

REPORT ON PHASE II ENVIRONMENTAL SITE ASSESSMENT 50 SPEERS ROAD OAKVILLE, ONTARIO

REPORT NO.: 5557-21-EB REPORT DATE: NOVEMBER 5, 2021

PREPARED FOR HELBERG PROPERTIES LIMITED

110 KONRAD CRESCENT, UNIT 16, MARKHAM, ONTARIO L3R 9X2 TEL.: 905-940-8509 FAX: 905-940-8192

Table of Contents

EXECUTIVE SUMMARY	1
INTRODUCTION	3
Objective	3
Site Description	3
BACKGROUND INFORMATION	5
Physical Setting	5
Water Bodies and Areas of Natural Significance	5
Past Investigations	5
SCOPE OF WORK	6
Deviations and Impediments	7
INVESTIGATION METHOD	8
Field Preparation	8
Sampling and Analysis Plan	8
FIELD INVESTIGATION	10
Borehole Drilling	10
Soil Sampling and Field Screening	10
Monitoring Well Installation	10
Groundwater Monitoring and Sampling	11
Laboratory Analyses	11
Quality Assurance and Quality Control (QA/QC) Measures	11
Site Condition Standard Selection	11
REVIEW AND EVALUATION	13
Soil	13
Groundwater	14
Laboratory Analytical Results	14
Soil Quality	14
Ground Water Quality	15
QA/QC Results	15
DISCUSSION OF RESULTS AND RECOMMENDATIONS	16
Summary of Findings	16
Discussion and Recommendation	16
Monitoring Well Decommissioning	17

REFERENCES	Toronto Inspection Ltd
GENERAL STATEMENT OF LIMITATION	19
<u>FIGURES</u>	
Site Layout Map Borehole and Monitoring Well Location Plan Soil Exceedance Plan Groundwater Exceedance Plan	Figure No. 1 Figure No. 2 Figure No. 3 Figure No. 4
<u>APPENDICES</u>	
Borehole Logs Laboratory Certificates of Analyses	Appendix A Appendix B

left blank for notes

1. EXECUTIVE SUMMARY

Toronto Inspection Ltd. was retained by Helberg Properties Limited (the 'Client') to conduct a Phase II Environmental Site Assessment (Phase II ESA) for the property located at 50 Speers Road, Oakville, Ontario (hereinafter described as "the Site"). The Phase II ESA was conducted in general accordance with the Canadian Standard Association (CSA) Standard Z769-00 reaffirmed 2018, "Phase II Environmental Site Assessment". It is understood that the Phase II ESA was commissioned for due diligence purposes and that this Phase II ESA cannot be used to support the filing of a Record of Site Condition (RSC).

The objective of this Phase II ESA was to determine the presence or absence of contamination in the subsoil and groundwater with respect to the potential subsurface impacts identified in the previous Phase One ESA completed by *Toronto Inspection Ltd.*, dated July 6, 2021.

The Site is a rectangular-shaped property located east of Speers Road and approximately 115 m north of Kerr Street in Oakville, Ontario. The Site is occupied by a seven (7) storey apartment building. The following potential environmental concerns were identified in the previous Phase I ESA:

- The potential presence of fill of unknown quality across the Site
- Off-Site activities south of the Site including autobody shop, an underground tank leak
 of furnace oil and an off-Site underground storage tank (UST)
- Off-Site activities west of the Site including manufacturing, waste generation, the presence of USTs and previous remediation activities

Based on these findings, a Phase II ESA was recommended and completed at the Site. A summary of the findings of the Phase II ESA conducted at the Site are presented below:

- A total of seven (7) boreholes were advanced to depths extending from 0.3 m to 11.1 m below grade, All seven of the boreholes were completed as monitoring wells.
- The soil stratigraphy at the boreholes generally consisted of a surface cover of asphalt over granular bases or top soil extending up to depths of 0.3 m below grade. Underlying the surface cover a layer of fill generally consisting of clayey silt or sandy silt was encountered. Weathered shale was encountered underlying the fill/clayey silt/silty sand deposits at depths ranging from 1.2 m to 4.3 m below grade.
- All soil vapour readings at the tested sampling locations were less than 20 ppm.
- Measured groundwater levels on May 25, 2021 in the monitoring wells were observed to be between 4.54 m and 7.89 m below grade.
- Representative or "worst-case" soil samples were collected in laboratory-supplied containers, placed in a cooler and preserved with ice, and shipped with a Chain of Custody to SGS Canada Inc. located in Lakefield, Ontario for laboratory analyses.
- The MECP Table 3 SCS for Residential/Parkland/Institutional property use with coarse

textured soils were selected for evaluating sample results.

- The concentrations of PHCs, VOCs, M&Is, and PAHs in all analyzed soil samples at the tested locations met their MECP Table 3 SCS for Residential/Parkland/Institutional property use with coarse textured soils with the following exceptions: soil sample 21BH-2(MW) SS1.
- The concentrations of PHCs, VOCs, PAHs, and M&Is in the analyzed groundwater samples at the tested locations met their MECP Table 3 SCS for all types of property uses with medium-fine textured soils with the following exception: groundwater sample collected from 21BH-4(MW).

The groundwater impacts appear to be localized in the northeast portion of the Site. It is recommended that the groundwater exceedances be addressed during future redevelopment activities. Possible methods of treatment at that time may include chemical oxidation or pump and treat. Furthermore, as the source is likely off Site, engineering controls such as a permeable reactive barrier may also be considered as options for the Site.

If the on-Site monitoring wells are no longer required for further sampling or testing of the groundwater, the wells must be decommissioned as per the requirements of O. Reg. 903 "Wells". It should be noted that the decommissioning of monitoring wells is not part of the current scope of work. *Toronto Inspection Ltd.* would be pleased to assist and arrange to perform this work upon request.

2. INTRODUCTION

Toronto Inspection Ltd. was retained by Helberg Properties Limited (the 'Client') to conduct a Phase II Environmental Site Assessment (Phase II ESA) for the property located at 50 Speers Road, Oakville, Ontario (hereinafter described as "the Site"). The Phase II ESA was conducted in general accordance with the Canadian Standard Association (CSA) Standard Z769-00 reaffirmed 2018, "Phase II Environmental Site Assessment". It is understood that the Phase II ESA was commissioned for due diligence purposes and that this Phase II ESA cannot be used to support the filing of a Record of Site Condition (RSC).

2.1. Objective

The objective of this Phase II ESA was to determine the presence or absence of contamination in the subsoil and groundwater with respect to the potential subsurface impacts identified in the previous Phase One ESA completed by *Toronto Inspection Ltd.*, dated July 6, 2021.

2.2. Site Description

The Site is a rectangular-shaped property located east of Speers Road and approximately 115 m north of Kerr Street in Oakville, Ontario. The Site is occupied by a seven (7) storey apartment building and it is described as follows:

General Information	Description
Address	50 Speers Road, Oakville, Ontario
Property Identification Number (PIN)	24817-0036 LT
Legal description	Part of Lots 15 and 16, Concession 3 Trafalgar, south of Dundas Street; PT RDAL Between Lots 15 & 16, Concession 3, south of Dundas Street, as in 274152; Oakville/Trafalgar
Current land use	Residential
Current occupant	Tenants
Ownership	Helberg Properties Limited
Current zoning	Residential-High (RH)
Proposed land use	Residential
Property coordinates (approximate centroid)	Zone 17 606369.92m E 4811365.36m N
Approximate area of Site	4,180 m ²

An aerial layout of the Site is shown below.

Image 1: Aerial image of Site Source: City of Oakville Interactive Map (2019)

3. BACKGROUND INFORMATION

3.1. Physical Setting

Based on the topographic map, Natural Resources of Canada – The Atlas of Canada – Toporama, local groundwater flow direction is inferred to be northeast towards Sixteen Mile Creek. The closest point of Sixteen Mile Creek in relation to the Site is located approximately 215 m northwest of the Phase One Property. Sixteen Mile Creek flows east and drains into Lake Ontario, which is located approximately 1.7 km east of the Site.

As indicated on the topographic map, the average elevation of the Site is approximately 100 m above mean sea level. The mapped contours for the Site and surrounding areas indicate a downward slope to the northeast direction towards Sixteen Mile Creek. Surface drainage is expected to follow towards catch basins located along Speers Road.

It should be noted that local groundwater flow direction can only be determined through ongoing monitoring of groundwater levels, and that groundwater flow at the Site may be influenced by underground utility corridors or structures.

3.2. Water Bodies and Areas of Natural Significance

The closer water body is Sixteen Mile Creek, which located approximately 215 m northwest of the Site at its closest point. Sixteen Mile Creek flows east and drains into Lake Ontario, which is located approximately 1.7 km east of the Phase One Property. Based on information provided on the Ministry of Natural Resources and Forestry (MNRF) on-line application "Make A Map: Natural Heritage Areas", the Phase One Property is not located within or adjacent to an area of natural and scientific interest (ANSI), a woodland area or within a provincially significant wetland.

3.3. Past Investigations

The following report was reviewed as part of this Phase II ESA:

 "Report on Phase One Environmental Site Assessment, 50 Speers Road, Oakville, Ontario", Report No. 5557-21-EA, prepared by Toronto Inspection Ltd., dated July 6, 2021.

The following potential environmental concerns were identified:

- The potential presence of fill of unknown quality across the Site
- Off-Site activities south of the Site including autobody shop, an underground tank leak
 of furnace oil and an off-Site underground storage tank (UST)
- Off-Site activities west of the Site including manufacturing, waste generation, the presence of USTs and previous remediation activities

Based on these findings, a Phase II ESA was recommended to be conducted at the Site.

4. SCOPE OF WORK

As previously mentioned the Phase II ESA was conducted in general accordance with the Canadian Standard Association (CSA) Standard Z769-00 reaffirmed 2013, "Phase II Environmental Site Assessment". Field work and analytical testing were conducted in general accordance with protocols as set out in the "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario, Revised December 1996, Ministry of Environment and Energy", and "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act, March 9, 2004, amended as of July 1, 2011".

The scope of work for this Phase II ESA comprised the following:

- Developed a site-specific Sampling Analysis Plan (SAP);
- Ensured all public and private utilities at the Site were located and marked out prior to drilling;
- Drilled seven (7) boreholes 21BH-1(MW), 21BH-2(MW), 21BH-3(MW), 21BH-4(MW), 21BH-101(MW), 21BH-102(MW) and 21BH-103(MW) extending to depths ranging from 0.3 m to 11.1 m below grade (or floor surface in the case of borehole 21BH-101(MW));
- Collected soil samples during borehole drilling, and logged the soil samples for visual and olfactory characteristics, and evidence of petroleum hydrocarbon and/or chemical impact;
- Installed groundwater monitoring wells at borehole locations 21BH-1(MW), 21BH-2(MW), 21MW-3(MW), 21BH-4(MW), 21BH-101(MW), 21BH-102(MW) and BH-103(MW);
- Measured soil headspace vapour concentrations in the soil samples for field screening purposes;
- Submitted representative or "worst case" soil samples for laboratory analyses of one or more of the following parameters: Petroleum Hydrocarbons Fraction F1-F4 (PHCs), Volatile Organic Compounds (VOCs), Metals and Inorganics (M&Is), and Polycyclic Aromatic Hydrocarbons (PAHs);
- Inspected the monitoring wells for presence of Light Non-Aqueous Phase Liquid (LNAPL);
- Submitted representative groundwater samples for laboratory analyses of one or more of the following parameters: PHCs, VOCs and M&Is;
- Determined the applicable Site Condition Standards (SCS) from the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", dated April 15, 2011 and the Ontario Regulation (O. Reg.) 153/04 "Record of Site Condition Part XV.1 of the Environmental Protection Act"; and
- Prepared a report that evaluated the laboratory analytical results with respect to the SCS; interpreted the findings of the Phase II ESA and evaluated the nature and amount of impact(s), if any.

4.1. Deviations and Impediments

There was insufficient water in monitoring well 21BH-101(MW) located in the underground parking garage of the Site building. Hence groundwater sampling was not completed at this location. No other deviations or impediments were encountered during the completion of this investigation.

5. INVESTIGATION METHOD

5.1. Field Preparation

Prior to drilling at the Site, *Toronto Inspection Ltd.* contacted Ontario One Call to obtain clearance from public utility companies for borehole locations. In addition, *Toronto Inspection Ltd.* contracted a private locating company to clear the borehole locations of any private utilities at the Site.

A site-specific health and safety plan (HASP) was prepared by *Toronto Inspection Ltd.* prior to the field work. The HASP was reviewed by all workers including staff from *Toronto Inspection Ltd.* and subcontractors prior to the commencement of work on the Site.

5.2. Sampling and Analysis Plan

A Sampling and Analysis Plan (SAP) was developed to address the potential environmental concerns as identified in the Phase One ESA conducted by *Toronto Inspection Ltd.* The rationale of the field investigation and laboratory analyses are summarized in Table 5.2-1.

Table 5.2-1: Sampling and Analysis Plan

Borehole			Investigation Depths	Test Parameters			
or Well ID	Rationale	Sample Media	or Screened Intervals* (m bg)	PHCs	VOCs	M&Is	PAHs
21BH-1(MW)	To complete groundwater monitoring for flow direction	No samples collected	-				
	To asses soil and	Soil	0.0 - 0.6	х	х	х	Х
21BH-2(MW)	groundwater conditions due to on- Site and off-Site concerns	Groundwater	4.6 – 6.1	х	х	х	
	To asses soil and	Soil	0.0 - 0.6	х	х	х	Х
21BH-3(MW)	groundwater conditions due to on- Site and off-Site concerns	Groundwater	4.6 – 6.1	x	x	x	
21BH-4(MW)	To asses soil and groundwater conditions due to on- Site and off-Site concerns	Groundwater	3.1 – 6.1	х	x		
04011 404/888()	To delineate identified	Soil	0.0 - 0.3	х	х	pH only	
21BH-101(MW)	groundwater impacts	Groundwater 0.7 – 0.8 Not sar		ampled due to	insufficient rec	harge	
21BH-102(MW)			1.5 – 2.1		TCLP** only	TCLP** only	
		Soil	2.3 – 3.0			pH only	
			4.6 – 5.2	х	х		
		Groundwater	4.6 – 5.3	x	х		

Borehole		Depths	Investigation Depths		Test Pa	rameters	
or Well ID	Rationale	Sample Media		PHCs	VOCs	M&Is	PAHs
		Soil	1.5 - 2.1			pH only	
21BH-103(MW)		3011	2.3 – 3.0	х	х		
		Groundwater	3.0 – 4.4	х	х		

Note:
*Investigation Depths: the approximate sampling depths of soil samples retrieved from the boreholes
**TCLP: Toxicity Characteristics Leaching Procedure
Screened Intervals: the depths at which the well screens were installed in the monitoring wells

6. FIELD INVESTIGATION

6.1. Borehole Drilling

On May 11, October 14, and October 15, 2021 *Toronto Inspection Ltd.* retained a drilling contractor, with a Ministry of the Environment, Conservation and Parks (MECP) license for well installation, to advance seven boreholes i.e., 21BH-1(MW), 21BH-2(MW), 21BH-3(MW), 21BH-101(MW), 21BH-102(MW), and 21BH-103(MW). The seven borehole locations shown in Figure No. 2. The exterior boreholes (all boreholes except 21BH-101(MW)) were drilled using a track-mounted CME rig equipped with 150 mm solid stem augers. The interior borehole i.e. 21BH-101 was installed with a hand-held Pionjar drilling equipment. The borehole locations were selected, with consideration of buried utility lines at the Site, to assess the potential environmental concerns from off-Site as indicated in Section 5.2-1 – Sampling and Analysis Plan.

6.2. Soil Sampling and Field Screening

Soil samples were typically obtained at intervals of approximately 0.6 m to the terminating depths of the boreholes.

Each of the soil samples were logged in the field for visual and olfactory characteristics, and any evidence of petroleum hydrocarbon and/or chemical impact. Soil headspace vapour concentrations were measured using an RKI Model Eagle 2 portable gas detector equipped with a dual sensor, a photoionization (PID) sensor for detecting VOC gases and a thermal conductivity (TC) sensor for detecting hydrocarbons. The Eagle 2 portable gas detector was set to methane elimination mode and calibrated with hexane (for the TC sensor) and isobutylene (for the PID sensor).

The split spoon sampler was cleaned prior to the collection of each sample. A new pair of nitrile gloves were used to handle each of the soil samples.

Representative or "worst-case" soil samples were collected in laboratory-supplied containers, placed in a cooler and preserved with ice, and shipped with a Chain of Custody to SGS Canada Inc. located in Lakefield, Ontario for laboratory analyses. SGS Canada Inc. is accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA).

The borehole logs showing the soil conditions encountered in the boreholes and measured soil headspace vapour concentrations for the soil samples are presented in Appendix A.

6.3. Monitoring Well Installation

Borehole locations 21BH-1(MW), 21BH-2(MW), 21BH-3(MW), 21BH-4(MW), 21BH-101(MW), 21BH-102(MW) and 21BH-103(MW) were completed as monitoring wells. The exterior monitoring wells were constructed using 50 mm diameter well screening (No. 10 slot) fitted with 50 mm diameter Schedule 40 polyvinyl chloride (PVC) riser pipe. The interior monitoring well was constructed using 25 mm diameter well screening (No. 10 slot) fitted with 25 mm diameter Schedule 40 polyvinyl chloride (PVC) riser pipe. The annuli of the monitoring wells

around the well screen were filled with silica sand to approximately 0.6 m above the well screen. The remainder of the monitoring wells were backfilled with bentonite pellets (i.e., hole plug) and activated with distilled water. The monitoring wells were completed with a metal casing and cover, flushed to the existing ground surface.

Details of the monitoring well construction are provided in the boreholes logs attached in Appendix A.

6.4. Groundwater Monitoring and Sampling

Prior to developing, the monitoring wells were measured for groundwater elevations and for the presence of Light Non-Aqueous Phase Liquids (LNAPL) using a HERON™ H.01L Model Oil/Water Interface Meter. All newly installed groundwater monitoring wells were developed by purging (using dedicated bailer). A total of three well volumes were purged prior to sampling.

