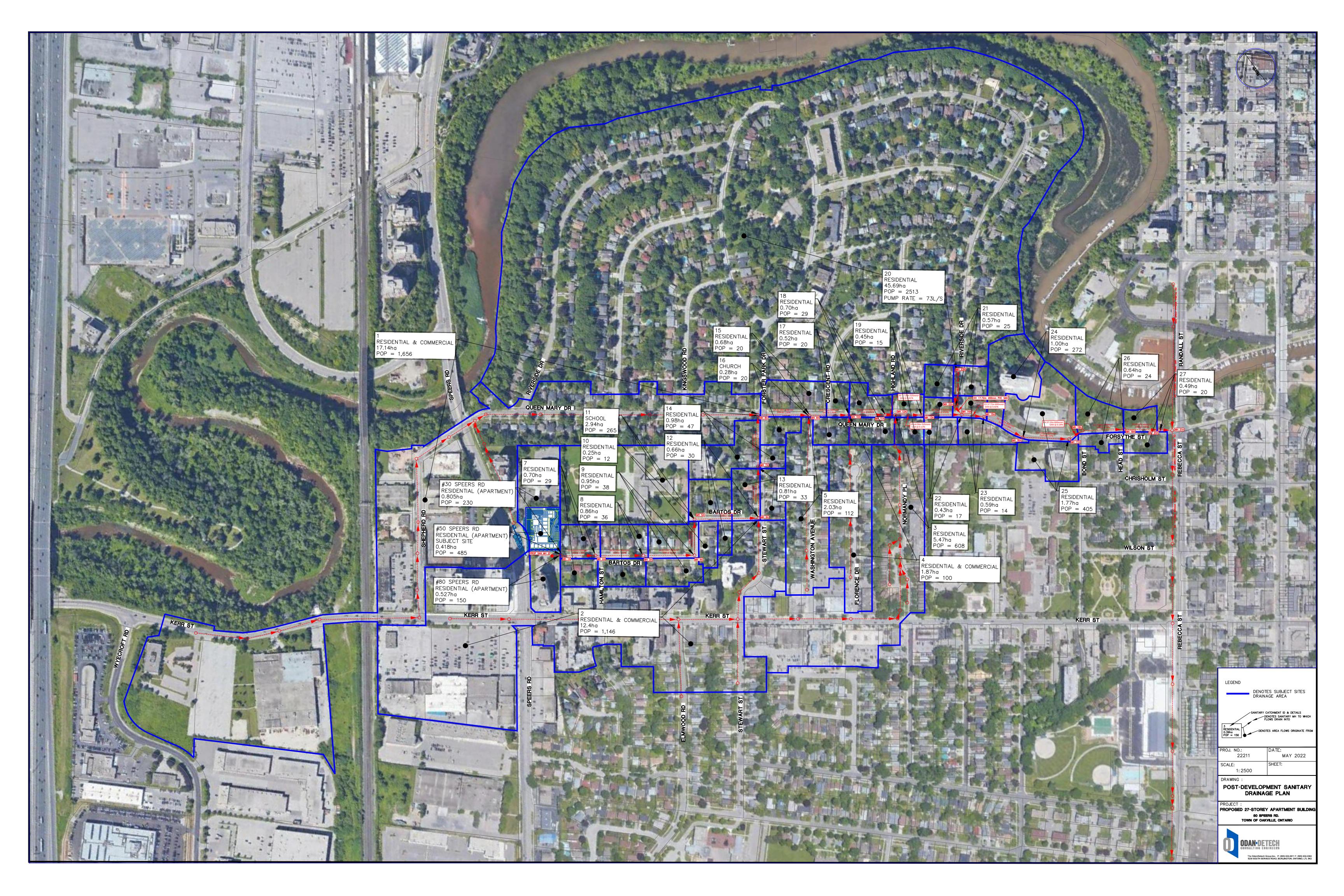
Oakville, ON

Helberg Properties Limited

ED AT

DRAWN REVIEWED

Context, Site Plan & Statistics


A101.S

Note: This drawing is the property of the Architect and may not be reproduced or used without the expressed consent of the Architect. The Contractor is responsible for checking and verifying all levels and dimensions and shall report all discrepancies to the Architect and obtain clarification prior to commencing work.

APPENDIX B

Pre-Development Sanitary Sewer Catchment Plan Post-Development Sanitary Sewer Catchment Plan

APPENDIX C

Visual OTTHYMO Model Output – (5-Year & 100-Year storms)
Sanitary & Storm Sewer Video Inspection Report by Aquaflow Technology

Visual OTTHYMO Output (5-year & 100-year storm)

```
SSSSS U U A L
SS U U AAAAA L
SS U U AAAAA L
       V
       V V I
               I SS U U A A L
I SSSSS UUUUU A A LLLLL
        V V
        7777
       OOO TTTTT TTTTT H H Y Y M M OOO
      O O T T H H Y Y MM MM O O O O T T H H H Y M MM O O
Developed and Distributed by Clarifica Inc.
Copyright 1996, 2007 Clarifica Inc.
All rights reserved.
                   ***** DETAILED OUTPUT *****
         filename: C:\Program Files (x86)\Visual OTTHYMO 2.3.3\voin.dat
 Output filename: \\server\F\Autocad\public\2022\22211\Design and Reports\Computer Analysis\Post
Development.out
  Development.sum
DATE: 10/5/2022
                                           TIME: 10:53:41 AM
USER:
COMMENTS:
  ** SIMULATION NUMBER: 1 **
  *******
| CHICAGO STORM |
                      IDF curve parameters: A=1170.000
                                  B= 5.800
C= .843
| Ptotal= 45.17 mm |
                        used in: INTENSITY = A / (t + B)^C
                        Duration of storm = 4.00 \text{ hrs}
                        Storm time step = 10.00 \text{ min}
                        Time to peak ratio = .33
                       RAIN | TIME RAIN | mm/hr | hrs mm/hr | 1 17 24.01 |
                 TIME
                                       RAIN | TIME
                                                 hrs mm/hr |
                                                                 hrs mm/hr
                                                 2.17
                                                        6.09 |
                  .17
                         2.70 | 1.33 114.21 |
                  .33
                                                2.33
                                                         5.07 | 3.33
                      3.24 | 1.50 | 32.30 | 2.50

4.08 | 1.67 | 15.74 | 2.67

5.57 | 1.83 | 10.30 | 2.83

8.96 | 2.00 | 7.65 | 3.00
                  .50
                                                         4.35 |
                  .67
                                                         3.82 | 3.67
                                                                         2.24
                  .83
                                                         3.41 |
                                                                 3.83
                                                                         2.10
                 1.00
                                                       3.08 | 4.00
| STANDHYD (0002) | Area (ha) = .19
|ID= 1 DT= 5.0 min | Total Imp(%) = 80.00 Dir. Conn.(%) = 80.00
                             IMPERVIOUS PERVIOUS (i)
                            1.00
1.00
1.00
35.90
     Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) =
                     (mm) =
                                               1.00
                                              2.00
                     (m) =
     Length
     Mannings n
                                 .013
        NOTE: RAINFALL WAS TRANSFORMED TO 5.0 MIN. TIME STEP.
```

