

GEOTECHNICAL INVESTIGATION

217 & 227 Cross Avenue and 571 Argus Road Oakville, ON

Client

Mr. Clarence Zichen Qian Oakville Argus Cross LP 1-90 Wingold Avenue Toronto, ON, M6B 1P5

Project Number

BIGC-ENV-349B

Prepared By:

B.I.G. Consulting Inc. 12-5500 Tomken Road Mississauga, ON, L4W 2Z4 T: 416.214.4880 www.bigconsultinginc.com

Date Submitted

February 16, 2021

Table of Contents

1	introc	noi:::::::::::::::::::::::::::::::	I
2	Site D	Pescription	1
3		ous Geotechnical Investigations	
4		nt Field Investigation Procedures	
5		ırface Conditions	
	5.1	Ground Surface Cover	3
	5.2	Earth Fills	3
	5.3	Clayey Silt Till	4
	5.4	Shale Bedrock	4
	5.5	Groundwater Observation	
6	Engin	eering Discussion and Recommendation	5
	6.1	Grading and Site Preparation	6
	6.2	Foundation and Design Parameters	7
	6.3	Floor Slab Construction	8
	6.4	Lateral Earth Pressure	_
	6.5	Permanent Perimeter and Under-floor Drainage	8
	6.6	Frost Protection	
	6.7	Earthquake Consideration	
	6.8	Excavation and Temporary Groundwater Control	
	6.9	Reuse of On-Site Soils	
	6.10	Underground Services	
	6.11	Shoring Considerations	
		Pavement Construction	
7		ruction Monitoring	
8	Closu	re	13
9	Repor	rt Limitations	15

List of Appendices

Appendix A - Site Location Plan

Borehole Location Plan

Appendix B - Notes to Record of Boreholes

Records of Boreholes

Appendix C - Pictures of Rock Core Samples

Appendix D - Conceptual Permanent Perimeter and Underfloor Drainage System with Shoring

1 Introduction

B.I.G. Consulting Inc. (BIG) has been retained by Oakville Argus Cross LP (the "Client") to conduct a geotechnical investigation for the proposed development on the property located at 217 & 227 Cross Avenue and 571 Argus Road in the town of Oakville, Ontario (the "Site"). The Site location plan is shown on Figure 1 in Appendix A.

The investigation was authorized by Mr. Clarence Zichen Qian on the behalf of the Client.

It is our understanding that the proposed development will comprise of 2-condominium towers with 5-levels of underground parking structures.

The field work for this investigation was carried out in conjunction with Phase I & II Environmental Site Assessment (ESA), Preliminary Hydrogeological Investigation (HG) and Filing of Record of site Condition (RSC). This report addresses the geotechnical aspects of the proposed development only and the reports for ESA, HG and RSC will be issued under separate covers.

The purpose of this geotechnical investigation was to obtain the information on the subsurface soil and groundwater conditions at the Site by means of advancing a limited number of boreholes, in-situ tests as well as laboratory tests of selected soil samples and based on this information to prepare an engineering report on geotechnical perspective pertaining to the design and construction of the proposed development. Final design drawings of the proposed developments were not available to BIG at the time of preparation of this report. Therefore, additional investigation and analysis may be necessary once the detailed design drawings are available. Once the final design drawings are available, this report should be reviewed by BIG and further recommendations will be provided as appropriate.

The comments and recommendations presented in this report are based on factual information and intended only to use for the design engineers. The report is prepared with the condition that the design will be in accordance with all applicable standards and codes, regulations of authorities having jurisdiction, and good engineering practice. The number of boreholes, tests data and their interpretation presented in this report may not be sufficient to determine all the factors that may have effects on the design and construction of the proposed development.

On-going liaison with BIG during the final design and construction phase of the project is recommended to ensure that the recommendations in this report are applicable and/or correctly interpreted and implemented. Also, any queries concerning the geotechnical aspects of the proposed development should be directed to BIG for further elaboration and/or clarification.

The attached 'Report Limitations' is an integral part of this report.