Groundwater samples were collected on May 25, 2021, June 8, 2021 and October 26, 2021 using low-flow techniques by a Geotech[™] model peristaltic low-flow pump with dedicated polyethylene and silicone tubing.

6.5. Laboratory Analyses

Soil and groundwater samples collected during the Phase II ESA were submitted for laboratory analyses as indicated in the SAP, shown in Table 5.2-1.

A total of five discrete soil samples were analyzed for M&Is, PHCs and VOCs and a total of two discrete soil samples were analyzed for PAHs. One soil sample was submitted for TCLP-VOCs and TCLP-Inorganics. A total of six discrete groundwater samples were analyzed for PHCs and VOCs. Three discrete groundwater samples were analyzed for M&Is and PAHs.

6.6. Quality Assurance and Quality Control (QA/QC) Measures

Various quality QA/QC protocols were followed during the Phase II ESA to ensure that representative samples were obtained and that representative analytical data were reported by the laboratory.

The laboratory Quality Assurance/Quality Control (QA/QC) analyses performed by SGS included method blanks, laboratory duplicates, laboratory control samples (or spike blanks), matrix spikes, surrogate percent recoveries, and the use of laboratory reference materials. No field QA/QC samples were collected as part of this Phase II ESA.

6.7. Site Condition Standard Selection

The following conditions were considered to determine the applicable Site Condition Standard for the Site.

Table 6.8-1: Applicable Site Conditions

Condition	Evaluation
Current land use	Residential
Proposed land use	Residential
Area of natural significance	Based on information provided on the Ministry of Natural Resources and Forestry (MNRF) on-line application "Make A Map: Natural Heritage Areas", the Phase One Property is not located within or adjacent to an area of natural and scientific interest (ANSI), a woodland area or within a provincially significant wetland.
Proximity to surface water body	The closer water body is Sixteen Mile Creek, which located approximately 215 m northwest of the Site at its closest point. Sixteen Mile Creek flows east and drains into Lake Ontario, which is located approximately 1.7 km east of the Site.
Potable or Non Potable Ground Water	The Site was municipally serviced by the City of Toronto which supplies treated drinking water derived from Lake Ontario.
Soil pH	Accredited laboratory chemical test results indicated that the soil at the property had a pH value between 5 and 9. Therefore, Section 41 of the Regulation does not apply.
Depth to bedrock	Bedrock was not encountered at depths shallower than 1.5 m below grade for more than 2/3 of the Site.
Soil texture	Coarse textured soils were applicable for the Site. This was based on field observations and the results of laboratory grain size (texture) analysis. The results of the grain size analysis reported 79.9% of the soil particles for a soil sample collected from borehole 21BH-4 (1.1 m below grade) were coarse grained in texture.

Based on the above conditions, the MECP Table 3 Full Depth Generic Site Condition Standards (SCS) in a Non-Potable Groundwater Condition as listed in the "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", dated April 15, 2011 (hereinafter refer to as the "MECP Table 3 SCS") for Residential/Parkland/Institutional property use with coarse textured soils were determined to be applicable for the Site.

Should an RSC be filed at a later date, this report should be updated to meet RSC standards as outlined in O. Reg. 153/04 as amended of the Ontario Environmental Protection Act. Additionally, the municipality would need to be contacted to ascertain whether or not non-potable standards can be used.

7. REVIEW AND EVALUATION

7.1. Soil

Ground Surface/Top Soil

Asphalt pavement, consisting of approximately 65 mm-75 mm asphalt over granular bases, was contacted at the ground surface at borehole locations 21BH-1(MW), 21BH-2(MW), and 21BH-3(MW). Topsoil 100 mm in thickness was encountered as the surface cover at the location of borehole 21BH-4(MW). A concrete floor was encountered at the surface at the location of borehole 21BH-101(MW). Top soil was encountered at the surface of the locations of boreholes 21BH-102(MW) and 21BH-103(MW) 250 mm and 200 mm in thickness respectively.

Fill

Underlying the asphalt pavement structure or the topsoil at the borehole locations, a layer of fill was encountered. The fill consisted of a mixture of clayey silt, sandy silt, silty sand, trace to some gravel, occasional shale or limestone pieces, with occasional topsoil or rootlets. The fill or top soil extended to depths of 1.5 m, 1.2 m, 4.3 m, 0.6 m and 0.7 m below grade at the locations of boreholes 21BH-1(MW) through 21BH-4(MW), respectively.

Clayey Silt

Native clayey silt deposit was encountered underlying the fill at the location of borehole 21BH-1(MW), at a depth of 1.5 m below grade. The deposit contained occasional layers of sandy silt, silty sand, some gravel, with occasional shale pieces close to the lower portion of the deposit. The clayey silt deposit extended to a depth of 2.3 m below grade.

Silty Sand

A native silty sand deposit was under the granular fill (21BH-101) and topsoil (21BH102 and 21BH-103). The silty sand was generally reddish brown, moist, fine grained, and contained trace gravel.

Shale Bedrock

A reddish brown to grey weathered shale was encountered underlying the clayey silt deposit at the location of borehole 21BH-1(MW) location and underlying the fill at the locations of boreholes 21BH-2(MW) to 21BH-103(MW), at depths ranging from approximately 1.2 m to 4.3 m below grade.

Borehole 21BH-4(MW) was terminated in the weathered shale at a depth of 6.2 m below grade. At the location of boreholes 21BH-1(MW) to 21BH-3(MW), the weathered shale extended to depths ranging from 5.6 m to 6.5 m below grade, where virtual refusal to auguring was encountered. Borehole 21BH-1-1(MW) was terminated at the inferred top of bedrock beneath the floor of the underground parking. Boreholes 21BH-102(MW) and 21BH-103(MW) were terminated in the weathered shale at depths of 5.3 m and 4.4 m below grade. The weathered shale was stratified, with seams of clayey silt.

A copy of the borehole logs showing the soil conditions encountered in the boreholes and measured soil headspace vapour concentrations for the soil samples are presented in Appendix A.

Field Observations

No visual or olfactory evidence of PHC impacts were identified in the soil samples with the exception of soil sample 21BH-102(MW) SS6.

Soil Vapour Concentrations

Vapour concentrations measured in the soil samples collected during the drilling investigation were measured below 20 parts per million by volume (ppm) with the exception of soil sample 21BH-102(MW) SS6 with a reading of 38 ppm.

7.2. Groundwater

No LNAPL was identified in the monitoring wells during groundwater monitoring or sampling. However, slight to trace PHC-like odours were noted at the location of monitoring well 21BH-4(MW). Groundwater elevations are summarized in Table 7.2-1 below.

Table 7.2-1: Groundwater Depths

Date Measured	Water Depth (m bg)
05/25/21	7.89
05/25/21	4.83
05/25/21	4.89
05/25/21	4.54
-	Not measured
-	Not measured
-	Not measured
	05/25/21 05/25/21 05/25/21 05/25/21

Measured groundwater levels were observed to be between 4.54 m and 7.89 m below grade on May 25, 2021.

7.3. Laboratory Analytical Results

Copies of the Laboratory Certificates of Analyses showing the results of the analyzed soil and groundwater samples are presented in Appendix B.

7.3.1. Soil Quality

Discrete "worst-case" samples collected from borehole locations 21BH-2(MW), 21BH-3(MW), 21BH-101(MW), 21BH-102(MW) and 21BH-103(MW) were submitted for laboratory analyses. A total of five discrete soil samples were analyzed for M&Is, PHCs and VOCs and a total of two discrete soil samples were analyzed for PAHs. One soil sample was submitted for TCLP-VOCs and TCLP-Inorganics. Measured soil headspace vapour concentrations in all soil samples were less than 20 ppm ranging from <5 ppm to 7 ppm with the exception of soil sample 21BH-102(MW) SS6 with a reading of 38 ppm.

The concentrations of PHCs, VOCs, M&Is, and PAHs in all analyzed soil samples at the

tested locations met their MECP Table 3 SCS for Residential/Parkland/Institutional property use with coarse textured soils with the following exception:

 Soil sample 21BH-2(MW) SS1 which reported a concentration of 22.5 for Sodium Adsorption Ratio as opposed to its MECP Table 3 SCS of 5

The SAR exceedance for the soil sample collected from 21BH-2(MW) is likely due to the use of the de-icing salts on the roadway in the vicinity of this borehole location. As long as the land use in the vicinity of 21BH-2(MW) remains the same, the SAR exceedance is not considered a concern at this time.

7.3.2. Ground Water Quality

During the groundwater sampling events on May 25, 2021, June 8, 2021 and October 26, 2021 a total of six discrete groundwater samples were analyzed for PHCs and VOCs. Three discrete groundwater samples were analyzed for M&Is and PAHs.

The concentrations of PHCs, VOCs, and M&Is in the analyzed groundwater samples at the tested locations met their MECP Table 3 SCS for all types of property uses with coarse textured soils with the following exception:

 Groundwater sample collected from 21BH-4(MW) which reported concentrations for PHCs F2, PHCs F3 and PHCs F4 at 857 ug/L, 14,200 ug/L and 8,920 ug/L respectively as opposed to their Table 3 SCSs of 750 ug/L, 150 ug/L, and 500 ug/L

7.3.3. QA/QC Results

According to the Laboratory Certificates of Analyses from SGS Canada Inc. for the analyzed soil and groundwater samples, the instrument performance/calibration quality criteria and extraction/analysis limits for holdings were met. No QA/QC issues were noted by SGS Canada Inc.

8. DISCUSSION OF RESULTS AND RECOMMENDATIONS

8.1. Summary of Findings

A summary of the findings of the Phase II ESA conducted at the Site are presented below:

- A total of seven (7) boreholes were advanced to depths extending from 0.3 m to 11.1 m below grade, All seven of the boreholes were completed as monitoring wells.
- The soil stratigraphy at the boreholes generally consisted of a surface cover of asphalt over granular bases or top soil extending up to depths of 0.3 m below grade. Underlying the surface cover a layer of fill generally consisting of clayey silt or sandy silt was encountered. Weathered shale was encountered underlying the fill/clayey silt/silty sand deposits at depths ranging from 1.2 m to 4.3 m below grade.
- All soil vapour readings at the tested sampling locations were less than 20 ppm.
- Measured groundwater levels on May 25, 2021 in the monitoring wells were observed to be between 4.54 m and 7.89 m below grade.
- Representative or "worst-case" soil samples were collected in laboratory-supplied containers, placed in a cooler and preserved with ice, and shipped with a Chain of Custody to SGS Canada Inc. located in Lakefield, Ontario for laboratory analyses.
- The MECP Table 3 SCS for Residential/Parkland/Institutional property use with coarse textured soils were selected for evaluating sample results.
- The concentrations of PHCs, VOCs, M&Is, and PAHs in all analyzed soil samples at the tested locations met their MECP Table 3 SCS for Residential/Parkland/Institutional property use with coarse textured soils with the following exceptions: soil sample 21BH-2(MW) SS1.
- The concentrations of PHCs, VOCs, PAHs, and M&Is in the analyzed groundwater samples at the tested locations met their MECP Table 3 SCS for all types of property uses with medium-fine textured soils with the following exception: groundwater sample collected from 21BH-4(MW).

8.2. Discussion and Recommendation

The concentrations of PHCs, VOCs, M&Is, and PAHs in all analyzed soil samples at the tested locations met their MECP Table 3 SCS for Residential/Parkland/Institutional property use with coarse textured soils with the following exceptions:

 Soil sample 21BH-2(MW) SS1 which reported a concentration of 22.5 for Sodium Adsorption Ratio as opposed to its MECP Table 3 SCS of 5

The SAR exceedance for the soil sample collected from borehole 21BH-2(MW) is likely due to the use of the de-icing salts on the roadway in the vicinity of this borehole location. As long as the land use in the vicinity of 21BH-2(MW) remains the same, the SAR exceedance is not considered a concern at this time.

The concentrations of PHCs, VOCs, PAHs, and M&Is in the analyzed groundwater samples at the tested locations met their MECP Table 3 SCS for all types of property uses with medium-fine textured soils with the following exception:

 Groundwater sample collected from 21BH-4(MW) which reported concentrations for PHCs F2, F3 and F4 at 857 ug/L, 14,200 ug/L and 8,920 ug/L respectively as opposed to their Table SCSs of 750 ug/L, 150 ug/L, and 500 ug/L

The groundwater impacts appear to be localized in the northeast portion of the Site. It is recommended that the groundwater exceedances be addressed during future redevelopment activities. Possible methods of treatment at that time may include chemical oxidation or pump and treat. Furthermore, as the source is likely off Site, engineering controls such as a permeable reactive barrier may also be considered as options for the Site.

8.3. Monitoring Well Decommissioning

If the monitoring wells on-Site are no longer required for further sampling or testing of the groundwater, the wells must be decommissioned as per the requirements of O. Reg. 903 "Wells". It should be noted that the decommissioning of monitoring wells is not part of the current scope of work. *Toronto Inspection Ltd.* would be pleased to assist and arrange to perform this work upon request.

9. REFERENCES

- Canadian Standard Association (CSA) Standard Z769-00 reaffirmed 2013, CSA-Z769-00 (R2013) "Phase II Environmental Site Assessment";
- Ontario Regulation 153/04, "Records of Site Condition Part XV.1 of the Environmental Protection Act";
- "Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario", Revised December 1996, Ministry of Environment and Energy;
- "Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act", March 9, 2004, amended as of July 1, 2011;
- "Report on Phase One Environmental Site Assessment, 50 Speers Road, Oakville, Ontario", Report No. 5557-21-EA, prepared by Toronto Inspection Ltd., dated July 6, 2021.

10. GENERAL STATEMENT OF LIMITATION

The comments presented in this report are based on the soil and groundwater samples gathered from the borehole/monitoring well locations indicated on the plan of this report. There is no warranty expressed or implied or representations made by *Toronto Inspection Ltd.* that this program has discovered all potential environmental risks or liabilities associated with the subject site.

Although we consider this report to be representative of the subsurface conditions at the subject property in the areas investigated, any interpretation of factual data or unexpected soil conditions which exhibit noticeable discolouration, odour, etc. in areas not investigated in this report, should be discussed in consultation with us prior to any initiation of activity. Our responsibility is limited to an accurate assessment of the soil or groundwater condition prevailing at the locations investigated at the time of the study.

To the fullest extent permitted by law, the client's maximum aggregate recovery against *Toronto Inspection Ltd.*, its directors, employees, sub-contractors and representatives, for any and all claims by Helberg Properties Limited for all causes including, but not limited to, claims of breach of contract, breach of warranty and/or negligence, shall be limited to the amount of fees paid.

Any use and/or interpretation of the data presented in this report, and any decisions made on it by the third party are responsibility of the third party. *Toronto Inspection Ltd.* accepts no responsibility for loss of time and damages, if any, suffered by the third party as a result of decisions or actions based on this report.

Any legal actions arising directly or indirectly from this work and/or *Toronto Inspection Ltd.*'s performance of the services shall be filed no longer than two years from the date of *Toronto Inspection Ltd.*'s substantial completion of the services. *Toronto Inspection Ltd.* shall not be responsible to the client for lost revenues, loss of profits, cost of content, claims of customers, or other special indirect, consequential, or punitive damages.

Yours truly,

TORONTO INSPECTION LTD.