hrs .083 .167 .250 .333 .417	TF RAIN TIME mm/hr hrs 2.32 1.083 2.32 1.167 2.70 1.250 2.70 1.333 3.24 1.417 3.24 1.500 4.08 1.583 4.08 1.667 5.57 1.750 5.57 1.833 8.96 1.917	mm/hr hr 24.01 2.08 24.01 2.16 114.21 2.25 114.21 2.33 32.30 2.41	RAIN mm/hr 3 6.09 7 6.09 0 5.07 3 5.07 7 4.35	TIME RAIN hrs mm/hr 3.08 2.81 3.17 2.81 3.25 2.59 3.33 2.59 3.42 2.40
Max.Eff.Inten.(mm/ over (m Storage Coeff. (m Unit Hyd. Tpeak (m Unit Hyd. peak (coeff.) PEAK FLOW (coeff.) TIME TO PEAK (h RUNOFF VOLUME (COEFF.) TOTAL RAINFALL (COEFF.)	hr) = 114.21 in) 5.00 in) = 1.31 in) = 5.00 ms) = .33	42.13 10.00 (ii) 5.15 10.00 3 .16	*TOT# .(1. .38. .45	ALS* 052 (iii) 33 .95
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (D	COEFF. IS SMALI SELECTED FOR I 0 Ia = Dep. T) SHOULD BE SN RAGE COEFFICIEN ES NOT INCLUDE	ER THAN TIME S PERVIOUS LOSSES Storage (Abov MALLER OR EQUAL IT. BASEFLOW IF AN	: e) Y.	
(ii) TIME STEP (D	Total Imp(%) = IMPERVICA IMPERV	74.00 Dir. C OUS PERVIOUS .06 1.00 2.00 40.00 3.250 .42.13 10.00 7.(ii) 5.77 10.00 3.15 6.01 1.42 7.45.17 8.40 .ER THAN TIME S PERVIOUS LOSSES Storage (Abov MALLER OR EQUAL IT. BASEFLOW IF AN	(ii) *TOT? .(1, 37, 45. TEP! :	ALS* 557 (iii) 33 38
	AREA ((ha) : .19 : .22 : .42		(mm) 38.95 37.38	

PROPOSED 27-STOREY APARTMENT BUILDING – 50 SPEERS RD FSR REPORT

NOTE: PEAK FLOWS DO N	OT INCLUDE BASE	FLOWS IF ANY.		
(cms) (ha.m.) .0000 .0000 .0795 .0020 .0796 .0040	E OUTFLOW (cms)	(ha.m.) .0080 .0100 .0120	
<pre>INFLOW : ID= 2 (0008) OUTFLOW: ID= 1 (0007)</pre>	(na)		rs) (mm)	
TIME SHI MAXIMUM	LOW REDUCTION FT OF PEAK FLOW STORAGE USED	(min) = (ha.m.) =	.00	
**************************************	***			
CHICAGO STORM IDF		B= 5.700 C= .861		
use	d in: INTENSIT	$\Gamma Y = A / (t +$	B) ^C	
Sto	ation of storm rm time step e to peak ratio	= 10.00 min		
hrs mm/ .17 3. .33 4. .50 4. .67 6.	hr hrs mm, 49 1.17 39 08 1.33 200 93 1.50 54 26 1.67 25	/hr hrs m .75 2.17 .80 2.33 .01 2.50 .55 2.67	RAIN TIME Fm/hr hrs mm 9.50 3.17 4 7.85 3.33 3 6.70 3.50 3 5.85 3.67 3 4.68 4.00 2	n/hr 4.26 3.91 3.62 3.37
CALIB STANDHYD (0002) Area	(ha) = .19 1 Imp(%) = 80.00		%)= 80.00	
Surface Area (ha) = Dep. Storage (mm) = Average Slope (%) = Length (m) = Mannings n =	1.00 1.00 35.90	.04 1.00 2.00 40.00 .250		
NOTE: RAINFALL WA	S TRANSFORMED TO	5.0 MIN. TI	ME STEP.	
hrs mm/ .083 3167 3250 4333 4417 4500 4583 6667 6750 8833 8.	IN TIME RAME NEW N	/hr hrs m .75 2.083 .75 2.167 .80 2.250 .80 2.250 .80 2.333 .01 2.417 .01 2.500 .55 2.583 .55 2.667 .41 2.750 .41 2.750 .41 2.833 .04 2.917	RAIN TIME F mr hrs mr 9.50 3.08 4 9.50 3.17 4 7.85 3.25 3.670 3.42 3.670 3.50 3.58	RAIN n/hr 1.26 1.26 3.91 3.91 3.62 3.62 3.37 3.37 3.15 2.96