2 Site Description

The municipal address of the subject Site is at 217 & 227 Cross Avenue and 571 Argus Road in the town of Oakville, Ontario. The Site is located on the north side of Cross Avenue and east side of Argus Road, wrapping around a small parcel of land (568 Argus Road) located immediately northeast corner of the intersection of Cross Avenue and Argus Road as shown on Figure 2. For the simplicity of the description in this report, Cross Avenue and Argus Road have been considered running east-west and north-south respectively.

The 217 and 227 Cross Avenue property is currently occupied by two active Swiss Chalet and McDonald restaurants with their associated paved parking lots to the north sides of the buildings. However, the 571 Argus Road property, located immediate north side of an existing retail building on 568 Argus Road, is currently a vacant lot covered with light vegetation.

The topography of the site was generally flat with gently sloping down from north to south, i.e., towards Lake Ontario.

3 Previous Geotechnical Investigations

A Preliminary Geotechnical Investigation, on the properties 217 Cross Avenue & 571 Argus Road, was conducted by BIG in 2019 (Project No.: BIGC-GEO-349A; Dated: December 3, 2019) that consisted of advancing a total of 6-boreholes BH1 to BH3, BH/MW4, BH5 and BH/MW6, to the auger termination depths varying between 2.3 and 4.0 m below the existing ground surface (BGS). Further, from the auger termination depth of 2.7 mBGS at 1-borehole BH/MW4, bedrock was cored using wire line diamond coring method to the depth of 17.7 mBGS to confirm the presence and quality of bedrock.

The subsurface conditions generally consisted of ground surface covers (asphalt pavement and topsoil) overlying the existing fills, which in turn was underlain by native clayey silt/silty clay till followed by Shale bedrock. Two boreholes BH/MW4 and BBH/MW6 were equipped with Monitoring Wells, one in each borehole, to obtain the stabilized groundwater levels at the Site.

BIG's preliminary geotechnical investigation borehole/core-hole locations are shown on Figure 2 in Appendix A, and Records of Boreholes are included in Appendix B.

4 Current Field Investigation Procedures

Prior to initiating the subsurface investigation activities, the borehole locations were marked at the Site by BIG personnel and all applicable public utility services (Gas, Bell, Rogers, Hydro, Network cables, etc.) were cleared with the assistance of Ontario-One-Call. A Private Utility Locator was also retained to locate underground private utility lines adjacent to the borehole locations to ensure that the lines will not be damaged and safety of the worker during the investigation work.

The fieldwork for this investigation was carried out between January 13 and 27, 2021 that consisted of advancing a total of 15-boreholes BH/MW101 to BH/MW115, to the depths varying between 5.5 and 7.6 m BGS. Further, from auger termination depth of 7.6 mBGS at 3-boreholes BH/MW105, BH/MW114 and BH/MW115, bedrock was cored using wire line diamond coring method to the depths of 23.4, 23.3 and 23.3 mBGS, respectively, to confirm the presence and quality of bedrock. The approximate borehole/corehole locations established and drilled/cored at the Site are shown on Figure 2 in Appendix A.

The boreholes were advanced by using truck mounted, power operated solid and hollow stem continuous flight augers, supplied and operated by a specialist drilling contractor, working under the full-time supervision of experienced BIG geotechnical personnel. Soil samples of the overburden were generally taken at 0.76 m or 1.5 m intervals while performing the Standard Penetration Test (SPT) in accordance with ASTM D1586. This consisted of freely dropping a 63.5 kg hammer for a vertical distance of 0.76 m to drive a 51 mm outer diameter split-barrel (split-spoon) sampler into the ground. The number of blows of the hammer required to drive the sampler into the ground by a vertical distance of 0.30 m was recorded as SPT 'N' value of the soil which indicates the consistency of cohesive soils or the relative density/compactness of non-cohesive soils.

The BIG's drilling supervisor examined and logged the overburden soil/rock-core samples as they were obtained from the boreholes/core-holes. The recovered soil samples were sealed in clean, airtight plastic bags and rock-core samples were put in wooden box, and transferred to the BIG's Mississauga laboratory for further examination and laboratory testing.