Augustine (Gus) Cheng, BSc(Hons), EP

Senior Manager

Projects and Business Development

Sajjad Din, PGeo, CET, QP_{ESA} Environmental Geoscientist

Certified Engineering Technologist

PRACTISING MEMBER

FIGURES

LEGEND:

Tel: 905-940 8509

— Site Boundary

Fax: 905-940 8192

110 Konrad Crescent, Unit 16 Markham, Ontario L3R 9X2

Email: TIL@torontoinspection.com

TITLE:	Site Layout Map			
LOCATION:	50 Speers Road, Oakville, Ontario			
PROJECT NO.	5557-21-EB	DATE: July 2021	FIGURE NO:	

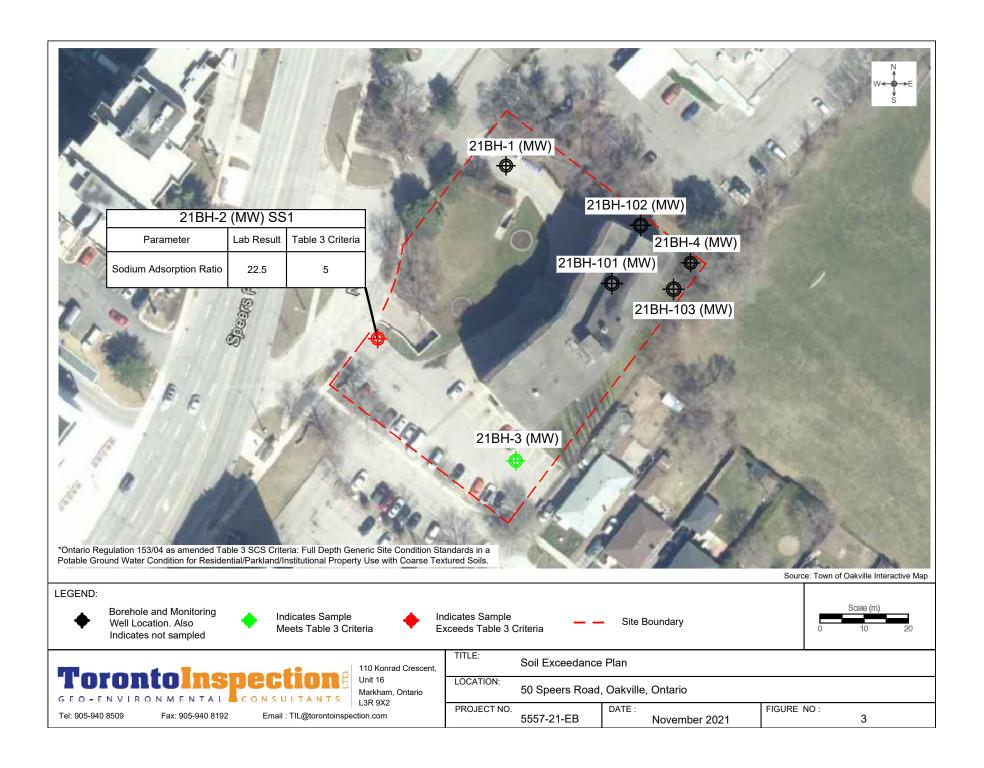
LEGEND:

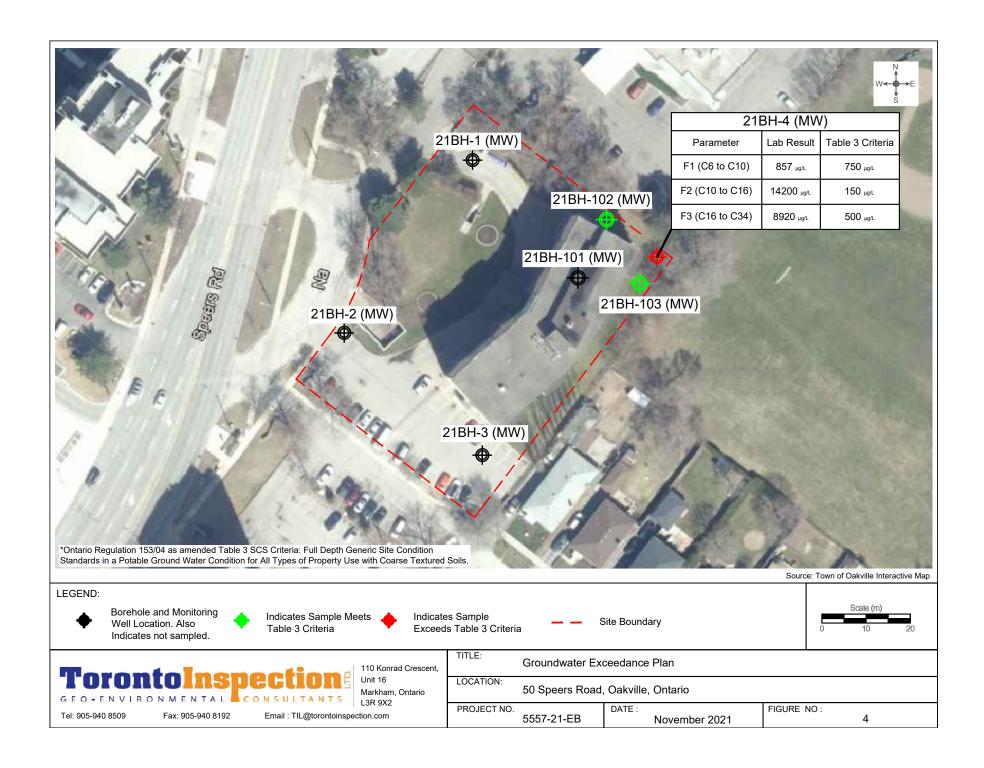
\Phi

Tel: 905-940 8509

Borehole and Monitoring Well Location

— Site Boundary




Fax: 905-940 8192

110 Konrad Crescent, Unit 16 Markham, Ontario L3R 9X2

Email: TIL@torontoinspection.com

TITLE:	Borehole and Monitoring Well Location Plan			
LOCATION:	50 Speers Road, Oakville, Ontario			
PROJECT NO.	5557-21-EB	DATE: November 2021	FIGURE NO:	2

APPENDICES

Log of Borehole 21BH-1 (MW) 5557-21-EB Project No. Dwg No. 2 Phase II Environmental Site Assessment Sheet No. 1 of 1 Project: 50 Speers Road, Oakville, Ontario Location: Headspace Reading (ppm) Auger Sample 5/11/21 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test **Unconfined Compression** Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Headspace Reading (ppm) Natural Unit 100 200 300 G W L ELEV. Natural Moisture Content % Atterberg Limits (% Dry Weight) Soil Description Weight Shear Strength kPa kN/m3 **Ground Surface** 100.80 **ASPHALT PAVEMENT** 5ppm/<5ppm 100.73 **Q** 75mm asphalt over granular base 100.47 - reddish brown clayey silt 5ppm/<5ppm - some sandy silt to silty sand - some gravel 99.28 very minor rootlets, pockets of topsoil 10ppm/<5ppm \<u>- moist</u> **CLAYEY SILT** - stiff, reddish brown 98.51 <5ppm/<5ppm - some sandy silt, some silty sand some gravel shale pieces at 2.1m - moist Ø **WEATHERED SHALE** - hard - reddish brown to grey stratified - moist 95.16 SHALE BEDROCK Recovery 93% - RQD 52% 94.40 - Recovery 100% - RQD 70% 92.882.91 - Recovery 100% - RQD 66% 91.35 - Recovery 98% - RQD 79% 5557-21-GB.GPJ 11/5/21

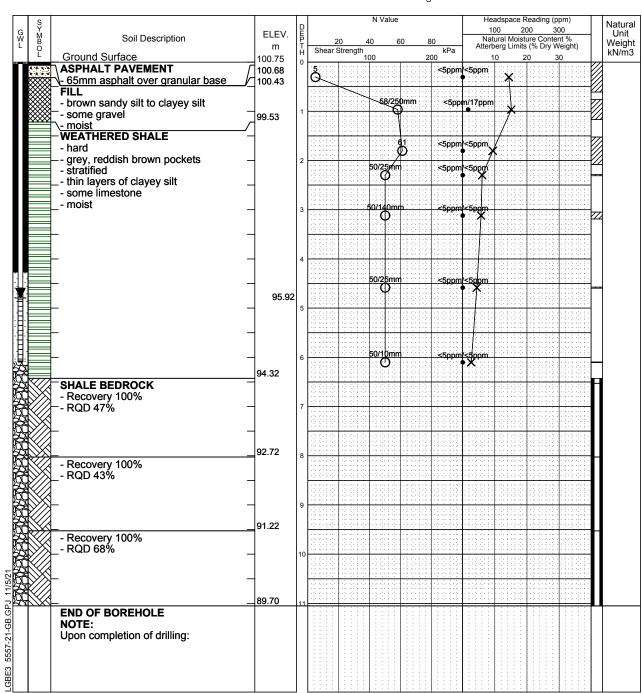
NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

89.86

Toronto Inspection Ltd.

END OF BOREHOLE

.GBE3


Upon completion of drilling:

Time	Water Level (m)	Depth to Cave (m)
May 21, 2021 May 25, 2021	5.56m 7.89m	, ,

Project No. 5557-21-EB

Log of Borehole 21BH-2 (MW)

Dwg No. 3 Phase II Environmental Site Assessment Sheet No. 1 of 1 Project: 50 Speers Road, Oakville, Ontario Location: Headspace Reading (ppm) Auger Sample 5/13/21 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test **Unconfined Compression** Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Toronto Inspection Ltd.

Time	Water Level (m)	Depth to Cave (m)
May 21, 2021 May 25, 2021	4.43m 4.83m	

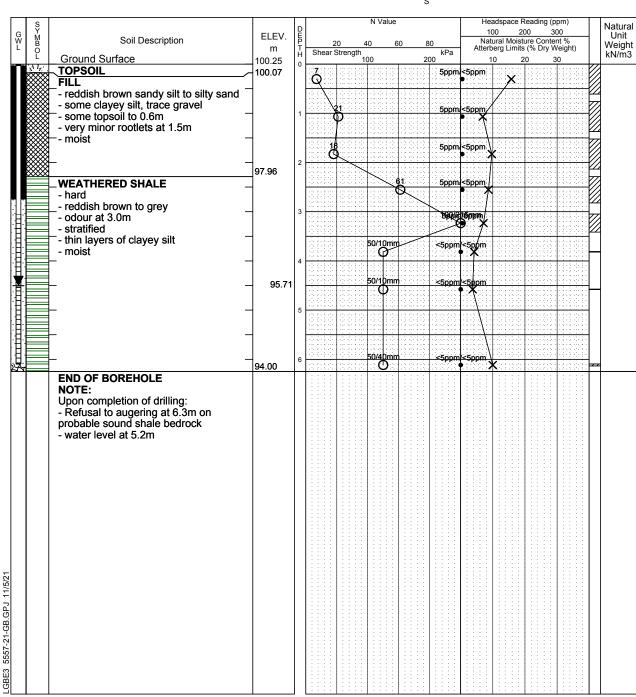
Log of Borehole 21BH-3 (MW)

5557-21-EB Project No. Dwg No. 4 Phase II Environmental Site Assessment Sheet No. 1 of 1 Project: 50 Speers Road, Oakville, Ontario Location: Headspace Reading (ppm) Auger Sample 5/12/21 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test **Unconfined Compression** Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer Headspace Reading (ppm) Natural Unit 100 200 300 G W L ELEV. Natural Moisture Content % Atterberg Limits (% Dry Weight) Soil Description Shear Strength _____100 Weight kPa kN/m3 **Ground Surface** 101.00 **ASPHALT PAVEMENT** <5ppm/<5ppm 100.93 Ó 65mm asphalt over granular base 100.71 - reddish brown clayey silt <5ppm/<5ppm - mixed with sandy silt, silty sand - minor rootlets at 0.9m - trace shale pieces or limestone <5ppm pieces - a silty sand layer at 3.0m to 3.6m - moist <5ppm <5ppm 96.73 **WEATHERED SHALE** 0/40mn <500m - hard, grey - stratified 96.11 - moist 50/10mn **SHALE BEDROCK** 94.29 - Recovery 95% <u>}- RQD 62%</u> - Recovery 100% - RQD 72% 92.82 - Recovery 100% - RQD 70% 91.32 - Recovery 100% - RQD 74% 3 5557-21-GB.GPJ 11/6 89.95 **END OF BOREHOLE**

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Toronto Inspection Ltd.

Upon completion of drilling:


.GBE3

Time	Water Level (m)	Depth to Cave (m)
May 21, 2021 May 25, 2021	4.57m 4.89m	

Project No. <u>5557-21-EB</u>

Log of Borehole 21BH-4 (MW)

Dwg No. 5 Phase II Environmental Site Assessment Sheet No. 1 of 1 Project: 50 Speers Road, Oakville, Ontario Location: Headspace Reading (ppm) Auger Sample 5/10/21 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Track Mounted Drill Rig Drill Type: Dynamic Cone Test **Unconfined Compression** Shelby Tube % Strain at Failure Geodetic Datum: Field Vane Test Penetrometer

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Toronto Inspection Ltd.

0112 002 01 01112110				
Time	Water Level (m)	Depth to Cave (m)		
May 21, 2021 May 25, 2021	4.39m 4.54m	, ,		

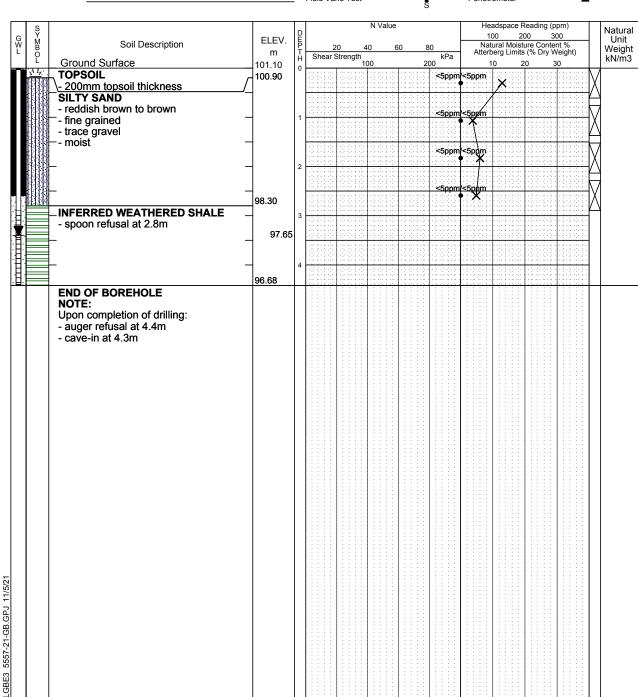
Log of Borehole 21BH-101 (MW) Project No. 5557-21-EB Dwg No. 6 Phase II Environmental Site Assessment Sheet No. 1 of 1 Project: 50 Speers Road, Oakville, Ontario Location: Headspace Reading (ppm) Auger Sample 10/14/21 × Date Drilled: Natural Moisture $O \square$ SPT (N) Value Plastic and Liquid Limit Pionjar Drill Rig Drill Type: Dynamic Cone Test **Unconfined Compression** Shelby Tube % Strain at Failure Temporary (Basement Floor) Datum: Field Vane Test Penetrometer Headspace Reading (ppm) Natural Unit 100 200 300 G W L ELEV. Natural Moisture Content % Atterberg Limits (% Dry Weight) Soil Description Shear Strength _____100 Weight kN/m3 kPa **Ground Surface** 100.00 CONCRETE FLOOR 99.90 5ppm/<5ppm ∏99.70 ∏99.4899.37 100mm concrete thickness **GRANULAR FILL** - sandy gravel SANDY SILT 99.24 - reddish brown - moist WEATHERED SHALE reddish brown to grey stratified - moist END OF BOREHOLE NOTE: Upon completion of drilling: - no free water - open cave-in

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Toronto Inspection Ltd.

5557-21-GB.GPJ 11/5/21

-GBE3


Time	Water Level (m)	Depth to Cave (m)
Oct. 26, 2021	0.63m	, ,

END OF BOREHOLE Upon completion of drilling: - auger refusal at 5.3m - no free water - cave-in at 4.9m 5557-21-GB.GPJ 11/5/21 -GBE3

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Toronto Inspection Ltd.

Time	Water Level (m)	Depth to Cave (m)
Oct. 26, 2021	4.29m	, ,

NOTE: THE BOREHOLE DATA NEEDS INTERPRETATION ASSISTANCE BY TORONTO INSPECTION LTD. BEFORE USE BY OTHERS

Toronto Inspection Ltd.

Time	Water Level (m)	Depth to Cave (m)
Oct. 26, 2021	3.46m	, ,

CA14322-MAY21 R1

5557

Prepared for

Toronto Inspection Ltd.

First Page

CLIENT DETAILS	S	LABORATORY DETAI	LS
Client	Toronto Inspection Ltd.	Project Specialist	Jill Campbell, B.Sc.,GISAS
		Laboratory	SGS Canada Inc.
Address	110 Konrad Crescent, Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Markham, ON		
	L3R 9X2. Canada		
Contact	Simran Panesar	Telephone	2165
Telephone	416-996-3214	Facsimile	705-652-6365
Facsimile	905 940 8192	Email	jill.campbell@sgs.com
Email	lab@torontoinspection.com;simran@torontoinspection.com	SGS Reference	CA14322-MAY21
Project	5557	Received	05/17/2021
Order Number		Approved	06/02/2021
Samples	Soil (4)	Report Number	CA14322-MAY21 R1
		Date Reported	06/03/2021

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

Hydrocarbon results are expressed on a dry weight basis.

Benzo(b)fluoranthene results for comparison to the standard are reported as benzo(b+j)fluoranthene. Benzo(b)fluoranthene and benzo(j)fluoranthene co-elute and cannot be reported individually by the analytical method used.

Temperature of Sample upon Receipt: 5 degrees C

Cooling Agent Present:YES

Custody Seal Present:YES

Chain of Custody Number:019226

PHC F3 (C16-C34) Duplicate RPD for F3 is outside control limits. The average of the two duplicates is less than five times the RL, therefore a greater uncertainty is expected.

Trichlorofluoromethane matrix spike; recovery for this parameter is outside control limits; the overall quality control for this analysis has been assessed and was determined to be acceptable.