PROPOSED 27-STOREY APARTMENT BUILDING – 50 SPEERS RD $FSR\ REPORT$

Max.Eff.Inten.(mm/ over (n Storage Coeff. (n Unit Hyd. Tpeak (n Unit Hyd. peak (c	/hr)-			
	/ 111 / -	200.80	103.62	
over (n	min)	5.00	5.00	
Storage Coeff. (m	min)=	1.05 (ii)	4.11 (ii)	
Unit Hyd. Tpeak (m	min)=	5.00	5.00	
PEAK FLOW (c	cms)=	.09	.01	.097 (iii)
TIME TO PEAK (h	hrs)=	.09 1.33 74.20 75.20	1.33	1.33
RUNOFF VOLUME	(mm) =	74.20	39.99	67.34
TOTAL RAINFALL	(mm) =	75.20	75.20	75.20
PEAK FLOW (C TIME TO PEAK (P RUNOFF VOLUME TOTAL RAINFALL (RUNOFF COEFFICIENT	T =	.99	.53	.90
**** WARNING: STORAGE				
(i) CN PROCEDURE	E SELECTE	D FOR PERVIOU	IS LOSSES:	
		= Dep. Storag		
(ii) TIME STEP (I				
THAN THE STO				
(iii) PEAK FLOW DO	OES NOT II	NCLUDE BASEFI	LOW IF ANY.	
CALIB				
STANDHYD (0001)				
ID= 1 DT= 5.0 min				(%) = 74.00
		ADDDITC::-	DEDUTCE:	
Surface Area	(ha) =	MPERVIOUS	PERVIOUS (i)	
Den Storage	(mm) =	1 00	.06 1 00	
Dep. Storage Average Slope Length Mannings n	(%)=	1.00	2.00	
Length	(m) =	38.70	40.00	
Mannings n	=	.013	.250	
Max.Eff.Inten.(mm/	/hr)=	200.80	103.62	
Max.Eff.Inten.(mm/ over (n Storage Coeff. (n Unit Hyd. Tpeak (n Unit Hyd. peak (c	min)	5.00	5.00	
Storage Coeff. (m	min)=	1.09 (ii)	4.61 (ii)	
Unit Hyd peak (M	cme)= m±11)=	3.00	23	
onic nyu. peak (C	C1113 / -	. 54	. 4 3	"IOIALS"
PEAK FLOW (c	cms)=	.09	.02	.109 (iii)
TIME TO PEAK (h	hrs)=	1.33	1.33	1.33
		74 20	20 00	65.30
RUNOFF VOLUME	(mm) =	74.20	39.99	
RUNOFF VOLUME TOTAL RAINFALL	(mm) = (mm) =	75.20	75.20	75.20
PEAK FLOW (C TIME TO PEAK (P RUNOFF VOLUME (TOTAL RAINFALL (RUNOFF COEFFICIENT	(mm) = (mm) = T =	75.20	75.20	
				75.20 .87
RUNOFF VOLUME TOTAL RAINFALL RUNOFF COEFFICIENT ***** WARNING: STORAGE				75.20 .87
	COEFF. I	S SMALLER THA	AN TIME STEP!	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE	COEFF. I	S SMALLER THA	AN TIME STEP!	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (I	COEFF. IS E SELECTE .0 Ia : DT) SHOUL	S SMALLER THE D FOR PERVIOU = Dep. Storag D BE SMALLER	AN TIME STEP! JS LOSSES: Je (Above)	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (I THAN THE STO	COEFF. IS E SELECTE .0 Ia : DT) SHOULD ORAGE COE	S SMALLER THE D FOR PERVIOU = Dep. Storaç D BE SMALLER FFICIENT.	AN TIME STEP! US LOSSES: ge (Above) OR EQUAL	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (I	COEFF. IS E SELECTE .0 Ia : DT) SHOULD ORAGE COE	S SMALLER THE D FOR PERVIOU = Dep. Storaç D BE SMALLER FFICIENT.	AN TIME STEP! US LOSSES: ge (Above) OR EQUAL	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (I THAN THE STO	COEFF. IS E SELECTE .0 Ia : DT) SHOULD ORAGE COE	S SMALLER THE D FOR PERVIOU = Dep. Storaç D BE SMALLER FFICIENT.	AN TIME STEP! US LOSSES: ge (Above) OR EQUAL	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (I THAN THE STO	COEFF. IS E SELECTE .0 Ia : DT) SHOULD ORAGE COE	S SMALLER THE D FOR PERVIOU = Dep. Storaç D BE SMALLER FFICIENT.	AN TIME STEP! US LOSSES: ge (Above) OR EQUAL	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (I THAN THE STO	COEFF. IS E SELECTE .0 Ia : DT) SHOULD ORAGE COE	S SMALLER THE D FOR PERVIOU = Dep. Storaç D BE SMALLER FFICIENT.	AN TIME STEP! US LOSSES: ge (Above) OR EQUAL	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (II THAN THE STC (iii) PEAK FLOW DO	COEFF. IS E SELECTE .0 Ia : DT) SHOULD ORAGE COE	S SMALLER THE D FOR PERVIOU = Dep. Storaç D BE SMALLER FFICIENT.	AN TIME STEP! US LOSSES: ge (Above) OR EQUAL	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (I THAN THE STO	COEFF. I: E SELECTE .0 Ia: DT) SHOULI ORAGE COE OES NOT II	S SMALLER THE D FOR PERVIOU = Dep. Storaç D BE SMALLER FFICIENT.	AN TIME STEP! US LOSSES: Ge (Above) OR EQUAL LOW IF ANY.	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (II THAN THE STC (iii) PEAK FLOW DO	COEFF. I: E SELECTEI .0 Ia: DT) SHOULI ORAGE COE OES NOT II	S SMALLER THA	AN TIME STEP! US LOSSES: ge (Above) OR EQUAL LOW IF ANY.	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (I THAN THE STO (iii) PEAK FLOW DO ADD HYD (0008) 1 + 2 = 3	COEFF. I: E SELECTEI .0 Ia: DT) SHOULI ORAGE COE: OES NOT II	S SMALLER THA D FOR PERVIOU D DEP. Storag D BE SMALLER FFICIENT. NCLUDE BASEFI EA QPEAK a) (Cms)	AN TIME STEP! US LOSSES: ge (Above) OR EQUAL LOW IF ANY. TPEAK (hrs)	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (II THAN THE STE (iii) PEAK FLOW DO ADD HYD (0008) 1 + 2 = 3 ID1= 1 (0002) ID2= 2 (0001)	COEFF. I: E SELECTEI O Ia: DT) SHOULI ORAGE COE OES NOT II ARI (ha): : : :	S SMALLER THA D FOR PERVIOU D EP. Storag D BE SMALLER FFICIENT. NCLUDE BASEFI EA QPEAK a) (cms) 19 .097 22 .109	AN TIME STEP! JS LOSSES: ge (Above) OR EQUAL LOW IF ANY. TPEAK (hrs) 1.33 67 1.33 65	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (II THAN THE STC (iii) PEAK FLOW DO ADD HYD (0008) 1 + 2 = 3 ID1= 1 (0002) + ID2= 2 (0001)	COEFF. I: E SELECTEI .0 Ia: DT) SHOULI ORAGE COE OES NOT II ARI (h.): .:):	S SMALLER THA D FOR PERVIOU Dep. Storac D BE SMALLER FFICIENT. NCLUDE BASEFI EA QPEAK a) (cms) 19 .097 22 .109	AN TIME STEP! US LOSSES: Ge (Above) OR EQUAL LOW IF ANY. TPEAK (hrs) 1.33 67 1.33 65	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (II THAN THE STE (iii) PEAK FLOW DO ADD HYD (0008) 1 + 2 = 3 ID1= 1 (0002) ID2= 2 (0001)	COEFF. I: E SELECTEI .0 Ia: DT) SHOULI ORAGE COE OES NOT II ARI (h.): .:):	S SMALLER THA D FOR PERVIOU Dep. Storac D BE SMALLER FFICIENT. NCLUDE BASEFI EA QPEAK a) (cms) 19 .097 22 .109	AN TIME STEP! US LOSSES: Ge (Above) OR EQUAL LOW IF ANY. TPEAK (hrs) 1.33 67 1.33 65	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (I THAN THE STC (iii) PEAK FLOW DO ADD HYD (0008) 1 + 2 = 3 ID1= 1 (0002) ID2= 2 (0001) ID3 3 (0008)	COEFF. I: E SELECTEI .0 Ia: DT) SHOULI ORACE COE: OES NOT II ARI (h:):):	S SMALLER THZ D FOR PERVIOU = Dep. Storag D BE SMALLER FFICIENT. NCLUDE BASEFI	AN TIME STEP! JS LOSSES: ge (Above) OR EQUAL LOW IF ANY. TPEAK (hrs) 1.33 67 1.33 65	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (II THAN THE STC (iii) PEAK FLOW DO ADD HYD (0008) 1 + 2 = 3 ID1= 1 (0002) ID2= 2 (0001)	COEFF. I: E SELECTEI .0 Ia: DT) SHOULI ORACE COE: OES NOT II ARI (h:):):	S SMALLER THZ D FOR PERVIOU = Dep. Storag D BE SMALLER FFICIENT. NCLUDE BASEFI	AN TIME STEP! JS LOSSES: ge (Above) OR EQUAL LOW IF ANY. TPEAK (hrs) 1.33 67 1.33 65	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (I THAN THE STC (iii) PEAK FLOW DO ADD HYD (0008) 1 + 2 = 3 ID1= 1 (0002) ID2= 2 (0001) ID3 3 (0008)	COEFF. I: E SELECTE! O Ia: DT) SHOULI ORAGE COE: OES NOT II ARI (h:): : DO NOT II	S SMALLER THA	TPEAK (hrs) 1.33 65 1.33 66 LOWS IF ANY.	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (II THAN THE STE (iii) PEAK FLOW DO ADD HYD (0008) 1 + 2 = 3 ID= 1 (0002) ID= 2 (0001) ID= 3 (0008) NOTE: PEAK FLOWS	COEFF. I: E SELECTE! O Ia: DT) SHOULI ORAGE COE: OES NOT II ARI (h:): : DO NOT II	S SMALLER THA	TPEAK (hrs) 1.33 65 1.33 66 LOWS IF ANY.	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (II THAN THE STC (iii) PEAK FLOW DO ADD HYD (0008) 1 + 2 = 3 ID1= 1 (0002) + ID2= 2 (0001) =========== ID = 3 (0008) NOTE: PEAK FLOWS	COEFF. I: E SELECTE! O Ia: DT) SHOULI ORAGE COE: OES NOT II ARI (h:): : DO NOT II	S SMALLER THA	TPEAK (hrs) 1.33 65 1.33 66 LOWS IF ANY.	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (I THAN THE STC (iii) PEAK FLOW DO ADD HYD (0008) 1 + 2 = 3 ID1= 1 (0002) + ID2= 2 (0001) ========= ID = 3 (0008) NOTE: PEAK FLOWS	COEFF. I: E SELECTE! O Ia: DT) SHOULI ORAGE COE: OES NOT II ARI (h:): : DO NOT II	S SMALLER THA	TPEAK (hrs) 1.33 65 1.33 66 LOWS IF ANY.	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (II THAN THE STC (iii) PEAK FLOW DO ADD HYD (0008) 1 + 2 = 3 ID1= 1 (0002) + ID2= 2 (0001) ========== ID = 3 (0008) NOTE: PEAK FLOWS RESERVOIR (0007) IN= 2> OUT= 1 DT= 5.0 min	COEFF. I: E SELECTE: .0 Ia: DT) SHOULD: ORAGE COE: OES NOT II ARI (h.): .:): .: DO NOT II	S SMALLER THA	TPEAK (hrs) 1.33 65 1.33 66 LOWS IF ANY.	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (II THAN THE STE (iii) PEAK FLOW DO	COEFF. I: E SELECTEI .0 Ia: DT) SHOULD ORACE COE: OES NOT II ARI (h.):): DO NOT II OUTFLOI (cms)	S SMALLER THY D FOR PERVIOU = Dep. Storag D BE SMALLER FFICIENT. NCLUDE BASEFI	AN TIME STEP! JS LOSSES: JS (Above) OR EQUAL LOW IF ANY. TPEAK (hrs) 1.33 67 1.33 66 LOWS IF ANY.	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (II THAN THE STC (iii) PEAK FLOW DO ADD HYD (0008) 1 + 2 = 3 ID1= 1 (0002) + ID2= 2 (0001) ========== ID = 3 (0008) NOTE: PEAK FLOWS RESERVOIR (0007) IN= 2> OUT= 1 DT= 5.0 min	COEFF. I: E SELECTEI .0 Ia: DT) SHOULD ORACE COE: OES NOT II ARI (h:): .:): .: DO NOT II OUTFLOI (cms) .0000	S SMALLER THZ D FOR PERVIOU DEP. Storag DEP. Storag DEP. SMALLER FFICIENT. NCLUDE BASEFI CMS OPEAK A) (cms) 19 .097 22 .109 22 .109 24 .206 NCLUDE BASEFI W STORAGE (ha.m.) 0 .0000	TPEAK (hrs) 1.33 65 1.33 66 LOWS IF ANY.	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (II THAN THE STC (iii) PEAK FLOW DO ADD HYD (0008) 1 + 2 = 3 ID1= 1 (0002) + ID2= 2 (0001) ========== ID = 3 (0008) NOTE: PEAK FLOWS RESERVOIR (0007) IN= 2> OUT= 1 DT= 5.0 min	COEFF. I: E SELECTE! O Ia: DT) SHOULI ORACE COE: OES NOT II ARI (hi : : : : DO NOT II OUTFLOM (cms) .0000 .079:	S SMALLER THZ D FOR PERVIOU D Dep. Storag D BE SMALLER FFICIENT. NCLUDE BASEFI Cms) 19 097 22 .109 22 .109 24 .206 NCLUDE BASEFI W STORAGE (ha.m.) 0 .0000 5 .0020	TPEAK (hrs) 1.33 65 1.33 66 COWS IF ANY.	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (II THAN THE STC (iii) PEAK FLOW DO ADD HYD (0008) 1 + 2 = 3 ID1= 1 (0002) + ID2= 2 (0001) ========== ID = 3 (0008) NOTE: PEAK FLOWS RESERVOIR (0007) IN= 2> OUT= 1 DT= 5.0 min	COEFF. I: E SELECTE O Ia: DT) SHOULI ORAGE COE OES NOT II OUTFLOI (cms) .0000 .079: .079:	S SMALLER THA D FOR PERVIOU DEP. Storag D BE SMALLER FFICIENT. NCLUDE BASEFI	TPEAK (hrs) 1.33 67 1.33 66 LOWS IF ANY. OUTFLOW (cms) 1.0799 1.0799 1.0800	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (II THAN THE STC (iii) PEAK FLOW DO ADD HYD (0008) 1 + 2 = 3 ID1= 1 (0002) + ID2= 2 (0001) ========== ID = 3 (0008) NOTE: PEAK FLOWS RESERVOIR (0007) IN= 2> OUT= 1 DT= 5.0 min	COEFF. I: E SELECTE! O Ia: DT) SHOULI ORACE COE: OES NOT II ARI (hi : : : : DO NOT II OUTFLOM (cms) .0000 .079:	S SMALLER THA D FOR PERVIOU DEP. Storag D BE SMALLER FFICIENT. NCLUDE BASEFI	TPEAK (hrs) 1.33 65 1.33 66 COWS IF ANY.	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (II THAN THE STC (iii) PEAK FLOW DO ADD HYD (0008) 1 + 2 = 3 ID1= 1 (0002) + ID2= 2 (0001) ========== ID = 3 (0008) NOTE: PEAK FLOWS RESERVOIR (0007) IN= 2> OUT= 1 DT= 5.0 min	COEFF. I: E SELECTE O Ia: DT) SHOULI ORAGE COE OES NOT II OUTFLOI (cms) .0000 .079: .079:	S SMALLER THY D FOR PERVIOU D POP. Storacy D BE SMALLER FFICIENT. NCLUDE BASEFI Company D 19 097 D 22 109 D 20 109 D 20 109 D 30 109 D 30 100 D 40 100 D 60 0040 D 7 0060	AN TIME STEP! JS LOSSES: JS (Above) OR EQUAL LOW IF ANY. TPEAK (hrs) 1.33 67 1.33 66 LOWS IF ANY. OUTFLOW (cms) 0.798 0.799 0.8000 0.0000	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (II THAN THE STC (iii) PEAK FLOW DO ADD HYD (0008) 1 + 2 = 3 ID1= 1 (0002) + ID2= 2 (0001) ========== ID = 3 (0008) NOTE: PEAK FLOWS RESERVOIR (0007) IN= 2> OUT= 1 DT= 5.0 min	COEFF. I: E SELECTE O Ia: DT) SHOULI ORAGE COE OES NOT II OUTFLOI (cms) .0000 .079: .079:	S SMALLER THA D FOR PERVIOU DEP. Storag D BE SMALLER FFICIENT. NCLUDE BASEFI	TPEAK (hrs) 1.33 66 LOWS IF ANY. OUTFLOW (cms) 1.0798 1.0799 1.0800 1.0000	75.20 .87
***** WARNING: STORAGE (i) CN PROCEDURE CN* = 80. (ii) TIME STEP (II THAN THE STC (iii) PEAK FLOW DO ADD HYD (0008) 1 + 2 = 3 ID1= 1 (0002) + ID2= 2 (0001) ========== ID = 3 (0008) NOTE: PEAK FLOWS RESERVOIR (0007) IN= 2> OUT= 1 DT= 5.0 min	COEFF. I: E SELECTEI O Ia: DT) SHOULI ORAGE COE OES NOT II ARI (h: : : DO NOT II OUTFLOI (cms) .000 .079 .079 .079	S SMALLER THA D FOR PERVIOU DEP. Storag D BE SMALLER FFICIENT. NCLUDE BASEFI	AN TIME STEP! JS LOSSES: ge (Above) OR EQUAL LOW IF ANY. TPEAK (hrs) 1.33 67 1.33 65 1.33 66 LOWS IF ANY. OUTFLOW (cms) .0798 .0799 .0800 .0000	75.20 .87