SIGNATORIES

Jill Campbell, B.Sc., GISAS

Jill Cumpbell

f 705-652-6365

TABLE OF CONTENTS

First Page	1-3
Index	4
Results	5-12
Exceedance Summary	13
QC Summary	14-22
Legend	23
Annexes	24

CA14322-MAY21 R1

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

PACKAGE: REG153 - BTEX	(SOIL)		Sa	mple Number	8	9	10
			8	Sample Name	21BH-2 (MW)	21BH-3 (MW)	DUP
					SS1	SS1	
1 = REG153 / SOIL / COARSE - TABLE 3 - F	Residential/Parkland - UNDEFINED		8	Sample Matrix	Soil	Soil	Soil
.2 = REG153 / SOIL / FINE - TABLE 2 - Resid	dential/Parkland - UNDEFINED			Sample Date	15/05/2021	15/05/2021	15/05/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
BTEX							
Benzene	hā\ā	0.02	0.21	0.17	< 0.02	< 0.02	< 0.02
Ethylbenzene	μg/g	0.05	2	1.6	< 0.05	< 0.05	< 0.05
Toluene	μg/g	0.05	2.3	6	< 0.05	< 0.05	< 0.05
Xylene (total)	μg/g	0.05	3.1	25	< 0.05	< 0.05	< 0.05
m/p-xylene	μg/g	0.05			< 0.05	< 0.05	< 0.05
o-xylene	μg/g	0.05			< 0.05	< 0.05	< 0.05
			_				
PACKAGE: REG153 - Hydrid	les (SOIL)		Sa	mple Number	8	9	10
			8	Sample Name	21BH-2 (MW)	21BH-3 (MW)	DUP
					SS1	SS1	
1 = REG153 / SOIL / COARSE - TABLE 3 - F	Residential/Parkland - UNDEFINED		S	Sample Matrix	Soil	Soil	Soil
2 = REG153 / SOIL / FINE - TABLE 2 - Resid	dential/Parkland - UNDEFINED			Sample Date	15/05/2021	15/05/2021	15/05/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
Hydrides							
Antimony	ha/a	0.8	7.5	7.5	< 0.8	< 0.8	< 0.8
Arsenic	μg/g	0.5	18	18	4.8	4.4	4.1
Selenium	ha/a	0.7	2.4	2.4	< 0.7	< 0.7	< 0.7

CA14322-MAY21 R1

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

ACKAGE: REG153 - Metals and Ino	organics		Sar	nple Number	8	9	10	11
SOIL)								
			S	ample Name	21BH-2 (MW)	21BH-3 (MW)	DUP	DUP B
					SS1	SS1		
= REG153 / SOIL / COARSE - TABLE 3 - Residential/P	Parkland - UNDEFINED			ample Matrix	Soil	Soil	Soil	Soil
= REG153 / SOIL / FINE - TABLE 2 - Residential/Parkla	and - UNDEFINED			Sample Date	15/05/2021	15/05/2021	15/05/2021	15/05/2021
Parameter	Units	RL	L1	L2	Result	Result	Result	Result
etals and Inorganics								
Moisture Content	%	-			14.4	12.1	15.3	10.5
Barium	μg/g	0.1	390	390	130	97	130	
Beryllium	μg/g	0.02	4	5	0.75	0.58	0.71	
Boron	µg/g	1	120	120	11	9	10	
Cadmium	μg/g	0.02	1.2	1.2	0.07	0.19	0.09	
Chromium	µg/g	0.5	160	160	20	15	19	
Cobalt	μg/g	0.01	22	22	10	8.2	8.9	
Copper	μg/g	0.1	140	180	25	38	28	
Lead	µg/g	0.1	120	120	11	17	11	
Molybdenum	μg/g	0.1	6.9	6.9	0.8	0.8	0.6	
Nickel	µg/g	0.5	100	130	23	18	20	
Silver	μg/g	0.05	20	25	< 0.05	< 0.05	< 0.05	
Thallium	μg/g	0.02	1	1	0.11	0.11	0.10	
Uranium	μg/g	0.002	23	23	0.57	0.55	0.64	
Vanadium	μg/g	3	86	86	27	23	26	
Zinc	μg/g	0.7	340	340	54	56	49	
Water Soluble Boron	μg/g	0.5	1.5	1.5	< 0.5	< 0.5	< 0.5	

CA14322-MAY21 R1

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

PACKAGE: REG153 - Other (ORP) (SOIL)		Sar	nple Number	8	9	10
			s	ample Name	21BH-2 (MW)	21BH-3 (MW)	DUP
					SS1	SS1	
= REG153 / SOIL / COARSE - TABLE 3 - Residential/Parkland - UNDEFINED		s	ample Matrix	Soil	Soil	Soil	
.2 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland - UNDEFINED			;	Sample Date	15/05/2021	15/05/2021	15/05/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
Other (ORP)							
Mercury	ug/g	0.05	0.27	1.8	< 0.05	< 0.05	< 0.05
Sodium Adsorption Ratio	No unit	0.2	5	5	22.5	3.3	19.1
SAR Calcium	mg/L	0.09			2.1	10.0	2.6
SAR Magnesium	mg/L	0.02			0.17	1.4	0.50
SAR Sodium	mg/L	0.15			126	41.8	128
Conductivity	mS/cm	0.002	0.7	0.7	0.58	0.24	0.53
рН	pH Units	0.05			7.86	7.78	7.70
Chromium VI	μg/g	0.2	8	10	< 0.2	< 0.2	< 0.2
Free Cyanide	μg/g	0.05	0.051	0.051	< 0.05	< 0.05	< 0.05

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

PACKAGE: REG153 - PAHs (SOIL)			Sar	nple Number	8	9	11
			s	ample Name	21BH-2 (MW)	21BH-3 (MW)	DUP B
				•	SS1	SS1	
= REG153 / SOIL / COARSE - TABLE 3 - Residential/Pa	Parkland - UNDEFINED		s	ample Matrix	Soil	Soil	Soil
= REG153 / SOIL / FINE - TABLE 2 - Residential/Parkla	and - UNDEFINED		;	Sample Date	15/05/2021	15/05/2021	15/05/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
AHs							
Acenaphthene	μg/g	0.05	7.9	29	< 0.05	< 0.05	< 0.05
Acenaphthylene	μg/g	0.05	0.15	0.17	< 0.05	< 0.05	< 0.05
Anthracene	μg/g	0.05	0.67	0.74	< 0.05	< 0.05	< 0.05
Benzo(a)anthracene	μg/g	0.05	0.5	0.63	< 0.05	< 0.05	< 0.05
Benzo(a)pyrene	μg/g	0.05	0.3	0.3	< 0.05	< 0.05	< 0.05
Benzo(b+j)fluoranthene	μg/g	0.05	0.78	0.78	< 0.05	< 0.05	< 0.05
Benzo(ghi)perylene	μg/g	0.1	6.6	7.8	< 0.1	< 0.1	< 0.1
Benzo(k)fluoranthene	μg/g	0.05	0.78	0.78	< 0.05	< 0.05	< 0.05
Chrysene	μg/g	0.05	7	7.8	< 0.05	< 0.05	< 0.05
Dibenzo(a,h)anthracene	μg/g	0.06	0.1	0.1	< 0.06	< 0.06	< 0.06
Fluoranthene	μg/g	0.05	0.69	0.69	< 0.05	< 0.05	< 0.05
Fluorene	μg/g	0.05	62	69	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	μg/g	0.1	0.38	0.48	< 0.1	< 0.1	< 0.1
1-Methylnaphthalene	μg/g	0.05			< 0.05	< 0.05	< 0.05
2-Methylnaphthalene	μg/g	0.05			< 0.05	< 0.05	< 0.05
Methylnaphthalene, 2-(1-)	μg/g	0.05	0.99	3.4	< 0.05	< 0.05	< 0.05
Naphthalene	μg/g	0.05	0.6	0.75	< 0.05	< 0.05	< 0.05
Phenanthrene	μg/g	0.05	6.2	7.8	< 0.05	< 0.05	< 0.05
Pyrene	μg/g	0.05	78	78	< 0.05	< 0.05	< 0.05

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

PACKAGE: REG153 - PHCs (SOIL)			Sa	mple Number	8	9	10
			;	Sample Name	21BH-2 (MW)	21BH-3 (MW)	DUP
					SS1	SS1	
1 = REG153 / SOIL / COARSE - TABLE 3 - Residential/Par	rkland - UNDEFINED		\$	Sample Matrix	Soil	Soil	Soil
2 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland	id - UNDEFINED			Sample Date	15/05/2021	15/05/2021	15/05/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
PHCs							
F1 (C6-C10)	μg/g	10	55	65	< 10	< 10	< 10
F1-BTEX (C6-C10)	μg/g	10			< 10	< 10	< 10
F2 (C10-C16)	μg/g	10	98	150	< 10	< 10	< 10
F3 (C16-C34)	μg/g	50	300	1300	< 50	< 50	< 50
F4 (C34-C50)	μg/g	50	2800	5600	< 50	< 50	< 50
Chromatogram returned to baseline at	Yes / No	-			YES	YES	YES
nC50							
ANDIANG PENASA NINGGA	(OOII)		Q.	ımple Number	8	9	11
PACKAGE: REG153 - SVOC Surrogat	es (SOIL)			•			
			3	Sample Name	21BH-2 (MW) SS1	21BH-3 (MW) SS1	DUP B
4. DECASO (CON COORDER TABLE O Basidantial/Bas	ddaed INDEENED		9	Sample Matrix	Soil	Soil	Soil
.1 = REG153 / SOIL / COARSE - TABLE 3 - Residential/Par 2 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parklan				Sample Date	15/05/2021	15/05/2021	15/05/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
SVOC Surrogates	•						1,00411
Surr Nitrobenzene-d5	Surr Rec %				69	93	86
		-			64	95	89
Surr 2-Fluorobiphenyl	Surr Rec %	-					
Surr 4-Terphenyl-d14	Surr Rec %	-			66	105	102
Surr 2-Fluorophenol	Surr Rec %	-			89	84	85
Surr Phenol-d6	Surr Rec %	-			81	90	90
Surr 2,4,6-Tribromophenol	Surr Rec %	-			51	81	79

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

PACKAGE: REG153 - THMs (VOC) (S	SOIL)		Sa	mple Number	8	9	10
			8	Sample Name	21BH-2 (MW)	21BH-3 (MW)	DUP
					SS1	SS1	
L1 = REG153 / SOIL / COARSE - TABLE 3 - Residential/Par	ırkland - UNDEFINED		S	Sample Matrix	Soil	Soil	Soil
L2 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parklan	nd - UNDEFINED			Sample Date	15/05/2021	15/05/2021	15/05/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
THMs (VOC)							
Bromodichloromethane	μg/g	0.05	13	1.9	< 0.05	< 0.05	< 0.05
Bromoform	μg/g	0.05	0.27	0.26	< 0.05	< 0.05	< 0.05
Dibromochloromethane	μg/g	0.05	9.4	2.9	< 0.05	< 0.05	< 0.05
PACKAGE: REG153 - VOC Surrogates	s (SOIL)		Sa	mple Number	8	9	10
			8	Sample Name	21BH-2 (MW)	21BH-3 (MW)	DUP
					SS1	SS1	
L1 = REG153 / SOIL / COARSE - TABLE 3 - Residential/Par	ırkland - UNDEFINED		S	Sample Matrix	Soil	Soil	Soil
L2 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parklan	nd - UNDEFINED			Sample Date	15/05/2021	15/05/2021	15/05/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
VOC Surrogates							
Surr 1,2-Dichloroethane-d4	Surr Rec %	-			109	83	100
Surr 4-Bromofluorobenzene	Surr Rec %	-			101	97	93
Surr 2-Bromo-1-Chloropropane	Surr Rec %	-			91	92	70
PACKAGE: REG153 - VOCs (SOIL)			Sa	mple Number	8	9	10
			8	Sample Name	21BH-2 (MW)	21BH-3 (MW)	DUP
					SS1	SS1	
L1 = REG153 / SOIL / COARSE - TABLE 3 - Residential/Par	ırkland - UNDEFINED		S	Sample Matrix	Soil	Soil	Soil
L2 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parklan	nd - UNDEFINED			Sample Date	15/05/2021	15/05/2021	15/05/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
VOCs							
Acetone	μg/g	0.5	16	28	< 0.5	< 0.5	< 0.5
. 10010110	P9'9	0.0	10	20			

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

PACKAGE: REG153 - VOCs (SOIL)			Sar	nple Number	8	9	10
(88.17.20100 7000 (88.12)			s	ample Name	21BH-2 (MW)	21BH-3 (MW)	DUP
				-	SS1	SS1	
= REG153 / SOIL / COARSE - TABLE 3 - Residential/Par	rkland - UNDEFINED		S	ample Matrix	Soil	Soil	Soil
= REG153 / SOIL / FINE - TABLE 2 - Residential/Parklan	nd - UNDEFINED		;	Sample Date	15/05/2021	15/05/2021	15/05/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
OCs (continued)							
Bromomethane	μg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05
Carbon tetrachloride	μg/g	0.05	0.05	0.12	< 0.05	< 0.05	< 0.05
Chlorobenzene	μg/g	0.05	2.4	2.7	< 0.05	< 0.05	< 0.05
Chloroform	μg/g	0.05	0.05	0.18	< 0.05	< 0.05	< 0.05
1,2-Dichlorobenzene	μg/g	0.05	3.4	1.7	< 0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	μg/g	0.05	4.8	6	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	μg/g	0.05	0.083	0.097	< 0.05	< 0.05	< 0.05
Dichlorodifluoromethane	μg/g	0.05	16	25	< 0.05	< 0.05	< 0.05
1,1-Dichloroethane	μg/g	0.05	3.5	0.6	< 0.05	< 0.05	< 0.05
1,2-Dichloroethane	μg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05
1,1-Dichloroethylene	μg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05
trans-1,2-Dichloroethylene	μg/g	0.05	0.084	0.75	< 0.05	< 0.05	< 0.05
cis-1,2-Dichloroethylene	μg/g	0.05	3.4	2.5	< 0.05	< 0.05	< 0.05
1,2-Dichloropropane	μg/g	0.05	0.05	0.085	< 0.05	< 0.05	< 0.05
cis-1,3-dichloropropene	μg/g	0.03			< 0.03	< 0.03	< 0.03
trans-1,3-dichloropropene	μg/g	0.03			< 0.03	< 0.03	< 0.03
1,3-dichloropropene (total)	μg/g	0.05	0.05	0.081	< 0.05	< 0.05	< 0.05
Ethylenedibromide	μg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05
n-Hexane	μg/g	0.05	2.8	34	< 0.05	< 0.05	< 0.05
Methyl ethyl ketone	μg/g	0.5	16	44	< 0.5	< 0.5	< 0.5
Methyl isobutyl ketone	μg/g	0.5	1.7	4.3	< 0.5	< 0.5	< 0.5
Methyl-t-butyl Ether	μg/g	0.05	0.75	1.4	< 0.05	< 0.05	< 0.05
Methylene Chloride	μg/g	0.05	0.1	0.96	< 0.05	< 0.05	< 0.05

CA14322-MAY21 R1

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

			_				
PACKAGE: REG153 - VOCs (SOIL)			Sar	nple Number	8	9	10
			s	ample Name	21BH-2 (MW)	21BH-3 (MW)	DUP
					SS1	SS1	
= REG153 / SOIL / COARSE - TABLE 3 - Residential/Parkland - UNDEFINED			s	ample Matrix	Soil	Soil	Soil
.2 = REG153 / SOIL / FINE - TABLE 2 - Residential/Parkland - UNDEFINED			;	Sample Date	15/05/2021	15/05/2021	15/05/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
/OCs (continued)							
Styrene	μg/g	0.05	0.7	2.2	< 0.05	< 0.05	< 0.05
Tetrachloroethylene	μg/g	0.05	0.28	2.3	< 0.05	< 0.05	< 0.05
1,1,1,2-Tetrachloroethane	μg/g	0.05	0.058	0.05	< 0.05	< 0.05	< 0.05
1,1,2,2-Tetrachloroethane	μg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05
1,1,1-Trichloroethane	μg/g	0.05	0.38	3.4	< 0.05	< 0.05	< 0.05
1,1,2-Trichloroethane	μg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05
Trichloroethylene	μg/g	0.05	0.061	0.52	< 0.05	< 0.05	< 0.05
Trichlorofluoromethane	μg/g	0.05	4	5.8	< 0.05	< 0.05	< 0.05
Vinyl Chloride	μg/g	0.02	0.02	0.022	< 0.02	< 0.02	< 0.02

EXCEEDANCE SUMMARY

				REG153 / SOIL /	REG153 / SOIL
				COARSE - TABLE	FINE - TABLE 2
				3 -	Residential/Park
				Residential/Parklan	nd - UNDEFINE
				d - UNDEFINED	
Parameter	Method	Units	Result	L1	L2
3H-2 (MW) SS1					
Sodium Adsorption Ratio	MOE 4696e01/EPA 6010	No unit	22.5	5	5
D					
P					
Sodium Adsorption Ratio	MOE 4696e01/EPA 6010	No unit	19.1	5	5

20210603 13 / 24

QC SUMMARY

Conductivity

Method: EPA 6010/SM 2510 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-006

Parameter	QC batch	Units	RL	Method Blank	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference				RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
Conductivity	EWL0009-JUN21	mS/cm	0.002	<0.002	0	10	99	90	110	NA		

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-IENVISFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High
Free Cyanide	SKA5095-MAY21	μg/g	0.05	<0.05	ND	20	109	80	120	91	75	125

Hexavalent Chromium by SFA

Method: EPA218.6/EPA3060A | Internal ref.: ME-CA-[ENV]SKA-LAK-AN-012

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		M	latrix Spike / Ref	:
	Reference			Blank	RPD	RPD AC (%)	Spike		ery Limits %)	Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Chromium VI	SKA5108-MAY21	ug/g	0.2	<0.2	ND	20	90	80	120	93	75	125

20210603 14 / 24

QC SUMMARY

Mercury by CVAAS

Method: EPA 7471A/EPA 245 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury	EMS0003-JUN21	ug/g	0.05	<0.05	ND	20	104	80	120	94	70	130

Metals in aqueous samples - ICP-OES

Method: MOE 4696e01/EPA 6010 | Internal ref.: ME-CA-IENVISPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery	Recove	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
SAR Calcium	ESG0002-JUN21	mg/L	0.09	<0.09	4	20	99	80	120	98	70	130
SAR Magnesium	ESG0002-JUN21	mg/L	0.02	<0.02	3	20	99	80	120	96	70	130
SAR Sodium	ESG0002-JUN21	mg/L	0.15	<0.15	14	20	101	80	120	100	70	130

20210603 15 / 24

QC SUMMARY

Metals in Soil - Aqua-regia/ICP-MS

Method: EPA 3050/EPA 200.8 | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LCS	S/Spike Blank		Ma	atrix Spike / Re	i.
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recover	•	Spike Recovery		ry Limits %)
						(%)	(%)	Low	High	(%)	Low	High
Silver	EMS0003-JUN21	ug/g	0.05	<0.05	1	20	102	70	130	103	70	130
Arsenic	EMS0003-JUN21	μg/g	0.5	<0.5	16	20	99	70	130	96	70	130
Barium	EMS0003-JUN21	ug/g	0.1	<0.1	4	20	105	70	130	90	70	130
Beryllium	EMS0003-JUN21	μg/g	0.02	<0.02	8	20	101	70	130	96	70	130
Boron	EMS0003-JUN21	μg/g	1	<1	ND	20	107	70	130	97	70	130
Cadmium	EMS0003-JUN21	μg/g	0.02	<0.02	3	20	99	70	130	94	70	130
Cobalt	EMS0003-JUN21	μg/g	0.01	<0.01	6	20	100	70	130	99	70	130
Chromium	EMS0003-JUN21	μg/g	0.5	<0.5	4	20	102	70	130	99	70	130
Copper	EMS0003-JUN21	μg/g	0.1	<0.1	8	20	98	70	130	95	70	130
Molybdenum	EMS0003-JUN21	μg/g	0.1	<0.1	18	20	95	70	130	103	70	130
Nickel	EMS0003-JUN21	ug/g	0.5	<0.5	6	20	98	70	130	94	70	130
Lead	EMS0003-JUN21	μg/g	0.1	<0.1	ND	20	101	70	130	95	70	130
Antimony	EMS0003-JUN21	μg/g	0.8	<0.8	ND	20	100	70	130	82	70	130
Selenium	EMS0003-JUN21	μg/g	0.7	<0.7	ND	20	96	70	130	95	70	130
Thallium	EMS0003-JUN21	μg/g	0.02	<0.02	ND	20	101	70	130	91	70	130
Uranium	EMS0003-JUN21	μg/g	0.002	<0.002	3	20	105	70	130	95	70	130
Vanadium	EMS0003-JUN21	μg/g	3	<3	11	20	102	70	130	98	70	130
Zinc	EMS0003-JUN21	μg/g	0.7	<0.7	6	20	100	70	130	94	70	130

20210603 16 / 24

QC SUMMARY

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	S/Spike Blank		М	atrix Spike / Ref	
	Reference		Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery	Recover	ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
F1 (C6-C10)	GCM0022-JUN21	μg/g	10	<10	ND	30	98	80	120	NV	60	140

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		М	atrix Spike / Ref	ī.
	Reference		Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
F2 (C10-C16)	GCM0436-MAY21	μg/g	10	<10	ND	30	108	80	120	103	60	140
F3 (C16-C34)	GCM0436-MAY21	μg/g	50	<50	114	30	108	80	120	103	60	140
F4 (C34-C50)	GCM0436-MAY21	μg/g	50	<50	ND	30	108	80	120	103	60	140

20210603 17 / 24

CA14322-MAY21 R1

SGS

QC SUMMARY

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Dup	plicate	LC	S/Spike Blank		м	atrix Spike / Re	f.
	Reference			Blank	RPD	RPD AC (%)			ery Limits %)	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
pH	ARD0073-MAY21	pH Units	0.05		0	20	100	80	120			

20210603 18 / 24

QC SUMMARY

Semi-Volatile Organics

Method: EPA 3541/8270D | Internal ref.: ME-CA-[ENVIGC-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ма	atrix Spike / Re	<i>[</i> .
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(76)	(%)	Low	High	(%)	Low	High
1-Methylnaphthalene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	95	50	140	98	50	140
2-Methylnaphthalene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	91	50	140	94	50	140
Acenaphthene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	98	50	140	103	50	140
Acenaphthylene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	100	50	140	105	50	140
Anthracene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	92	50	140	98	50	140
Benzo(a)anthracene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	96	50	140	105	50	140
Benzo(a)pyrene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	89	50	140	98	50	140
Benzo(b+j)fluoranthene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	89	50	140	96	50	140
Benzo(ghi)perylene	GCM0485-MAY21	μg/g	0.1	< 0.1	ND	40	89	50	140	102	50	140
Benzo(k)fluoranthene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	95	50	140	99	50	140
Chrysene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	97	50	140	99	50	140
Dibenzo(a,h)anthracene	GCM0485-MAY21	μg/g	0.06	< 0.06	ND	40	86	50	140	95	50	140
Fluoranthene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	97	50	140	104	50	140
Fluorene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	93	50	140	96	50	140
Indeno(1,2,3-cd)pyrene	GCM0485-MAY21	μg/g	0.1	< 0.1	ND	40	92	50	140	99	50	140
Naphthalene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	96	50	140	100	50	140
Phenanthrene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	97	50	140	100	50	140
Pyrene	GCM0485-MAY21	μg/g	0.05	< 0.05	ND	40	105	50	140	110	50	140

20210603 19 / 24

QC SUMMARY

Volatile Organics

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Re	f.
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
1,1,1,2-Tetrachloroethane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	101	60	130	120	50	140
1,1,1-Trichloroethane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	106	60	130	122	50	140
1,1,2,2-Tetrachloroethane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	96	60	130	101	50	140
1,1,2-Trichloroethane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	105	60	130	121	50	140
1,1-Dichloroethane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	105	60	130	117	50	140
1,1-Dichloroethylene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	123	60	130	137	50	140
1,2-Dichlorobenzene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	95	60	130	112	50	140
1,2-Dichloroethane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	105	60	130	112	50	140
1,2-Dichloropropane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	102	60	130	99	50	140
1,3-Dichlorobenzene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	94	60	130	113	50	140
1,4-Dichlorobenzene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	99	60	130	113	50	140
Acetone	GCM0021-JUN21	μg/g	0.5	< 0.5	ND	50	104	50	140	127	50	140
Benzene	GCM0021-JUN21	μg/g	0.02	< 0.02	ND	50	101	60	130	110	50	140
Bromodichloromethane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	105	60	130	114	50	140
Bromoform	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	97	60	130	112	50	140
Bromomethane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	121	50	140	140	50	140
Carbon tetrachloride	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	108	60	130	123	50	140
Chlorobenzene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	104	60	130	120	50	140
Chloroform	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	99	60	130	113	50	140
cis-1,2-Dichloroethylene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	100	60	130	115	50	140

20210603 20 / 24

QC SUMMARY

Volatile Organics (continued)

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Ma	atrix Spike / Ref	<i>I.</i>
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
cis-1,3-dichloropropene	GCM0021-JUN21	μg/g	0.03	< 0.03	ND	50	108	60	130	107	50	140
Dibromochloromethane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	103	60	130	115	50	140
Dichlorodifluoromethane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	131	50	140	98	50	140
Ethylbenzene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	106	60	130	138	50	140
Ethylenedibromide	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	109	60	130	131	50	140
n-Hexane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	119	60	130	51	50	140
m/p-xylene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	106	60	130	NV	50	140
Methyl ethyl ketone	GCM0021-JUN21	μg/g	0.5	< 0.5	ND	50	85	50	140	118	50	140
Methyl isobutyl ketone	GCM0021-JUN21	μg/g	0.5	< 0.5	ND	50	100	50	140	128	50	140
Methyl-t-butyl Ether	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	109	60	130	126	50	140
Methylene Chloride	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	115	60	130	122	50	140
o-xylene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	106	60	130	115	50	140
Styrene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	107	60	130	119	50	140
Tetrachloroethylene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	105	60	130	117	50	140
Toluene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	108	60	130	110	50	140
trans-1,2-Dichloroethylene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	117	60	130	132	50	140
trans-1,3-dichloropropene	GCM0021-JUN21	μg/g	0.03	< 0.03	ND	50	102	60	130	124	50	140
Trichloroethylene	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	83	60	130	125	50	140
Trichlorofluoromethane	GCM0021-JUN21	μg/g	0.05	< 0.05	ND	50	131	50	140	149	50	140
Vinyl Chloride	GCM0021-JUN21	μg/g	0.02	< 0.02	ND	50	123	50	140	127	50	140

20210603 21 / 24

QC SUMMARY

Water Soluble Boron

Method: O.Reg. 15 3/04 | Internal ref.: ME-CA-[ENV] SPE-LAK-AN-003

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		М	latrix Spike / Ref	ī.
	Reference			Blank	RPD	AC (%)	Spike		ery Limits %)	Spike Recovery	Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Water Soluble Boron	ESG0001-JUN21	μg/g	0.5	<0.5	ND	20	107	80	120	94	70	130

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20210603 22 / 24

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20210603 23 / 24

CA14826-JUN21 R

5557

Prepared for

Toronto Inspection Ltd.

First Page

CLIENT DETAILS	S	LABORATORY DETAI	LS
Client	Toronto Inspection Ltd.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	110 Konrad Crescent, Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Markham, ON		
	L3R 9X2. Canada		
Contact	Simran Panesar	Telephone	705-652-2143
Telephone	416-996-3214	Facsimile	705-652-6365
Facsimile	905 940 8192	Email	brad.moore@sgs.com
Email	lab@torontoinspection.com;simran@torontoinspection.com	SGS Reference	CA14826-JUN21
Project	5557	Received	06/08/2021
Order Number		Approved	06/14/2021
Samples	Ground Water (1)	Report Number	CA14826-JUN21 R
		Date Reported	06/14/2021

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Temperature of Sample upon Receipt: 8 degrees C

Cooling Agent Present:Yes

Custody Seal Present:Yes

Chain of Custody Number:021543

SIGNATORIES

Brad Mo Brad Moore Hon. B.Sc

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0 t 705-652-2143 f 705-652-6365

> Member of the SGS Group (SGS SA) 1 / 13

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-11
Legend	12
Annexes	13

CA14826-JUN21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

Samplers: Peining Gram

PACKAGE: REG153 - BTEX (WATER)			Sa	mple Number	7
			8	Sample Name	21BH-4(MW)
.1 = REG153 / GROUND WATER / COARSE - TABLE 3 - All	Types of Property Uses -	UNDEFINED	8	Sample Matrix	Ground Water
2 = REG153 / GROUND WATER / FINE - TABLE 3 - All Type				Sample Date	08/06/2021
Parameter	Units	RL	L1	L2	Result
BTEX					
		2.5	1	400	1.0
Benzene	μg/L	0.5	44	430	
Ethylbenzene	μg/L	0.5	2300	2300	6.2
Toluene	μg/L	0.5	18000	18000	< 0.5
Xylene (total)	μg/L	0.5	4200	4200	17.5
m/p-xylene	μg/L	0.5			14.7
o-xylene	μg/L	0.5			2.8
PACKAGE: REG153 - PHCs (WATER)			s	mple Number Sample Name	7 21BH-4(MW) Ground Water
.1 = REG153 / GROUND WATER / COARSE - TABLE 3 - All				Sample Matrix	
2 = REG153 / GROUND WATER / FINE - TABLE 3 - All Type				Sample Date	08/06/2021
Parameter	Units	RL	L1	L2	Result
PHCs					
F1 (C6-C10)	μg/L	25	750	750	857
F1-BTEX (C6-C10)	μg/L	25			832
F2 (C10-C16)	μg/L	100	150	150	14200
F3 (C16-C34)	μg/L	200	500	500	8920
F4 (C34-C50)	μg/L	200	500	500	< 200
Chromatogram returned to baseline at	Yes / No				YES
nC50	1007110				-
nC50					

CA14826-JUN21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

Samplers: Peining Gram

PACKAGE: REG153 - THMs (VOC) (WATER)			San	nple Number	7
			Si	ample Name	21BH-4(MW)
L1 = REG153 / GROUND WATER / COARSE - TABLE 3 - All Types of Prop	perty Uses -	UNDEFINED	Sí	ample Matrix	Ground Water
L2 = REG153 / GROUND WATER / FINE - TABLE 3 - All Types of Property	Uses - UNE	DEFINED		Sample Date	08/06/2021
Parameter U	nits	RL	L1	L2	Result
THMs (VOC)					
	ıg/L	0.5	85000	85000	< 0.5
	ıg/L	0.5	380	770	< 0.5
	ıg/L	0.5	82000	82000	< 0.5
F	- J				
PACKAGE: REG153 - VOC Surrogates (WATER	₹)		San	nple Number	7
			S	ample Name	21BH-4(MW)
L1 = REG153 / GROUND WATER / COARSE - TABLE 3 - All Types of Prop	perty Uses -	UNDEFINED	St	ample Matrix	Ground Water
L2 = REG153 / GROUND WATER / FINE - TABLE 3 - All Types of Property	.2 = REG153 / GROUND WATER / FINE - TABLE 3 - All Types of Property Uses - UNDEFINED			Sample Date	08/06/2021
Parameter U	nits	RL	L1	L2	Result
VOC Surrogates					
_	Rec %				102
, , , , , , , , , , , , , , , , , , , ,	Rec %				92
·	Rec %				97
Suit 4-biomonuorobenzene Suit	Rec %				
PACKAGE: REG153 - VOCs (WATER)			San	nple Number	7
,			s	ample Name	21BH-4(MW)
L1 = REG153 / GROUND WATER / COARSE - TABLE 3 - All Types of Prop	nerty I Ises -	LINDEFINED		ample Matrix	Ground Water
L2 = REG153 / GROUND WATER / FINE - TABLE 3 - All Types of Property				Sample Date	08/06/2021
	nits	RL	L1	L2	Result
VOCs					. toodii
	ıg/L	30	130000	130000	< 30
	ıg/L	0.5	5.6	56	< 0.5
Carbon tetrachloride µ	ıg/L	0.2	0.79	8.4	< 0.2
					< 0.5

CA14826-JUN21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

Samplers: Peining Gram

ACKAGE:	REG153 -	VOCs	(WATER)

Sample Number

7

Sample Name 21BH-4(MW)

L1 = REG153 / GROUND WATER / COARSE - TABLE 3 - All Types of Property Uses - UNDEFINED Sample Matrix

Ground Water

L2 = REG153 / GROUND WATER / FINE - TABLE 3 - All Types of Property Uses - UNDEFINED

Sample Date 08/06/2021

Parameter	Units	RL	L1	L2	Result				
OCs (continued)									
Chloroform	μg/L	0.5	2.4	22	< 0.5				
1,2-Dichlorobenzene	μg/L	0.5	4600	9600	< 0.5				
1,3-Dichlorobenzene	μg/L	0.5	9600	9600	< 0.5				
1,4-Dichlorobenzene	μg/L	0.5	8	67	< 0.5				
Dichlorodifluoromethane	μg/L	2.0	4400	4400	< 2				
1,1-Dichloroethane	μg/L	0.5	320	3100	< 0.5				
1,2-Dichloroethane	μg/L	0.5	1.6	12	< 0.5				
1,1-Dichloroethylene	μg/L	0.5	1.6	17	< 0.5				
trans-1,2-Dichloroethene	μg/L	0.5	1.6	17	< 0.5				
cis-1,2-Dichloroethene	μg/L	0.5	1.6	17	< 0.5				
1,2-Dichloropropane	μg/L	0.5	16	140	< 0.5				
cis-1,3-Dichloropropene	μg/L	0.5			< 0.5				
trans-1,3-Dichloropropene	μg/L	0.5			< 0.5				
1,3-dichloropropene (total)	μg/L	0.5	5.2	45	< 0.5				
Ethylenedibromide	μg/L	0.2	0.25	0.83	< 0.2				
n-Hexane	μg/L	1.0	51	520	< 1				
Methyl ethyl ketone	μg/L	20	470000	1.5e+00	< 20				
				6					
Methyl Isobutyl Ketone	μg/L	20	140000	580000	< 20				
Methyl-t-butyl Ether	μg/L	2.0	190	1400	< 2				
Methylene Chloride	μg/L	0.5	610	5500	< 0.5				
Styrene	μg/L	0.5	1300	9100	< 0.5				
Tetrachloroethylene (perchloroethylene)	μg/L	0.5	1.6	17	< 0.5				
1,1,1,2-Tetrachloroethane	μg/L	0.5	3.3	28	< 0.5				

CA14826-JUN21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Simran Panesar

Samplers: Peining Gram

DACKACE: BECAES NOO (MATE	D)		Sar	mple Number	7
PACKAGE: REG153 - VOCs (WATE	K)			Sample Name	
				sample Matrix	, ,
L1 = REG153 / GROUND WATER / COARSE - TABLE 3 -				Sample Date	08/06/2021
L2 = REG153 / GROUND WATER / FINE - TABLE 3 - All T	Units	RL	L1	L2	Result
	Onits	KL	LI	LZ	Result
VOCs (continued)					
1,1,2,2-Tetrachloroethane	μg/L	0.5	3.2	15	< 0.5
1,1,1-Trichloroethane	μg/L	0.5	640	6700	< 0.5
1,1,2-Trichloroethane	μg/L	0.5	4.7	30	< 0.5
Trichloroethylene	μg/L	0.5	1.6	17	< 0.5
Trichlorofluoromethane	μg/L	5.0	2500	2500	< 5
Vinyl Chloride	μg/L	0.2	0.5	1.7	< 0.2

EXCEEDANCE SUMMARY

			REG153 /	REG153 /
			GROUND WATER /	GROUND WATER /
			COARSE - TABLE	FINE - TABLE 3 -
			3 - All Types of	All Types of
			Property Uses -	Property Uses -
			UNDEFINED	UNDEFINED
Method	Units	Result	L1	L2
	Method	Method Units	Method Units Result	COARSE - TABLE 3 - All Types of Property Uses - UNDEFINED

21BH-4(MW)

F1 (C6 to C10)	CCME Tier 1	μg/L	857	750	750
F2 (C10 to C16)	CCME Tier 1	μg/L	14200	150	150
F3 (C16 to C34)	CCME Tier 1	μg/L	8920	500	500

20210614 7 / 13

QC SUMMARY

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F1 (C6-C10)	GCM0154-JUN21	μg/L	25	<25	ND	30	91	60	140	NV	60	140

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch	Units RL	RL	EL Method Blank	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference				Blank RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
								Low	High	(%)	Low	High
F2 (C10-C16)	GCM0199-JUN21	μg/L	100	<100	ND	30	90	60	140	98	60	140
F3 (C16-C34)	GCM0199-JUN21	μg/L	200	<200	ND	30	90	60	140	98	60	140
F4 (C34-C50)	GCM0199-JUN21	μg/L	200	<200	ND	30	90	60	140	98	60	140

20210614 8 / 13

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
Benzene	GCM0154-JUN21	μg/L	0.5	<0.5	ND	30	84	60	130	91	50	140
Ethylbenzene	GCM0154-JUN21	μg/L	0.5	<0.5	ND	30	93	60	130	90	50	140
m/p-xylene	GCM0154-JUN21	μg/L	0.5	<0.5	ND	30	98	60	130	89	50	140
o-xylene	GCM0154-JUN21	μg/L	0.5	<0.5	ND	30	96	60	130	94	50	140
Toluene	GCM0154-JUN21	μg/L	0.5	<0.5	ND	30	88	60	130	92	50	140
1,1,1,2-Tetrachloroethane	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	94	60	130	97	50	140
1,1,1-Trichloroethane	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	95	60	130	100	50	140
1,1,2,2-Tetrachloroethane	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	96	60	130	99	50	140
1,1,2-Trichloroethane	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	95	60	130	98	50	140
1,1-Dichloroethane	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	95	60	130	98	50	140
1,1-Dichloroethylene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	95	60	130	98	50	140
1,2-Dichlorobenzene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	97	60	130	102	50	140
1,2-Dichloroethane	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	98	60	130	99	50	140
1,2-Dichloropropane	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	95	60	130	98	50	140
1,3-Dichlorobenzene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	96	60	130	100	50	140
1,4-Dichlorobenzene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	96	60	130	101	50	140
Acetone	GCM0161-JUN21	μg/L	30	<30	ND	30	92	60	130	92	50	140
Bromodichloromethane	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	94	60	130	97	50	140
Bromoform	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	94	60	130	97	50	140
Bromomethane	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	90	50	140	94	50	140