PROPOSED 27-STOREY APARTMENT BUILDING – 50 SPEERS RD $FSR\ REPORT$

PEAK FLOW REDUCTION [Qout/Qin](%) = 38.65
TIME SHIFT OF PEAK FLOW (min) = 5.00
MAXIMUM STORAGE USED (ha.m.)= .0082

226 WILKINSON ROAD, BRAMPTON, ONTARIO L6T 4N7 (905) 792-8169

SANITARY & STORM SEWER VIDEO INSPECTION REPORT

150 MM & 200 MM DIAMETER SANITARY SEWERS & 450 MM DIAMETER STORM SEWER

FOR

50 SPEERS ROAD

TOWN OF OAKVILLE REGION OF HALTON

DVD # 22145

CONSULTING ENGINEER: THE ODAN/DETECH GROUP INC.
CONSULTING ENGINEER'S REPRESENTATIVE: KEVIN OSINGA
DEVELOPER: COLLAGE WORKS
DEVELOPER'S REPRESENTATIVE: ALI SANEINEJAD

FRIDAY, JUNE 17TH, 2022

INDEX:

- 1. TITLE PAGE AND INDEX
- 2. SUMMARY REPORT AND CONCLUSIONS
- 3. SKETCH OF SEWERS INSPECTED
- 4. SEWER INSPECTION REPORT

SEWER CLEANING, VIDEO INSPECTION, INSITU REPAIRS & MUNICIPAL ENGINEERING SERVICES

2. SUMMARY REPORT AND CONCLUSIONS:

The video inspection of the sanitary and storm sewers for 50 Speers Road was carried out by Steven Lostracco, P.Eng. of Aquaflow Technology Inc., and was authorized by Kevin Osinga of The Odan/Detech Group Inc. All sanitary and storm sewers were power flushed immediately prior to the video inspection The video inspections were carried out on Friday, June 17th, 2022.

SANITARY & STORM SEWERS INSPECTED:

DVD # 22145: 150 mm & 200 mm diameter

Sanitary sewers inspected 140.6 m

450 mm diameter Storm

sewer inspected 30.0 m

TOTAL LENGTH OF SEWERS VIDEO INSPECTED:

<u>170.6 M.</u>

Pipes are old and showing signs of age, they are currently functioning in satisfactory condition. However, pipes do require rehabilitation or repairs to continue working reliably in the future. For detailed comments on each sewer run, please refer to the attached sewer video Inspection reports.

- 1. SAN-CO-50 to MH SAN-1, 150 mm dia. A.C. sanitary lateral. Root infiltration was observed at a joint, hardened grease buildup on the sides of the pipe and light ponding was obseved (survey #1).
- 2. MH SAN-1 to SAN-2, 200 mm conc. sanitary sewer. Sewer main for adjacent building #30. Both manholes SAN-1 + SAN-2 require re-benching to allow proper sewage flow. Root infiltration was observed at multiple joints, grease buildup observed in pipe, and 2 breaks were observed, (survey #2). It is recommend to either re-line the entire pipe or replace it.
- 3. MH SAN-2 to SAN-BLDG-30, 150 mm Cast Iron sanitary sewer. Pipe services #30 Speers Road apartment building, sanitary pipe is visible hung inside the underground parking garage (survey #3).
- 4. MH STM-1 to STM-2-BURIED, 450 mm conc. storm. Pipe services #30 Speers Road apartment building, likely a buried manhole next to MH SAN-2. 200 mm dia. storm pipe connects to the building #30 Speers Road apartment, it is visible hung inside the underground parking garage, confirmed connection to the 450 mm sewer. Heavy accumulation of sand debris throughout 450 mm storm sewer, camera blocked at 9.2 metres, debris continues throughout entire line. Extra flushing required to CCTV the entire line. Note, root infiltration and calcite buildup observed in line.

1. 50 Speers Road

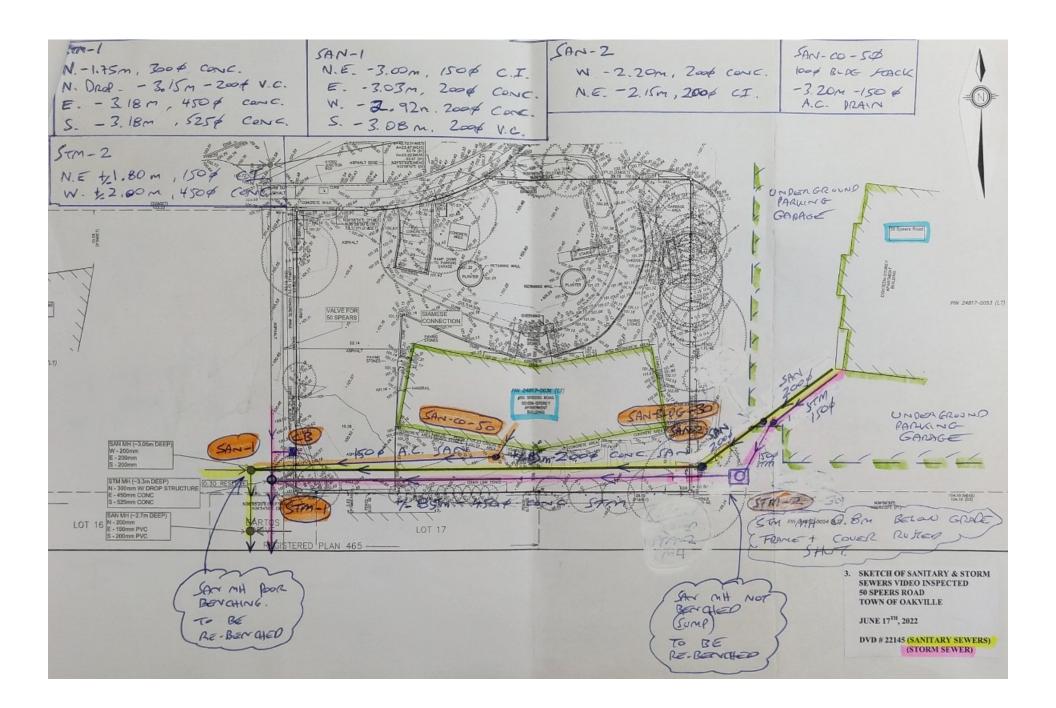
2. 50 Speers Road

3. 50 Speers Road, SAN-CO-50

4. 30 Speers Road, MH SAN-2 (Likely buried MH STM-2-BURIED)

5. 80 Speers Road, MH SAN-1, STM-1

6. 80 Speers Road, MH SAN (Requires re-benching)


7. 30 Speers Road, SAN + STM laterals

8. 30 Speers Rd, Hung SAN + STM laterals in parking garage

Report Prepared by:

Steven Lostracco, P. Eng.

Index of pipes

4 items

Inspected length: 170.60 Total length: 225.00

Pipe	Start/End	Direction	Road	Date	Inspected	Total	Page
SAN-1_SAN-2	SAN-1> SAN-2	Against flow	50 SPEERS ROAD - SANITARY	17/06/2022 9:36 AM	84.6	85	4
SAN-2_SAN-BLDG-30	SAN-2> SAN-BLDG-30	Against flow	50 SPEERS ROAD - SANITARY	17/06/2022 10:22 AM	10	10	5
SAN-CO-50_SAN-1	SAN-CO-50> SAN-1	Direction of flow	50 SPEERS ROAD - SANITARY	17/06/2022 8:14 AM	46	45	6
STM-1_STM-2-BURIED	STM-1> STM-2-BURIED	Against flow	50 SPEERS ROAD - STORM	17/06/2022 11:17 AM	30	85	7

Structural rating

4 items

5 - Most significant defect grade (1 of 4 items)

Score	Quick	Index	Pipe	Start/End	Direction	Road	Page
11	5211	3.7	SAN-1_SAN-2	SAN-1> SAN-2	Against flow	50 SPEERS ROAD - SANITARY	4

2 - Minor to Moderate (1 of 4 items)

Score	Quick	Index	Pipe	Start/End	Direction	Road	Page
2	2100	2	STM-1_STM-2-BURIED	STM-1> STM-2-BURIED	Against flow	50 SPEERS ROAD - STORM	7

0 - No Defects (2 of 4 items)