20210614 9 / 13

QC SUMMARY

Volatile Organics (continued)

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch Reference	Units	RL	Method Blank	Duplicate		LCS/Spike Blank			Matrix Spike / Ref.		
					RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
								Low	High	(%)	Low	High
Carbon tetrachloride	GCM0161-JUN21	μg/L	0.2	<0.2	ND	30	95	60	130	101	50	140
Chlorobenzene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	95	60	130	99	50	140
Chloroform	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	96	60	130	99	50	140
cis-1,2-Dichloroethene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	97	60	130	99	50	140
cis-1,3-Dichloropropene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	95	60	130	97	50	140
Dibromochloromethane	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	94	60	130	96	50	140
Dichlorodifluoromethane	GCM0161-JUN21	μg/L	2.0	<2	ND	30	80	50	140	82	50	140
Ethylenedibromide	GCM0161-JUN21	μg/L	0.2	<0.2	ND	30	96	60	130	99	50	140
n-Hexane	GCM0161-JUN21	μg/L	1.0	<1	ND	30	90	60	130	94	50	140
Methyl ethyl ketone	GCM0161-JUN21	ug/L	20	<20	ND	30	90	60	130	94	50	140
Methyl Isobutyl Ketone	GCM0161-JUN21	μg/L	20	<20	ND	30	89	50	140	94	50	140
Methyl-t-butyl Ether	GCM0161-JUN21	μg/L	2.0	<2	ND	30	92	60	130	96	50	140
Methylene Chloride	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	96	60	130	99	50	140
Styrene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	96	60	130	102	50	140
Tetrachloroethylene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	95	60	130	101	50	140
(perchloroethylene)												
trans-1,2-Dichloroethene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	97	60	130	100	50	140
trans-1,3-Dichloropropene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	98	60	130	99	50	140
Trichloroethylene	GCM0161-JUN21	μg/L	0.5	<0.5	ND	30	95	60	130	100	50	140
Trichlorofluoromethane	GCM0161-JUN21	μg/L	5.0	<5	ND	30	90	50	140	95	50	140
Vinyl Chloride	GCM0161-JUN21	μg/L	0.2	<0.2	ND	30	88	60	130	92	50	140

20210614 10 / 13

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20210614 11 / 13

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20210614 12 / 13

4 - 163 H 5) HABINS #: CA 14 87 1 No: 021543 *NOTE: DRINKING (POTABLE) WATER SAMPLES FOR HUMAN CONSUMPTION MUST BE SUBMITTED COMMENTS: Samples received after 6pm or on weekends: TAT begins next business day TAT's are quoted in business days (exclude statutory holidays & weekends). Page_ TCLP WITH SGS DRINKING WATER CHAIN OF CUSTODY DABN D_{M&I} TCLP tests Water Characterization Pkg Sewer Use: (please specify) Screening Levels Table : 1 Day 2 Days 3 Days 4 Days PLEASE CONFIRM RUSH FEASIBILITY WITH SGS REPRESENTATIVE PRIOR TO SUBMISSION Appendix 2: 406/19 Leachate Site Location/ID: TURNAROUND TIME (TAT) REQUIRED Other P.O. #: ANALYSIS REQUESTED Pest Pesticides
Organochlorine or specify other 00X BTEX only Request for Laboratory Services and CHAIN OF CUSTODY Environment, Health & Safety - Lakefield: 185 Concession St., Lakefield, ON KOL 2H0 Phone: 705-652-2000 Fax: 705-652-6365 Web: www.sgs.com/environment F1-F4 only PHC Cooling Agent Present: Yes \(\subseteq \) \(\superseteq \) \(\s - London: 657 Consortium Court, London ON 106E 2S8 Phone: 519-672-4500 Toll Free: 877-848-8060 Fax: 519-672-0361 Laboratory Information Section - Lab use only F1-F4 + BTEX RUSH TAT (Additional Charges May Apply): PCB Toloo1A ___ Total □ sa⊃d SVOC Regular TAT (5-1 days) ylno sHA9 b, As, Ba, Be, B, Cd, Cr, Co, Cu, Pb, Mo, Ni, Specify Due Date: ⊗ ⊠ Metals & Inorganics incl CrVI, Cv, Hg pH,(B(HWS), EC, SAR-(Cl, Na-water) Quotation #: Project #: Field Filtered (Y/N) CAM Custody Seal Present: Yes No MATRIX Sewer By-Law: Sanitary Storm Email: (SID CATOS ON TO THE WATER SHOWN OF TO STATE SPECH OF Aunicipality: SAMPLED BOTTLES INVOICE INFORMATION Received By (signature): (same as Report Information) ODWS Not Reportable *See note Reg 347/558 (3 Day min TAT) 16:30 Shaman MMER Other: S N Other Regulations: SAMPLED 17/20/30 PWQO CCME MISA VES Company: REGULATIONS Contract (Test Contact: Address: Phone: (mm/dd/yy) Coarse Medium/Fine O.Reg 406/19 RECORD OF SITE CONDITION (RSC) Res/Park Soil Texture: >350m3 CANBON SAMPLE IDENTIFICATION REPORT INFORMATION 201840 RIP Agri/Other Ind/Com Soil Volume <350m3</p> O.Reg 153/04 Received Date: Received By: Received Time: Table 2
Table 3
Table Table 1 Company: Contact: Phone: 10

Yellow & White Copy - SGS

(mm/dd/yy) (mm/dd/yy)

Date: Ob

Pink Copy - Client

of work. Signatures may appear on this form or be retained on file in mpany under its General Conditions of Service accessible at

Mited number of addresses for no additional cost. Fax is available upon request. This document is issued by the 🖒 is are available upon request.) Attention is drawn to the limitation of liability, indemnification and jurisdiction issues de

ndling and transportation of samples. (2) Submission of samples to SGS is cor

ative format (e.g. shipping documents). {3} Results may b

ment that you have been provided direct

Signature:

Observations/Comments/Special Instructions

Sampled By (NAME): Relinquished by (NAME):

ite of Issue: 22 May. 2020

FINAL REPORT CA14254-OCT21 R

5557

Prepared for

Toronto Inspection Ltd.

First Page

CLIENT DETAILS	S	LABORATORY DETAIL	LS
Client	Toronto Inspection Ltd.	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	110 Konrad Crescent, Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Markham, ON		
	L3R 9X2. Canada		
Contact	Gus Cheng	Telephone	705-652-2000
Telephone	905-940-8509	Facsimile	705-652-6365
Facsimile	905-940-8192	Email	Maarit.Wolfe@sgs.com
Email	lab@torontoinspection.com	SGS Reference	CA14254-OCT21
Project	5557	Received	10/15/2021
Order Number		Approved	10/21/2021
Samples	Soil (5)	Report Number	CA14254-OCT21 R
		Date Reported	10/21/2021

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Hydrocarbon results are expressed on a dry weight basis.

Benzo(b)fluoranthene results for comparison to the standard are reported as benzo(b+j)fluoranthene. Benzo(b)fluoranthene and benzo(j)fluoranthene co-elute and cannot be reported individually by the analytical method used.

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present:Yes

Custody Seal Present:yes

Chain of Custody Number:020512

SIGNATORIES

Maarit Wolfe, Hon.B.Sc Luvoye

t 705-652-2000 f 705-652-6365 SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0

> Member of the SGS Group (SGS SA) 1 / 15

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-7
Exceedance Summary	8
QC Summary	9-13
Legend	14
Annexes	15

CA14254-OCT21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Gus Cheng

PACKAGE: REG153 - BTEX (SOIL)			Sa	mple Number	8	10	12			
. ,			8	Sample Name	21BH-101 (MW)	21BH-102 (MW)	21BH-103 (MW)			
					SS1	SS6	SS4			
1 = REG153 / SOIL / COARSE - TABLE 3 - Residential/Parkland - UND	EFINED		8	Sample Matrix	Soil	Soil	Soil			
2 = REG153 / SOIL / FINE - TABLE 3 - Residential/Parkland - UNDEFII	NED			Sample Date	14/10/2021	15/10/2021	15/10/2021			
Parameter	Units	RL	L1	L2	Result	Result	Result			
BTEX										
Benzene	μg/g	0.02	0.21	0.17	< 0.02	< 0.02	< 0.02			
Ethylbenzene	μg/g	0.05	2	15	< 0.05	< 0.05	< 0.05			
Toluene	μg/g	0.05	2.3	6	< 0.05	< 0.05	< 0.05			
Xylene (total)	μg/g	0.05	3.1	25	< 0.05	< 0.05	< 0.05			
m/p-xylene	μg/g	0.05			< 0.05	< 0.05	< 0.05			
o-xylene	μg/g	0.05			< 0.05	< 0.05	< 0.05			
PACKAGE: REG153 - Metals and Inorganics SOIL)				mple Number	8	9	10	11	12	
				sample Name	21BH-101 (MW) SS1	21BH-102 (MW) SS4	21BH-102 (MW)	21BH-103 (MW) SS3	21BH-103 (MW)	
A DECATE LOCAL COORDER TABLE A Decident 12 11 1111	SEEMED		ģ	Sample Matrix	Soil	Soil	SS6 Soil	Soil	SS4 Soil	
1 = REG153 / SOIL / COARSE - TABLE 3 - Residential/Parkland - UND 2 = REG153 / SOIL / FINE - TABLE 3 - Residential/Parkland - UNDEFII				Sample Date	14/10/2021	15/10/2021	15/10/2021	15/10/2021	15/10/2021	
	Units	RL	L1	L2	Result	Result	Result	Result	Result	
Dorometer		D.L.		L-E	r\e5uit	r\esuit	r/esuit	Legalit	r/esuit	
Parameter Metals and Inorganics	Office									

CA14254-OCT21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Gus Cheng

PACKAGE: REG153 - Other (ORP) (SC	OIL)		Sai	mple Number	8	9	11
			S	Sample Name	21BH-101 (MW)	21BH-102 (MW)	21BH-103 (MW)
					SS1	SS4	SS3
L1 = REG153 / SOIL / COARSE - TABLE 3 - Residential/Parkl	land - UNDEFINED		s	ample Matrix	Soil	Soil	Soil
L2 = REG153 / SOIL / FINE - TABLE 3 - Residential/Parkland	- UNDEFINED			Sample Date	14/10/2021	15/10/2021	15/10/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
Other (ORP)							
рН	pH Units	0.05			8.00	7.59	7.82
PACKAGE: REG153 - PHCs (SOIL)				mple Number	8	10	12
			S	Sample Name	21BH-101 (MW)	21BH-102 (MW)	21BH-103 (MW)
					SS1	SS6	SS4
L1 = REG153 / SOIL / COARSE - TABLE 3 - Residential/Park	land - UNDEFINED		S	ample Matrix	Soil	Soil	Soil
.2 = REG153 / SOIL / FINE - TABLE 3 - Residential/Parkland	- UNDEFINED			Sample Date	14/10/2021	15/10/2021	15/10/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
PHCs							
F1 (C6-C10)	μg/g	10	55	65	< 10	< 10	< 10
F1-BTEX (C6-C10)	µg/g	10	55	65	< 10	< 10	< 10
F2 (C10-C16)	µg/g	10	98	150	< 10	49	< 10
F3 (C16-C34)	µg/g	50	300	1300	< 50	61	< 50
F4 (C34-C50)	µg/g	50	2800	5600	< 50	< 50	< 50
Chromatogram returned to baseline at	Yes / No	-			YES	YES	YES
nC50							

CA14254-OCT21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Gus Cheng

PACKAGE: REG153 - THMs (VOC) (SC	OIL)		Sa	ample Number	8	10	12
			;	Sample Name	21BH-101 (MW)	21BH-102 (MW)	21BH-103 (MW)
					SS1	SS6	SS4
L1 = REG153 / SOIL / COARSE - TABLE 3 - Residential/Park	sland - UNDEFINED		;	Sample Matrix	Soil	Soil	Soil
L2 = REG153 / SOIL / FINE - TABLE 3 - Residential/Parkland	I - UNDEFINED			Sample Date	14/10/2021	15/10/2021	15/10/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
THMs (VOC)							
Bromodichloromethane	μg/g	0.05	13	13	< 0.05	< 0.05	< 0.05
Bromoform	μg/g	0.05	0.27	0.26	< 0.05	< 0.05	< 0.05
Dibromochloromethane	μg/g	0.05	9.4	9.4	< 0.05	< 0.05	< 0.05
PACKAGE: REG153 - VOC Surrogates	(SOIL)		Sa	ample Number	8	10	12
			;	Sample Name	21BH-101 (MW)	21BH-102 (MW)	21BH-103 (MW)
					SS1	SS6	SS4
L1 = REG153 / SOIL / COARSE - TABLE 3 - Residential/Park	kland - UNDEFINED		;	Sample Matrix	Soil	Soil	Soil
L2 = REG153 / SOIL / FINE - TABLE 3 - Residential/Parkland	I - UNDEFINED			Sample Date	14/10/2021	15/10/2021	15/10/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
VOC Surrogates							
Surr 1,2-Dichloroethane-d4	Surr Rec %	-			98	99	98
Surr 4-Bromofluorobenzene	Surr Rec %	-			95	96	96
Surr 2-Bromo-1-Chloropropane	Surr Rec %	-			89	89	89
PACKAGE: REG153 - VOCs (SOIL)			Sa	ample Number	8	10	12
			;	Sample Name	21BH-101 (MW)	21BH-102 (MW)	21BH-103 (MW)
					SS1	SS6	SS4
L1 = REG153 / SOIL / COARSE - TABLE 3 - Residential/Park	kland - UNDEFINED		;	Sample Matrix	Soil	Soil	Soil
L2 = REG153 / SOIL / FINE - TABLE 3 - Residential/Parkland	I - UNDEFINED			Sample Date	14/10/2021	15/10/2021	15/10/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
VOCs							
Acetone	μg/g	0.5	16	28	< 0.5	< 0.5	< 0.5
	10.0			- 1			

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Gus Cheng

DAOKAOE BEOARD MOC (2011)			Çar	nple Number	8	10	12
ACKAGE: REG153 - VOCs (SOIL)	1			•			
			S	атріе мате	21BH-101 (MW) SS1	21BH-102 (MW) SS6	21BH-103 (MW) SS4
= REG153 / SOIL / COARSE - TABLE 3 - Residential	WDaddard LINDEFINED		s	ample Matrix	Soil	Soil	Soil
= REG153 / SOIL / COARSE - TABLE 3 - Residential				Sample Date	14/10/2021	15/10/2021	15/10/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
	Onito	IXL			Nesuit	Nosuit	Nosuit
OCs (continued)						. 0.05	. 0.05
Bromomethane	μg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05
Carbon tetrachloride	μg/g	0.05	0.05	0.12	< 0.05	< 0.05	< 0.05
Chlorobenzene	μg/g	0.05	2.4	2.7	< 0.05	< 0.05	< 0.05
Chloroform	μg/g	0.05	0.05	0.18	< 0.05	< 0.05	< 0.05
1,2-Dichlorobenzene	μg/g	0.05	3.4	4.3	< 0.05	< 0.05	< 0.05
1,3-Dichlorobenzene	μg/g	0.05	4.8	6	< 0.05	< 0.05	< 0.05
1,4-Dichlorobenzene	μg/g	0.05	0.083	0.097	< 0.05	< 0.05	< 0.05
Dichlorodifluoromethane	μg/g	0.05	16	25	< 0.05	< 0.05	< 0.05
1,1-Dichloroethane	μg/g	0.05	3.5	11	< 0.05	< 0.05	< 0.05
1,2-Dichloroethane	μg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05
1,1-Dichloroethylene	μg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05
trans-1,2-Dichloroethylene	μg/g	0.05	0.084	0.75	< 0.05	< 0.05	< 0.05
cis-1,2-Dichloroethylene	μg/g	0.05	3.4	30	< 0.05	< 0.05	< 0.05
1,2-Dichloropropane	μg/g	0.05	0.05	0.085	< 0.05	< 0.05	< 0.05
cis-1,3-dichloropropene	µg/g	0.03			< 0.03	< 0.03	< 0.03
trans-1,3-dichloropropene	µg/g	0.03			< 0.03	< 0.03	< 0.03
1,3-dichloropropene (total)	μg/g	0.05	0.05	0.083	< 0.05	< 0.05	< 0.05
Ethylenedibromide	μg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05
n-Hexane	μg/g	0.05	2.8	34	< 0.05	< 0.05	< 0.05
		0.05	16	44	< 0.5	< 0.5	< 0.5
Methyl ethyl ketone	μg/g				< 0.5	< 0.5	< 0.5
Methyl isobutyl ketone	μg/g ,	0.5	1.7	4.3			
Methyl-t-butyl Ether	μg/g	0.05	0.75	1.4	< 0.05	< 0.05	< 0.05
Methylene Chloride	μg/g	0.05	0.1	0.96	< 0.05	< 0.05	< 0.05