Score	Quick	Index	Pipe	Start/End	Direction	Road	Page
0	0000	0	SAN-2_SAN-BLDG-30	SAN-2> SAN-BLDG-30	Against flow	50 SPEERS ROAD - SANITARY	5
0	0000	0	SAN-CO-50_SAN-1	SAN-CO-50> SAN-1	Direction of flow	50 SPEERS ROAD - SANITARY	6

O&M rating

4 items

3 - Moderate defect grade (2 of 4 items)

Score	Quick	Index	Structural	Pipe	Start/End	Direction	Road	Page
55	3B21	2.8	2	STM-1_STM-2-BURIED	STM-1> STM-2-BURIED	Against flow	50 SPEERS ROAD - STORM	7
11	3312	2.2	5	SAN-1_SAN-2	SAN-1> SAN-2	Against flow	50 SPEERS ROAD - SANITARY	4

0 - No Defects (2 of 4 items)

Score	Quick	Index	Structural	Pipe	Start/End	Direction	Road	Page
0	0000	0	0	SAN-2_SAN-BLDG-30	SAN-2> SAN-BLDG-30	Against flow	50 SPEERS ROAD - SANITARY	5
0	0000	0	0	SAN-CO-50_SAN-1	SAN-CO-50> SAN-1	Direction of flow	50 SPEERS ROAD - SANITARY	6

Pipe identification

Pipe:SAN-1_SAN-2Direction of inspection:SAN-1 --> SAN-2Direction of flow:SAN-2 --> SAN-1Direction:Against flow

Road: 50 SPEERS ROAD - SANITARY Material: Concrete Pipe (non-reinforced)

 City:
 OAKVILLE
 Size:
 200

 Date:
 17/06/2022 9:36 AM
 Inspected length:
 84.6

Surveyed by: OWEN Purpose:

Weather: Dry Additional information:

#	Distance	Description
1	0.00 m	AMH - Manhole, SAN-1
2	0.00 m	MWL - Water Level, 5%
3	0.00 m	MGO - General Observation, MH SAN-1, DETERIORATED BENCHING, TO BE RE-BENCHED
4	0.00 m	MGO - General Observation, 150 MM SAN TO BLDG
5	0.00 m	MGO - General Observation, 200 MM PIPE TO THE EAST
6	0.00 m	MGO - General Observation, 200 MM CLAY OUTLET PIPE
7	0.00 m	MGO - General Observation, SEWAGE COLLECTS, MH TO BE RE-BENCHED
8	5.90 m	MGO - General Observation, OLD 1.0 M SECTIONS OF NON REINFORCED PIPE
9	6.40 m	CC - Crack Circumferential, from 7 o'clock to 12 o'clock
10	6.40 m	RMJ - Roots Medium Joint, at joint, from 10 o'clock to 12 o'clock, 10%, ROOTS GROWIN THRU CRACK IN PIPE
11	7.00 m	MWL - Water Level, 10%
12	7.40 m	RMJ - Roots Medium Joint, at joint, from 10 o'clock to 12 o'clock, 10%
13	8.80 m	RFJ - Roots Fine Joint, at joint, at 11 o'clock
14	10.90 m	MWL - Water Level, 20%
15	17.60 m	MWL - Water Level, 10%
16	39.10 m	B - Broken, from 4 o'clock to 10 o'clock, BOTTOM + SIDES OF PIPE BROKEN
17	39.90 m	TF - Tap Factory, at 9 o'clock, Dim.1=150, CAPPED
18	44.80 m	MGO - General Observation, HOLE IN PIPE COVERED WITH BUILDING MATERIALS
19	45.90 m	RFJ - Roots Fine Joint, at joint, at 9 o'clock
20	48.20 m	MGO - General Observation, ROOTS AT MULTIPLE JOINTS IN LINE
21	58.30 m	MWL - Water Level, 20%
22	65.90 m	MWL - Water Level, 10%
23	70.00 m	RMJ - Roots Medium Joint, at joint, from 11 o'clock to 5 o'clock, 20%
24	74.50 m	MWL - Water Level, 30%
25	78.10 m	MGO - General Observation, HEAVY PONDING IN LINE - GREASE ON TOP OF PIPE
26	81.90 m	MWL - Water Level, 10%
27	82.00 m	B - Broken, from 10 o'clock to 2 o'clock, BREAK IN TOP OF PIPE - PIECE OF CLAY PIPE COVERING HOLE
28	84.60 m	MGO - General Observation, VIEW OF PIPE TO ADJACENT BLDG
29	84.60 m	MGO - General Observation, SUMP MH - SEWAGE COLLECTS - TO BE RE-BENCHED
30	84.60 m	AMH - Manhole, SAN-2

Pipe identification

Pipe: SAN-2_SAN-BLDG-30 **Direction of inspection:** SAN-2 --> SAN-BLDG-30

Direction of flow: SAN-BLDG-30 --> SAN-2 **Direction:** Against flow

Road:50 SPEERS ROAD - SANITARYMaterial:Cast IronCity:OAKVILLESize:150Date:17/06/2022 10:22 AMInspected length:10

Surveyed by: OWEN Purpose:

Weather: Dry Additional information:

#	Distance	Description
1	0.00 m	AMH - Manhole, SAN-2
2	0.00 m	MWL - Water Level, 10%
3	0.00 m	MGO - General Observation, SUMP MH - SEWAGE COLLECTS - TO BE RE-BENCHED
4	0.00 m	MWL - Water Level, 20%
5	10.00 m	MGO - General Observation, INSIDE PARKING GARAGE OF BLDG #30
6	10.00 m	MGO - General Observation, RE-CCTV AS BACKING OUT
7	10.00 m	AMH - Manhole, SAN-BLDG-30

Pipe identification

Pipe:SAN-CO-50_SAN-1Direction of inspection:SAN-CO-50 --> SAN-1Direction of flow:SAN-CO-50 --> SAN-1Direction:Direction of flow

Road: 50 SPEERS ROAD - SANITARY Material: Asbestos Cement

 City:
 OAKVILLE
 Size:
 150

 Date:
 17/06/2022 8:14 AM
 Inspected length:
 46

 Surveyed by:
 OWEN
 Purpose:

Weather: Dry Additional information:

#	Distance	Description
1	0.00 m	ACOM - Cleanout Mainline, SAN-CO-50
2	0.00 m	MWL - Water Level, 5%
3	0.00 m	MGO - General Observation, BUILDING CLEANOUT ON SOUTH SIDE - 100MM A.C. STACK
4	3.30 m	MGO - General Observation, WYE INTO MAIN DRAIN
5	4.50 m	MGO - General Observation, HEAVY ROOTS AT PIPE JOINT
6	6.00 m	MGO - General Observation, SOLID GREASE ON SIDE OF PIPE
7	7.00 m	MWL - Water Level, 10%
8	15.00 m	MWL - Water Level, 15%
9	23.00 m	MWL - Water Level, 10%
10	46.00 m	MGO - General Observation, POOR BENCHING IN MH, TO BE RE-BENCHED
11	46.00 m	MGO - General Observation, RE-CCTV AS BACKING OUT
12	46.00 m	AMH - Manhole, SAN-1