CA14254-OCT21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Gus Cheng

PACKAGE: REG153 - VOCs (SOIL)			Sar	nple Number	8	10	12
			s	ample Name	21BH-101 (MW)	21BH-102 (MW)	21BH-103 (MW)
					SS1	SS6	SS4
_1 = REG153 / SOIL / COARSE - TABLE 3 - Residential/Parkla	and - UNDEFINED		s	ample Matrix	Soil	Soil	Soil
_2 = REG153 / SOIL / FINE - TABLE 3 - Residential/Parkland -	- UNDEFINED		Sample Date		14/10/2021	15/10/2021	15/10/2021
Parameter	Units	RL	L1	L2	Result	Result	Result
VOCs (continued)							
Styrene	μg/g	0.05	0.7	2.2	< 0.05	< 0.05	< 0.05
Tetrachloroethylene	μg/g	0.05	0.28	2.3	< 0.05	< 0.05	< 0.05
1,1,1,2-Tetrachloroethane	μg/g	0.05	0.058	0.05	< 0.05	< 0.05	< 0.05
1,1,2,2-Tetrachloroethane	μg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05
1,1,1-Trichloroethane	μg/g	0.05	0.38	3.4	< 0.05	< 0.05	< 0.05
1,1,2-Trichloroethane	μg/g	0.05	0.05	0.05	< 0.05	< 0.05	< 0.05
Trichloroethylene	μg/g	0.05	0.061	0.52	< 0.05	< 0.05	< 0.05
Trichlorofluoromethane	μg/g	0.05	4	5.8	< 0.05	< 0.05	< 0.05
Vinyl Chloride	μg/g	0.02	0.02	0.022	< 0.02	< 0.02	< 0.02

SGS FINAL REPORT

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

20211021 8 / 15

QC SUMMARY

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Dup	olicate	LCS/Spike Blank			Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike		Recovery Limits (%)	nits Spike		ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F1 (C6-C10)	GCM0343-OCT21	μg/g	10	<10	ND	30	100	80	120	108	60	140

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch Reference	Units	Units RL	Method Blank	Duplicate		LC	S/Spike Blank		Matrix Spike / Ref.		
					RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
								Low	High	(%)	Low	High
F2 (C10-C16)	GCM0299-OCT21	μg/g	10	<10	ND	30	114	80	120	107	60	140
F3 (C16-C34)	GCM0299-OCT21	μg/g	50	<50	30	30	114	80	120	107	60	140
F4 (C34-C50)	GCM0299-OCT21	μg/g	50	<50	ND	30	114	80	120	107	60	140

20211021 9 / 15

QC SUMMARY

pН

Method: SM 4500 | Internal ref.: ME-CA-IENVIEWL-LAK-AN-001

Parameter	QC batch Reference	Units	RL	Method Blank	Dup	Duplicate		S/Spike Blank		Matrix Spike / Ref.		
					RPD	AC (%)	Spike Recovery (%)	Recovery Limits (%)		Spike Recovery	Recover	ry Limits %)
								Low	High	(%)	Low	High
pH	ARD0081-OCT21	pH Units	0.05		0	20	100	80	120			

20211021 10 / 15

QC SUMMARY

Volatile Organics

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery		ery Limits %)
						(70)	(%)	Low	High	(%)	Low	High
1,1,1,2-Tetrachloroethane	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	93	60	130	98	50	140
1,1,1-Trichloroethane	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	90	60	130	94	50	140
1,1,2,2-Tetrachloroethane	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	92	60	130	100	50	140
1,1,2-Trichloroethane	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	95	60	130	99	50	140
1,1-Dichloroethane	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	92	60	130	94	50	140
1,1-Dichloroethylene	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	89	60	130	99	50	140
1,2-Dichlorobenzene	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	91	60	130	97	50	140
1,2-Dichloroethane	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	91	60	130	96	50	140
1,2-Dichloropropane	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	90	60	130	95	50	140
1,3-Dichlorobenzene	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	90	60	130	96	50	140
1,4-Dichlorobenzene	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	94	60	130	100	50	140
Acetone	GCM0342-OCT21	μg/g	0.5	< 0.5	ND	50	92	50	140	103	50	140
Benzene	GCM0342-OCT21	μg/g	0.02	< 0.02	ND	50	90	60	130	95	50	140
Bromodichloromethane	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	89	60	130	93	50	140
Bromoform	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	89	60	130	95	50	140
Bromomethane	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	88	50	140	76	50	140
Carbon tetrachloride	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	90	60	130	93	50	140
Chlorobenzene	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	89	60	130	95	50	140
Chloroform	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	89	60	130	94	50	140
cis-1,2-Dichloroethylene	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	90	60	130	95	50	140

20211021 11 / 15

QC SUMMARY

Volatile Organics (continued)

Method: EPA 5035A/5030B/8260C | Internal ref.: ME-CA-IENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery		ry Limits %)	Spike Recovery	Recovery Limits (%)	
						(70)	(%)	Low	High	(%)	Low	High
cis-1,3-dichloropropene	GCM0342-OCT21	μg/g	0.03	< 0.03	ND	50	91	60	130	91	50	140
Dibromochloromethane	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	89	60	130	95	50	140
Dichlorodifluoromethane	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	82	50	140	82	50	140
Ethylbenzene	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	90	60	130	95	50	140
Ethylenedibromide	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	93	60	130	100	50	140
n-Hexane	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	84	60	130	80	50	140
m/p-xylene	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	89	60	130	94	50	140
Methyl ethyl ketone	GCM0342-OCT21	μg/g	0.5	< 0.5	ND	50	92	50	140	98	50	140
Methyl isobutyl ketone	GCM0342-OCT21	μg/g	0.5	< 0.5	ND	50	92	50	140	100	50	140
Methyl-t-butyl Ether	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	92	60	130	102	50	140
Methylene Chloride	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	90	60	130	98	50	140
o-xylene	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	93	60	130	98	50	140
Styrene	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	90	60	130	96	50	140
Tetrachloroethylene	GCM0342-OCT21	μg/g	0.05	< 0.05	10	50	90	60	130	95	50	140
Toluene	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	90	60	130	95	50	140
trans-1,2-Dichloroethylene	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	89	60	130	97	50	140
trans-1,3-dichloropropene	GCM0342-OCT21	μg/g	0.03	< 0.03	ND	50	90	60	130	91	50	140
Trichloroethylene	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	90	60	130	95	50	140
Trichlorofluoromethane	GCM0342-OCT21	μg/g	0.05	< 0.05	ND	50	90	50	140	98	50	140
Vinyl Chloride	GCM0342-OCT21	μg/g	0.02	< 0.02	ND	50	86	50	140	90	50	140

20211021 12 / 15

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20211021 13 / 15

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20211021 14 / 15

FINAL REPORT CA14255-OCT21 R

5557

Prepared for

Toronto Inspection Ltd.

First Page

CLIENT DETAIL	S	LABORATORY DETAIL	LS
Client	Toronto Inspection Ltd.	Project Specialist	Brad Moore Hon. B.Sc
		Laboratory	SGS Canada Inc.
Address	110 Konrad Crescent, Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Markham, ON		
	L3R 9X2. Canada		
Contact	Gus Cheng	Telephone	705-652-2143
Telephone	905-940-8509	Facsimile	705-652-6365
Facsimile	905-940-8192	Email	brad.moore@sgs.com
Email	lab@torontoinspection.com	SGS Reference	CA14255-OCT21
Project	5557	Received	10/18/2021
Order Number		Approved	10/25/2021
Samples	Leachate (1)	Report Number	CA14255-OCT21 R
		Date Reported	10/25/2021

FINAL REPORT

COMMENTS

Temperature of Sample upon Receipt: 9 degrees C

Cooling Agent Present:Yes
Custody Seal Present:Yes

Chain of Custody Number:020512

TCLP metals reported at 10x DL

raised RL for Nits, due to SM

SIGNATORIES

Brad Moore Hon. B.Sc

1 / 14

SGS Canada Inc. 185 Concession St., Lakefield ON, K0L 2H0 t 705-652-2143 f 705-652-6365

Member of the SGS Group (SGS SA)

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-12
Legend	13
Annexes	14

CA14255-OCT21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Gus Cheng

Samplers: Peining Guan

PACKAGE: **REG558 - Acid rock Drainage**

Sample Number

(LEACHATE)

Sample Name 21BH-102(MW)

SS3

6

L1 = REG558 / LEACHATE / - - SCHEDULE 4 - -

Sample Matrix Leachate

Sample Date 15/10/2021

Parameter Units RL L1 Result

Acid rock Drainage

Final pH no unit 0.01 5.00

mg/L

mg/L

mg/L

mg/L

mg/L

0.01

0.002

0.0005

0.0002

0.02

20

2.5

5

100

500

PACKAGE: REG558 - Metals and Inorganics

Sample Number

6

(LEACHATE)

Cyanide (total)

Arsenic

Silver

Barium

Boron

Sample Name 21BH-102(MW)

SS3

< 0.01

< 0.002

< 0.0005

0.357

0.06

L1 = REG558 / LEACHATE / - - SCHEDULE 4 - -

Sample Matrix

Leachate

Sample Date 15/10/2021

Parameter	Units	RL	L1	Result		
letals and Inorganics						
Sample weight	g	0.001		100		
Ext Fluid	#1 or #2	0.01		1		
^ Ext Volume	mL	0.01		2000		
Nitrite (as N)	as N mg/L	0.3		< 0.3		
Nitrate (as N)	as N mg/L	0.6		< 0.6		
Nitrate + Nitrite (as N)	as N mg/L	0.6	1000	< 0.6		
Fluoride	mg/L	0.06	150	0.10		

CA14255-OCT21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Gus Cheng

Samplers: Peining Guan

PACKAGE: REG558 - Metals and Inorganics

Sample Number

6

(LEACHATE)

Sample Name 21BH-102(MW)

SS3

L1 = REG558 / LEACHATE / - - SCHEDULE 4 - -

Sample Matrix
Sample Date

Leachate 15/10/2021

Parameter	Units	RL	L1	Result
Metals and Inorganics (continued)				
Cadmium	mg/L	0.00003	0.5	0.00031
Chromium	mg/L	0.0008	5	0.0025
Lead	mg/L	0.00009	5	0.00045
Selenium	mg/L	0.0004	1	< 0.0004
Uranium	mg/L	0.00002	10	0.00047

PACKAGE: **REG558 - Other (ORP)** (LEACHATE)

Sample Number

Sample Name 21BH-102(MW)

SS3

L1 = REG558 / LEACHATE / - - SCHEDULE 4 - -

Sample Matrix
Sample Date

Leachate 15/10/2021

L1 Result

Other (ORP)

Parameter

Mercury mg/L 0.00001 0.1 < 0.00001

RL

Units

PACKAGE: REG558 - VOCs (LEACHATE)

Sample Number

Sample Name 21BH-102(MW)

SS3

L1 = REG558 / LEACHATE / - - SCHEDULE 4 - -

Sample Matrix Leachate

Sample Date 15/10/2021

Parameter Units RL L1 Result

VOCs

CA14255-OCT21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Gus Cheng

Samplers: Peining Guan

PACKAGE: REG558 - VOCs (LEACHATE)

Sample Number

Sample Name 21BH-102(MW)

SS3

6

L1 = REG558 / LEACHATE / - - SCHEDULE 4 - -

Sample Matrix Leachate

			Samp	le Date 15/10/2021		
Parameter	Units	RL	L1	Result		
OCs (continued)						
Methyl ethyl ketone	mg/L	0.8	200	< 0.8		
Vinyl Chloride	mg/L	0.008	0.2	< 0.008		
Dichloromethane	mg/L	0.02	5	< 0.02		
Chloroform	mg/L	0.02	10	< 0.02		
Trichloroethylene	mg/L	0.02	5	< 0.02		
Tetrachloroethene	mg/L	0.02	3	< 0.02		
Monochlorobenzene	mg/L	0.02	8	< 0.02		
Carbon tetrachloride	mg/L	0.008	0.5	< 0.008		
1,2-Dichlorobenzene	mg/L	0.02	20	< 0.02		
1,4-Dichlorobenzene	mg/L	0.02	0.5	< 0.02		
1,2-Dichloroethane	mg/L	0.02	0.5	< 0.02		
1,1-Dichloroethylene	mg/L	0.02	1.4	< 0.02		

CA14255-OCT21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Gus Cheng

Samplers: Peining Guan

PACKAGE: **REG558 - VOCs - BTEX** (LEACHATE)

Sample Number

Sample Name 21BH-102(MW)

SS3

6

L1 = REG558 / LEACHATE / - - SCHEDULE 4 - -

Sample Matrix Leachate

Sample Date 15/10/2021

Parameter Units RL L1 Result

VOCs - BTEX

Benzene mg/L 0.02 0.5 < 0.02

SGS FINAL REPORT

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

20211025 7 / 14

QC SUMMARY

Cyanide by SFA

Method: SM 4500 | Internal ref.: ME-CA-[ENV]SFA-LAK-AN-005

Parameter	QC batch	Units	RL	Method	Duj	plicate	LCS/Spike Blank			Matrix Spike / Ref.				
	Reference			Blank	RPD AC		•		Recovery Limits (%)				Recove	ry Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High		
Cyanide (total)	SKA0205-OCT21	mg/L	0.01	<0.01	ND	10	91	90	110	NV	75	125		

Fluoride by Specific Ion Electrode

Method: SM 4500 | Internal ref.: ME-CA-[ENV]EWL-LAK-AN-014

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recove	•	Spike Recovery		ory Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Fluoride	EWL0428-OCT21	mg/L	0.06	<0.06	0	10	99	90	110	83	75	125
Fluoride	EWL0443-OCT21	mg/L	0.06	<0.06	0	10	98	90	110	91	75	125

Inorganics-General

Method: EPA 7471A/SM 3112B | Internal ref.: ME-CA-[ENV]SPE-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	olicate	LC	S/Spike Blank		Matrix Spike / Ref.		əf.
	Reference			Blank	RPD	AC	Spike		ry Limits %)	Spike Recovery		ery Limits (%)
						(%)	Recovery (%)	Low	High	(%)	Low	High
Mercury	EHG0024-OCT21	mg/L	0.00001	< 0.00001	ND	20	91	80	120	112	70	130

QC SUMMARY

Metals in aqueous samples - ICP-MS

Method: SM 3030/EPA 200.8 | Internal ref.: ME-CA-[ENVISPE-LAK-AN-006

Parameter	QC batch	Units	RL Method		Dup	icate	LC	S/Spike Blank		Matrix Spike / Ref.			
	Reference			Blank	RPD	AC (%)	Spike	Recover	•	Spike Recovery		ry Limits %)	
						(%)	Recovery (%)	Low	High	(%)	Low	High	
Silver	EMS0151-OCT21	mg/L	0.0005	<0.00005	ND	20	106	90	110	98	70	130	
Arsenic	EMS0151-OCT21	mg/L	0.002	<0.0002	1	20	106	90	110	107	70	130	
Barium	EMS0151-OCT21	mg/L	0.0002	<0.00002	0	20	103	90	110	100	70	130	
Boron	EMS0151-OCT21	mg/L	0.02	<0.002	1	20	108	90	110	104	70	130	
Cadmium	EMS0151-OCT21	mg/L	0.00003	<0.000003	16	20	103	90	110	96	70	130	
Chromium	EMS0151-OCT21	mg/L	0.0008	<0.00008	1	20	109	90	110	124	70	130	
Lead	EMS0151-OCT21	mg/L	0.00009	<0.00001	15	20	110	90	110	104	70	130	
Selenium	EMS0151-OCT21	mg/L	0.0004	<0.00004	ND	20	105	90	110	100	70	130	
Uranium	EMS0151-OCT21	mg/L	0.00002	0.000002	4	20	100	90	110	96	70	130	

Nitrate by Ion Chromatography

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-IENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	plicate	LCS/Spike Blank		M	Matrix Spike / Ref.						
	Reference			Blank	RPD	AC Spike			_	Recovery Limits (%)		•		Spike Recovery	Recover	-
						(%)	Recovery (%)	Low	High	(%)	Low	High				
Nitrate (as N)	DIO0439-OCT21	mg/L	0.6	<0.6	ND	20	102	90	110	103	75	125				

QC SUMMARY

Nitrite by Ion Chromatography

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-[ENV]IC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duj	plicate	LC	S/Spike Blank		M	atrix Spike / Ref	
	Reference			Blank	RPD	AC	Spike	Recovery Limits Spike (%) Recovery		-		
						(%)	Recovery (%)	Low	High	(%)	Low	High
Nitrite (as N)	DIO0439-OCT21	mg/L	0.3	<0.3	ND	20	100	90	110	100	75	125

Total Nitrate/Nitrite by Ion Chromatography

Method: EPA300/MA300-lons1.3 | Internal ref.: ME-CA-IENVIIC-LAK-AN-001

Parameter	QC batch	Units	RL	Method	Duplicate LCS			LCS/Spike Blank			Matrix Spike / Ref	
	Reference			Blank	RPD	AC	AC Spike (%) Recovery (%)	Recovery Limits (%)		Spike Recovery		ry Limits %)
						(%)		Low	High	(%)	Low	High
Nitrate + Nitrite (as N)	DIO0439-OCT21	mg/L	0.6	<0.6	NA	20	NA	80	120	NA	75	125

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits %)	Spike Recovery	Recovery Limits (%)	
						(%)	(%)	Low	High	(%)	Low	High
1,1-Dichloroethylene	GCM0337-OCT21	mg/L	0.02	<0.02	ND	30	97	60	130	101	50	140
1,2-Dichlorobenzene	GCM0337-OCT21	mg/L	0.02	<0.02	ND	30	99	60	130	102	50	140
1,2-Dichloroethane	GCM0337-OCT21	mg/L	0.02	<0.02	ND	30	98	60	130	97	50	140
1,4-Dichlorobenzene	GCM0337-OCT21	mg/L	0.02	<0.02	ND	30	97	60	130	100	50	140
Benzene	GCM0337-OCT21	mg/L	0.02	<0.02	ND	30	98	60	130	100	50	140
Carbon tetrachloride	GCM0337-OCT21	mg/L	0.008	<0.008	ND	30	98	60	130	103	50	140
Chloroform	GCM0337-OCT21	mg/L	0.02	<0.02	ND	30	97	60	130	98	50	140
Dichloromethane	GCM0337-OCT21	mg/L	0.02	<0.02	ND	30	99	60	130	97	50	140
Methyl ethyl ketone	GCM0337-OCT21	mg/L	0.8	<0.8	ND	30	104	50	140	107	50	140
Monochlorobenzene	GCM0337-OCT21	mg/L	0.02	<0.02	ND	30	98	60	130	100	50	140
Tetrachloroethene	GCM0337-OCT21	mg/L	0.02	<0.02	ND	30	96	60	130	100	50	140
Trichloroethylene	GCM0337-OCT21	mg/L	0.02	<0.02	ND	30	96	60	130	98	50	140
Vinyl Chloride	GCM0337-OCT21	mg/L	0.008	<0.008	ND	30	101	50	140	103	50	140

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20211025 13 / 14

CA40375-OCT21 R

5557

Prepared for

Toronto Inspection Ltd.

First Page

CLIENT DETAILS	S	LABORATORY DETAIL	LS .
Client	Toronto Inspection Ltd.	Project Specialist	Maarit Wolfe, Hon.B.Sc
		Laboratory	SGS Canada Inc.
Address	110 Konrad Crescent, Unit 16	Address	185 Concession St., Lakefield ON, K0L 2H0
	Markham, ON		
	L3R 9X2. Canada		
Contact	Gus Cheng	Telephone	705-652-2000
Telephone	905-940-8509	Facsimile	705-652-6365
Facsimile	905-940-8192	Email	Maarit.Wolfe@sgs.com
Email	lab@torontoinspection.com	SGS Reference	CA40375-OCT21
Project	5557	Received	10/26/2021
Order Number		Approved	11/01/2021
Samples	Ground Water (2)	Report Number	CA40375-OCT21 R
		Date Reported	11/01/2021

COMMENTS

CCME Method Compliance: Analyses were conducted using analytical procedures that comply with the Reference Method for the CWS for Petroleum Hydrocarbons in Soil and have been validated for use at the SGS laboratory, Lakefield, ON site.

Quality Compliance: Instrument performance / calibration quality criteria were met and extraction and analysis limits for holding times were met.

nC6 and nC10 response factors within 30% of response factor for toluene: YES

nC10, nC16 and nC34 response factors within 10% of the average response for the three compounds: YES

C50 response factors within 70% of nC10 + nC16 + nC34 average: YES

Linearity is within 15%: YES

F4G - gravimetric heavy hydrocarbons cannot be added to the C6 to C50 hydrocarbons.

The results for F4 and F4G are both reported and the greater of the two values is to be used in application to the CWS PHC.

Benzo(b)fluoranthene results for comparison to the standard are reported as benzo(b+j)fluoranthene. Benzo(b)fluoranthene and benzo(j)fluoranthene co-elute and cannot be reported individually by the analytical method used.

Temperature of Sample upon Receipt: 4 degrees C

Cooling Agent Present: Yes Custody Seal Present: Yes

Chain of Custody Number:022674

SIGNATORIES

Maarit Wolfe, Hon.B.Sc Luvoye

t 705-652-2000 f 705-652-6365

www.sgs.com

TABLE OF CONTENTS

First Page	1
Index	2
Results	3-6
Exceedance Summary	7
QC Summary	8-11
Legend	12
Annexes	13

CA40375-OCT21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Gus Cheng

PACKAGE: REG153 - BTEX (WATER))		Sample Number	7	8
			Sample Name	21BH-102 (MW)	21BH-103 (MW)
= REG153 / GROUND WATER / FINE - TABLE 3 - All Typ	pes of Property Uses - UNI	DEFINED	Sample Matrix	Ground Water	Ground Water
			Sample Date	26/10/2021	26/10/2021
Parameter	Units	RL	L1	Result	Result
TEX					
Benzene	μg/L	0.5	430	< 0.5	< 0.5
Ethylbenzene	μg/L	0.5	2300	< 0.5	< 0.5
Toluene	μg/L	0.5	18000	< 0.5	< 0.5
Xylene (total)	μg/L	0.5	4200	< 0.5	< 0.5
m/p-xylene	μg/L	0.5		< 0.5	< 0.5
o-xylene	μg/L	0.5		< 0.5	< 0.5
				_	_
ACKAGE: REG153 - PHCs (WATER))		Sample Number		8
				21BH-102 (MW)	
= REG153 / GROUND WATER / FINE - TABLE 3 - All Typ	oes of Property Uses - UNI	DEFINED	Sample Matrix		Ground Water
			Sample Date	26/10/2021	26/10/2021
Parameter	Units	RL	L1	Result	Result
HCs					
F1 (C6-C10)	μg/L	25	750	< 25	< 25
F1-BTEX (C6-C10)	μg/L	25		< 25	< 25
F2 (C10-C16)	μg/L	100	150	< 100	< 100
F3 (C16-C34)	μg/L	200	500	< 200	< 200
F4 (C34-C50)	μg/L	200	500	< 200	< 200
Chromatogram returned to baseline at	Yes / No	-		YES	YES
nC50					

CA40375-OCT21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Gus Cheng

PACKAGE: REG153 - THMs (VOC)	(WATER)		Sample Number	7	8
ACIMOL. NEG 100 - I FINIS (VOC)	(VVAILIV)		•	21BH-102 (MW)	
.1 = REG153 / GROUND WATER / FINE - TABLE 3 - All	Types of Property Uses - UND	EFINED	Sample Matrix		Ground Water
MELLY THE TREE OF THE	, , , , , , , , , , , , , , , , , ,		Sample Date	26/10/2021	26/10/2021
Parameter	Units	RL	L1	Result	Result
THMs (VOC)					
Bromodichloromethane	μg/L	0.5	85000	< 0.5	< 0.5
Bromoform	μg/L	0.5	770	< 0.5	< 0.5
Dibromochloromethane	μg/L	0.5	82000	< 0.5	< 0.5
			1		
PACKAGE: REG153 - VOC Surroga f	tes (WATER)		Sample Number	7	8
			Sample Name	21BH-102 (MW)	21BH-103 (MW)
_1 = REG153 / GROUND WATER / FINE - TABLE 3 - All	Types of Property Uses - UND	EFINED	Sample Matrix	Ground Water	Ground Water
			Sample Date	26/10/2021	26/10/2021
Parameter	Units	RL	L1	Result	Result
/OC Surrogates					
Surr 1,2-Dichloroethane-d4	Surr Rec %	-		116	115
Surr 2-Bromo-1-Chloropropane	Surr Rec %	-		99	100
Surr 4-Bromofluorobenzene	Surr Rec %	-		86	86
PACKAGE: REG153 - VOCs (WATE	ER)		Sample Number	7	8
			Sample Name	21BH-102 (MW)	21BH-103 (MW)
1 = REG153 / GROUND WATER / FINE - TABLE 3 - All	Types of Property Uses - UND	EFINED	Sample Matrix		Ground Water
			Sample Date	26/10/2021	26/10/2021
Parameter	Units	RL	L1	Result	Result
VOCs					
Acetone	μg/L	30	130000	< 30	< 30
Bromomethane	μg/L	0.5	56	< 0.5	< 0.5
Carbon tetrachloride	μg/L	0.2	8.4	< 0.2	< 0.2
Chlorobenzene	μg/L	0.5	630	< 0.5	< 0.5

CA40375-OCT21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Gus Cheng

Samplers: Peining Guan

PACKAGE: REG153 - VOCs (WATER)

L1 = REG153 / GROUND WATER / FINE - TABLE 3 - All Types of Property Uses - UNDEFINED

Sample Number

7

8

Sample Name 21BH-102 (MW) 21BH-103 (MW)

Sample Matrix

Ground Water

Ground Water

Sample Date 26/10/2021 26/10/2021

			Sample Date	20/10/2021	26/10/2021
Parameter	Units	RL	L1	Result	Result
OCs (continued)					
Chloroform	μg/L	0.5	22	< 0.5	< 0.5
1,2-Dichlorobenzene	μg/L	0.5	9600	< 0.5	< 0.5
1,3-Dichlorobenzene	μg/L	0.5	9600	< 0.5	< 0.5
1,4-Dichlorobenzene	μg/L	0.5	67	< 0.5	< 0.5
Dichlorodifluoromethane	μg/L	2.0	4400	< 2	< 2
1,1-Dichloroethane	μg/L	0.5	3100	< 0.5	< 0.5
1,2-Dichloroethane	μg/L	0.5	12	< 0.5	< 0.5
1,1-Dichloroethylene	μg/L	0.5	17	< 0.5	< 0.5
trans-1,2-Dichloroethene	μg/L	0.5	17	< 0.5	< 0.5
cis-1,2-Dichloroethene	μg/L	0.5	17	< 0.5	< 0.5
1,2-Dichloropropane	μg/L	0.5	140	< 0.5	< 0.5
cis-1,3-Dichloropropene	μg/L	0.5		< 0.5	< 0.5
trans-1,3-Dichloropropene	μg/L	0.5		< 0.5	< 0.5
1,3-dichloropropene (total)	μg/L	0.5	45	< 0.5	< 0.5
Ethylenedibromide	μg/L	0.2	0.83	< 0.2	< 0.2
n-Hexane	μg/L	1.0	520	< 1	< 1
Methyl ethyl ketone	μg/L	20	1.5e+00	< 20	< 20
			6		
Methyl Isobutyl Ketone	μg/L	20	580000	< 20	< 20
Methyl-t-butyl Ether	μg/L	2.0	1400	< 2	< 2
Methylene Chloride	μg/L	0.5	5500	< 0.5	< 0.5
Styrene	μg/L	0.5	9100	< 0.5	< 0.5
Tetrachloroethylene (perchloroethylene)	μg/L	0.5	17	< 0.5	< 0.5
1,1,1,2-Tetrachloroethane	μg/L	0.5	28	< 0.5	< 0.5

CA40375-OCT21 R

Client: Toronto Inspection Ltd.

Project: 5557

Project Manager: Gus Cheng

Samplers: Peining Guan

PACKAGE: REG153 - VOCs (WATER)

Sample Number

7

8

L1 = REG153 / GROUND WATER / FINE - TABLE 3 - All Types of Property Uses - UNDEFINED

Sample Name 21BH-102 (MW) 21BH-103 (MW)

Sample Matrix Ground Water

Ground Water

Sample Date 26/10/2021 26/10/2021

Parameter	Units	RL	L1	Result	Result
OCs (continued)					
1,1,2,2-Tetrachloroethane	μg/L	0.5	15	< 0.5	< 0.5
1,1,1-Trichloroethane	μg/L	0.5	6700	< 0.5	< 0.5
1,1,2-Trichloroethane	μg/L	0.5	30	< 0.5	< 0.5
Trichloroethylene	μg/L	0.5	17	< 0.5	< 0.5
Trichlorofluoromethane	μg/L	5.0	2500	< 5	< 5
Vinyl Chloride	μg/L	0.2	1.7	< 0.2	< 0.2

SGS FINAL REPORT

EXCEEDANCE SUMMARY

No exceedances are present above the regulatory limit(s) indicated

20211101 7 / 13

QC SUMMARY

Petroleum Hydrocarbons (F1)

Method: CCME Tier 1 | Internal ref.: ME-CA-[ENVIGC-LAK-AN-010

Parameter	QC batch	Units	RL	Method	Duj	olicate	LC	CS/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recover	ry Limits 6)
						(%)	Recovery (%)	Low	High	(%)	Low	High
F1 (C6-C10)	GCM0532-OCT21	μg/L	25	<25	ND	30	109	60	140	97	60	140

Petroleum Hydrocarbons (F2-F4)

Method: CCME Tier 1 | Internal ref.: ME-CA-IENVIGC-LAK-AN-010

Parameter	QC batch	Units	Units RL Method Duplicate	LC	LCS/Spike Blank			Matrix Spike / Ref.				
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery	Recovery Limits (%)	
						(%)	Recovery (%)	Low	High	(%)	Low	High
F2 (C10-C16)	GCM0383-OCT21	μg/L	100	<100	ND	30	64	60	140	66	60	140
F3 (C16-C34)	GCM0383-OCT21	μg/L	200	<200	ND	30	64	60	140	66	60	140
F4 (C34-C50)	GCM0383-OCT21	μg/L	200	<200	ND	30	64	60	140	66	60	140

20211101 8 / 13

QC SUMMARY

Volatile Organics

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC (%)	Spike Recovery	Recove	ry Limits %)	Spike Recovery		ry Limits %)
						(70)	(%)	Low	High	(%)	Low	High
1,1,1,2-Tetrachloroethane	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	84	60	130	94	50	140
1,1,1-Trichloroethane	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	87	60	130	94	50	140
1,1,2,2-Tetrachloroethane	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	87	60	130	93	50	140
1,1,2-Trichloroethane	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	85	60	130	92	50	140
1,1-Dichloroethane	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	85	60	130	96	50	140
1,1-Dichloroethylene	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	90	60	130	97	50	140
1,2-Dichlorobenzene	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	83	60	130	94	50	140
1,2-Dichloroethane	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	84	60	130	94	50	140
1,2-Dichloropropane	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	83	60	130	93	50	140
1,3-Dichlorobenzene	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	82	60	130	92	50	140
1,4-Dichlorobenzene	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	83	60	130	92	50	140
Acetone	GCM0507-OCT21	μg/L	30	<30	ND	30	95	60	130	97	50	140
Benzene	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	86	60	130	96	50	140
Bromodichloromethane	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	81	60	130	90	50	140
Bromoform	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	84	60	130	90	50	140
Bromomethane	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	91	50	140	94	50	140
Carbon tetrachloride	GCM0507-OCT21	μg/L	0.2	<0.2	ND	30	89	60	130	95	50	140
Chlorobenzene	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	82	60	130	92	50	140
Chloroform	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	82	60	130	93	50	140
cis-1,2-Dichloroethene	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	82	60	130	96	50	140

20211101 9 / 13

QC SUMMARY

Volatile Organics (continued)

Method: EPA 5030B/8260C | Internal ref.: ME-CA-[ENVIGC-LAK-AN-004

Parameter	QC batch	Units	RL	Method	Dup	licate	LC	S/Spike Blank		Matrix Spike / Ref.		
	Reference			Blank	RPD	AC	Spike	Recovery Limits (%)		Spike Recovery		ery Limits %)
						(%)	Recovery (%)	Low	High	(%)	Low	High
cis-1,3-Dichloropropene	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	81	60	130	92	50	140
Dibromochloromethane	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	81	60	130	89	50	140
Dichlorodifluoromethane	GCM0507-OCT21	μg/L	2.0	<2	ND	30	135	50	140	119	50	140
Ethylbenzene	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	85	60	130	96	50	140
Ethylenedibromide	GCM0507-OCT21	μg/L	0.2	<0.2	ND	30	87	60	130	96	50	140
n-Hexane	GCM0507-OCT21	μg/L	1.0	<1	ND	30	117	60	130	96	50	140
m/p-xylene	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	87	60	130	99	50	140
Methyl ethyl ketone	GCM0507-OCT21	ug/L	20	<20	ND	30	95	60	130	98	50	140
Methyl Isobutyl Ketone	GCM0507-OCT21	μg/L	20	<20	ND	30	92	50	140	95	50	140
Methyl-t-butyl Ether	GCM0507-OCT21	μg/L	2.0	<2	ND	30	85	60	130	96	50	140
Methylene Chloride	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	83	60	130	95	50	140
o-xylene	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	84	60	130	98	50	140
Styrene	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	83	60	130	99	50	140
Tetrachloroethylene	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	86	60	130	94	50	140
(perchloroethylene)												
Toluene	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	84	60	130	93	50	140
trans-1,2-Dichloroethene	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	86	60	130	96	50	140
trans-1,3-Dichloropropene	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	84	60	130	95	50	140
Trichloroethylene	GCM0507-OCT21	μg/L	0.5	<0.5	ND	30	85	60	130	91	50	140
Trichlorofluoromethane	GCM0507-OCT21	μg/L	5.0	<5	ND	30	100	50	140	100	50	140
Vinyl Chloride	GCM0507-OCT21	μg/L	0.2	<0.2	ND	30	95	60	130	102	50	140

20211101 10 / 13

QC SUMMARY

Method Blank: a blank matrix that is carried through the entire analytical procedure. Used to assess laboratory contamination.

Duplicate: Paired analysis of a separate portion of the same sample that is carried through the entire analytical procedure. Used to evaluate measurement precision.

LCS/Spike Blank: Laboratory control sample or spike blank refer to a blank matrix to which a known amount of analyte has been added. Used to evaluate analyte recovery and laboratory accuracy without sample matrix effects.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate laboratory accuracy with sample matrix effects.

Reference Material: a material or substance matrix matched to the samples that contains a known amount of the analyte of interest. A reference material may be used in place of a matrix spike.

RL: Reporting limit

RPD: Relative percent difference

AC: Acceptance criteria

Multielement Scan Qualifier: as the number of analytes in a scan increases, so does the chance of a limit exceedance by random chance as opposed to a real method problem. Thus, in multielement scans, for the LCS and matrix spike, up to 10% of the analytes may exceed the quoted limits by up to 10% absolute and the spike is considered acceptable.

Duplicate Qualifier: for duplicates as the measured result approaches the RL, the uncertainty associated with the value increases dramatically, thus duplicate acceptance limits apply only where the average of the two duplicates is greater than five times the RL. **Matrix Spike Qualifier**: for matrix spikes, as the concentration of the native analyte increases, the uncertainty of the matrix spike recovery increases. Thus, the matrix spike acceptance limits apply only when the concentration of the matrix spike is greater than or equal to the concentration of the native analyte.

20211101 11 / 13

LEGEND

FOOTNOTES

NSS Insufficient sample for analysis.

RL Reporting Limit.

- † Reporting limit raised.
- ↓ Reporting limit lowered.
- NA The sample was not analysed for this analyte
- ND Non Detect

Samples analysed as received. Solid samples expressed on a dry weight basis. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

Analysis conducted on samples submitted pursuant to or as part of Reg. 153/04, are in accordance to the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" published by the Ministry and dated March 9, 2004 as amended.

SGS provides criteria information (such as regulatory or guideline limits and summary of limit exceedances) as a service. Every attempt is made to ensure the criteria information in this report is accurate and current, however, it is not guaranteed. Comparison to the most current criteria is the responsibility of the client and SGS assumes no responsibility for the accuracy of the criteria levels indicated. This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/terms_and_conditions.htm. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full. This report supersedes all previous versions.

-- End of Analytical Report --

20211101 12 / 13