Pipe identification

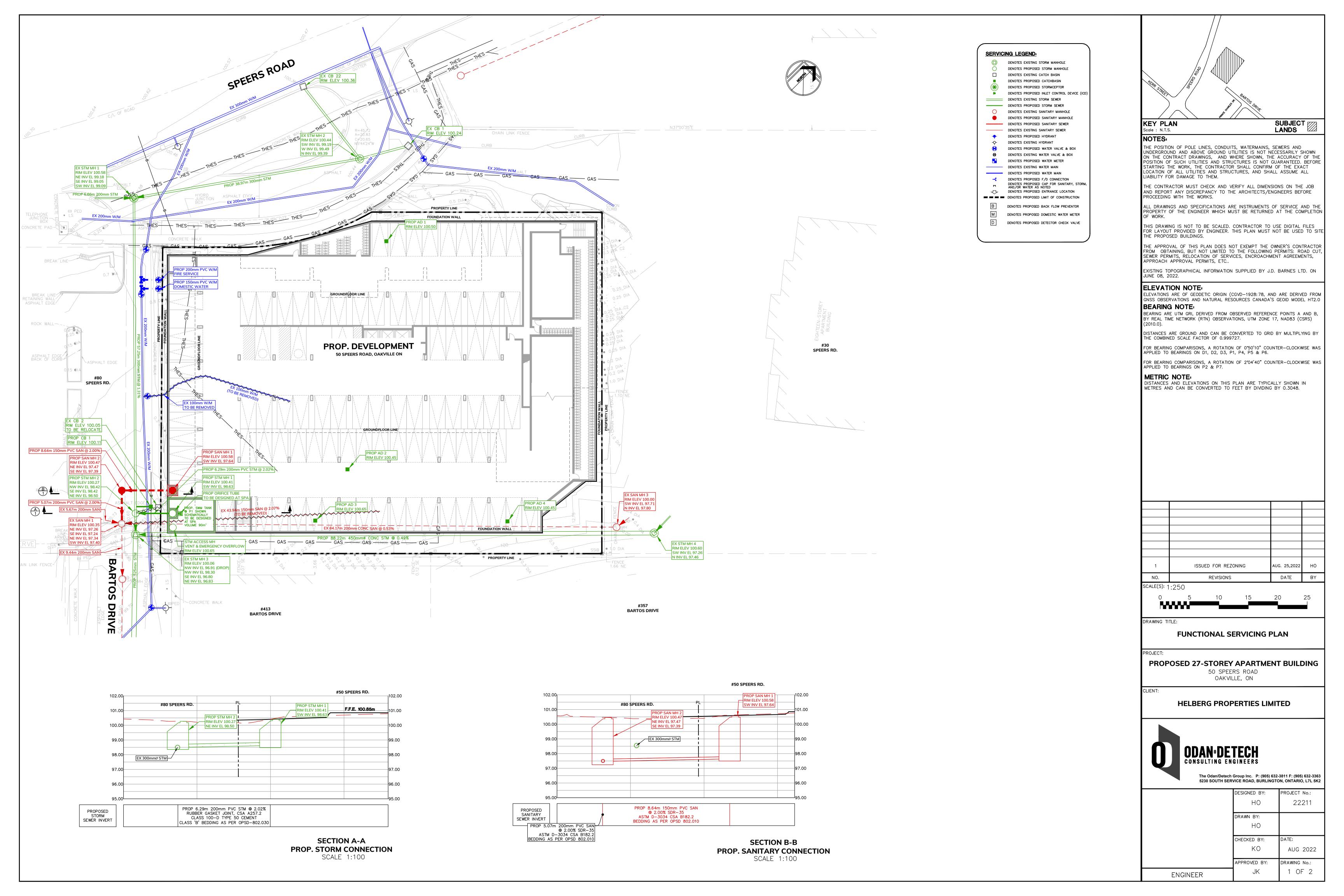
Pipe: STM-1_STM-2-BURIED Direction of inspection: STM-1 --> STM-2-BURIED

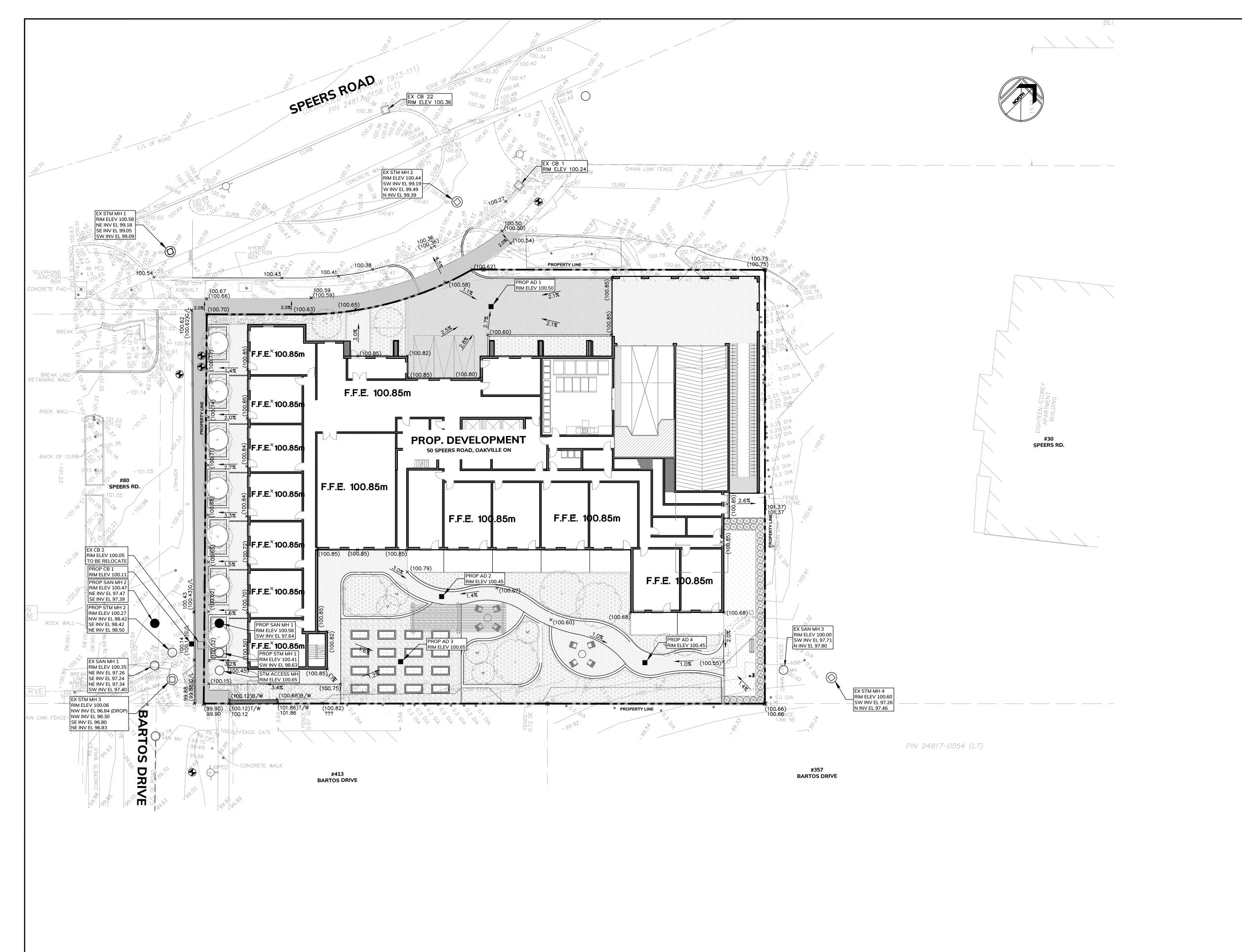
Direction of flow: STM-2-BURIED --> STM-1 **Direction:** Against flow

Road: 50 SPEERS ROAD - STORM **Material:** Reinforced Concrete Pipe

 City:
 OAKVILLE
 Size:
 450

 Date:
 17/06/2022 11:17 AM
 Inspected length:
 30


Surveyed by: OWEN Purpose:


Weather: Dry Additional information:

#	Distance	Description
1	0.00 m	AMH - Manhole, STM-1
2	0.00 m	MWL - Water Level, 5%
3	2.50 m	DAE - Deposits Attached Encrustation, from 4 o'clock to 8 o'clock, 5%, CALCITE BUILDUP AT JOINT
4	3.00 m	CL - Crack Longitudinal, at 12 o'clock
5	3.00 m	MGO - General Observation, LIFT HOLE AT TOP OF PIPE
6	3.40 m	MWL - Water Level, 10%
7	4.20 m	RFJ - Roots Fine Joint, at joint, at 4 o'clock
8	7.70 m	RMJ - Roots Medium Joint, at joint, at 8 o'clock, 10%
9	7.70 m	(S01) DSF - Deposits Settled Fine, from 5 o'clock to 7 o'clock, 20%
10	9.20 m	RMJ - Roots Medium Joint, at joint, at 4 o'clock, 10%
11	9.20 m	MGO - General Observation, BLOCKED BY HEAVY SAND DEBRIS
12	9.20 m	MGO - General Observation, ZOOM IN VIEW AHEAD
13	30.00 m	RFJ - Roots Fine Joint, at joint, at 4 o'clock
14	30.00 m	MGO - General Observation, DEBRIS THROUGHOUT ENTIRE LINE
15	30.00 m	MGO - General Observation, LIKELY BURIED MANHOLE STM-2
16	30.00 m	MGO - General Observation, CONFIRMED STM CONN'N FROM #30 CONNECTS TO THIS LINE
17	30.00 m	MGO - General Observation, EXTRA FLUSHING REQUIRED TO CLEAN OUT HEAVY DEBRIS FROM LINE
18	30.00 m	(F01) DSF - Deposits Settled Fine, from 5 o'clock to 7 o'clock, 20%
19	30.00 m	MSA - Abandoned Survey, BLOCKED

APPENDIX D

Functional Servicing Plan Functional Grading & Drainage Plan

GRADING LEGEND

DENOTES EXISTING STORM MANHOLE DENOTES PROPOSED STORM MANHOLE DENOTES EXISTING CATCH BASIN DENOTES PROPOSED CATCHBASIN

DENOTES PROPOSED STORMCEPTOR DENOTES EXISTING SANITARY MANHOLE DENOTES PROPOSED SANITARY MANHOLE DENOTES PROPOSED HYDRANT

DENOTES EXISTING HYDRANT DENOTES PROPOSED WATER VALVE & BOX DENOTES EXISTING WATER VALVE & BOX DENOTES PROPOSED WATER METER

DENOTES PROPOSED SIAMESE CONNECTION • 113.62 100.00 DENOTES EXISTING SPOT ELEVATION (100.00) DENOTES PROPOSED ELEVATION (100.00)T/C DENOTES PROPOSED TOP OF CURB ELEVATION (100.00)G/L DENOTES PROPOSED GUTTER LINE ELEVATION

(100.00) HP DENOTES PROPOSED HIGH POINT (100.00) DENOTES PROPOSED SWALE INVERT ELEVATION [100.00] DENOTES PROPOSED ELEVATION BY OTHERS DENOTES PROPOSED FLOW ARROW AND SLOPE DENOTES PROPOSED FLOW ARROW

DENOTES EMERGENCY OVERLAND FLOW DENOTES PROPOSED SLOPE (3:1 OR HIGHER) 195.50 DENOTES EXISTING CONTOUR XXX DENOTES PROPOSED SILT FENCE

DENOTES PROPOSED ENTRANCE LOCATION DENOTES EXTENT OF MAX. PONDING (0.30m) 100 YEAR STORM. ■■■ DENOTES PROPOSED LIMIT OF CONSTRUCTION

DENOTES PROPOSED HEAVY DUTY ASPHALT AREA

SUBJECT /// **KEY PLAN** LANDS 🗵 Scale: N.T.S.

THE POSITION OF POLE LINES, CONDUITS, WATERMAINS, SEWERS AND UNDERGROUND AND ABOVE GROUND UTILITIES IS NOT NECESSARILY SHOWN ON THE CONTRACT DRAWINGS, AND WHERE SHOWN, THE ACCURACY OF THE POSITION OF SUCH UTILITIES AND STRUCTURES IS NOT GUARANTEED. BEFORE STARTING THE WORK, THE CONTRACTOR SHALL CONFIRM OF THE EXACT LOCATION OF ALL UTILITIES AND STRUCTURES, AND SHALL ASSUME ALL LIABILITY FOR DAMAGE TO THEM.

THE CONTRACTOR MUST CHECK AND VERIFY ALL DIMENSIONS ON THE JOB AND REPORT ANY DISCREPANCY TO THE ARCHITECTS/ENGINEERS BEFORE PROCEEDING WITH THE WORKS.

LL DRAWINGS AND SPECIFICATIONS ARE INSTRUMENTS OF SERVICE AND THE PROPERTY OF THE ENGINEER WHICH MUST BE RETURNED AT THE COMPLETION

THIS DRAWING IS NOT TO BE SCALED. CONTRACTOR TO USE DIGITAL FILES FOR LAYOUT PROVIDED BY ENGINEER. THIS PLAN MUST NOT BE USED TO SITE THE PROPOSED BUILDINGS.

THE APPROVAL OF THIS PLAN DOES NOT EXEMPT THE OWNER'S CONTRACTOR FROM OBTAINING, BUT NOT LIMITED TO THE FOLLOWING PERMITS: ROAD CUT, SEWER PERMITS, RELOCATION OF SERVICES, ENCROACHMENT AGREEMENTS, APPROACH APPROVAL PERMITS, ETC..

EXISTING TOPOGRAPHICAL INFORMATION SUPPLIED BY J.D. BARNES LTD. ON JUNE 08, 2022.

ELEVATION NOTE:

ELEVATIONS ARE OF GEODETIC ORIGIN (CGVD-1928:78, AND ARE DERIVED FROM GNSS OBSERVATIONS AND NATURAL RESOURCES CANADA'S GEOID MODEL HT2.0 BEARING NOTE: BEARING ARE UTM GRI, DERIVED FROM OBSERVED REFERENCE POINTS A AND B,

BY REAL TIME NETWORK (RTN) OBSERVATIONS, UTM ZONE 17, NAD83 (CSRS)

DISTANCES ARE GROUND AND CAN BE CONVERTED TO GRID BY MULTIPLYING BY THE COMBINED SCALE FACTOR OF 0.999727.

FOR BEARING COMPARISONS, A ROTATION OF 0°50'10" COUNTER—CLOCKWISE WAS APPLIED TO BEARINGS ON D1, D2, D3, P1, P4, P5 & P6.

FOR BEARING COMPARISONS, A ROTATION OF 2°04'40" COUNTER-CLOCKWISE WAS APPLIED TO BEARINGS ON P2 & P7.

METRIC NOTE:

DISTANCES AND ELEVATIONS ON THIS PLAN ARE TYPICALLY SHOWN IN METRES AND CAN BE CONVERTED TO FEET BY DIVIDING BY 0.3048.

1	ISSUED FOR REZONING	AUG. 25,2022	НО			
NO.	REVISIONS	DATE	BY			
SCALE(S): 1	SCALE(S): 1:250					

DRAWING TITLE:

FUNCTIONAL GRADING & DRAINAGE PLAN

PROPOSED 27-STOREY APARTMENT BUILDING 50 SPEERS ROAD OAKVILLE, ON

CLIENT:

HELBERG PROPERTIES LIMITED

The Odan/Detech Group Inc. P: (905) 632-3811 F: (905) 632-3363 5230 SOUTH SERVICE ROAD, BURLINGTON, ONTARIO, L7L 5K2

	DESIGNED BY:	PROJECT No.:
	НО	22211
	DRAWN BY:	
	НО	
	CHECKED BY:	DATE:
	KO	AUG 2022
	APPROVED BY:	DRAWING No.:
ENGINEER	JK	2 OF 2