Groundwater observations were made in all boreholes during and immediately upon completion of drilling. In order to obtain the information on stabilized groundwater levels, all boreholes were equipped

Oakville Argus Cross LP Geotechnical Investigation 217 & 227 Cross Avenue and 571 Argus Road, Oakville, ON BIGC-ENV-349B February 2021

with monitoring wells, one in each borehole, upon completion of drilling. Monitoring Wells installation details are shown on the Record of Borehole logs, and the details of the groundwater observation are presented on Section 5.5.

The ground surface elevations at borehole locations were surveyed by BIG personnel with reference to BIG's preliminary geotechnical investigation borehole BH6 with a geodetic elevation of 102.74 mASL.

It should be noted that the ground surface elevations at the borehole locations are approximate and should not be used for design and construction purpose. Contractors performing the work should confirm the elevations prior to construction. The borehole locations plotted on Borehole Location Plan are based on the measurements of the Site features and should be considered to be approximate.

5 Subsurface Conditions

The following summary is to assist the designers of the project with an understanding of the anticipated subsurface conditions across the Site. However, it should be noted that the subsurface soil and groundwater conditions between and beyond the drilled borehole locations may differ from those encountered at the borehole locations, and conditions may become apparent during the construction, which could not be detected or anticipated at the time of the Site investigation. The boundaries between the various strata as shown on the Record of Boreholes are based on the non-continuous sampling and represent an inferred transition between the various strata and their lateral continuation, rather than a precise plane of geological change.

Based on the subsurface conditions encountered at the borehole locations, the soil profile generally consisted of ground surface cover (asphalt pavement, topsoil) overlying existing fills, which in turn was underlain by clayey silt till and Shale bedrock.

A brief description of the subsurface stratigraphy and groundwater conditions encountered at the borehole locations are summarized, in order of depth, in the following sections and more information are provided in the Record of Boreholes presented in the Appendix B.

5.1 Ground Surface Cover

Except 3-boreholes BH/MW112 to BH/MW114, remaining all 12-boreholes were advanced through the existing asphalt pavement, consisting of approximately 75 to 150 mm thick asphalt concrete over 150 to 300 mm thick granular bases.

Borehole BH/MW113 was advanced through an approximately 50 mm thick gravel. Similarly, boreholes BH/MW112 and BH/MW114 were advanced through an existing ground surface cover consisting of approximately 150 mm thick topsoil. Topsoil, in general, consists of high contents of organics and rootlets. It should be noted that topsoil thickness may also vary between and beyond the borehole locations, and thickness could also have changed significantly due to some on-site activities. Therefore, it is recommended that allowance should be made for possible variations when making construction estimates.

5.2 Earth Fills

Below the ground surface cover, existing earth fills, predominantly consisting of clayey silt and sandy silt, were encountered at all borehole locations that extended to depths varying between 0.5 and 1.7 mBGS. Earth fills also contained trace sand, trace gravel, trace rootlets and trace organics.

The SPT 'N' values recorded generally varied between 8 and 37 blows per 300 mm of penetration. The moisture content measurement of the recovered samples were varying between 11 and 23 % by weight, indicating a moist condition.

5.3 Clayey Silt Till

Below the earth fills, a native deposit of glacial clayey silt till was encountered in all boreholes that extended to depths varying between 1.7 and 2.8 mBGS. Clayey silt till deposit also contained trace sand, trace gravel and occasional fragments of Shale.

The SPT 'N' values recorded varied from 12 to over 50 blows per 300 mm of penetration, indicating stiff to hard consistency. The moisture content measurement of the recovered samples varied between 7 and 16 % by weight, indicating a moist condition.

Due to the nature of till formation, cobbles and boulders should be anticipated within the glacial till deposit.

5.4 Shale Bedrock

Below clayey silt till, a highly weathered to excellent quality of Georgian Bay Formation grey Shale bedrock was encountered in all boreholes. All boreholes were drilled into the Shale bedrock and sampled up to the borehole termination depths of 5.5 to 7.8 mBGS. First water strike was also recorded in majority of boreholes between 3.7 and 5.3 mBGS.

The SPT'N' values recorded were over 50 blows per 300 mm of penetration, indicating a hard consistency. The moisture content measurement of the recovered samples generally varied between 2 and 8 % by weight, indicating a damp condition. However, higher moisture content, in the range from 16 to 30 % by weight, were also determined in few soil samples that may have the effect of first water strike.

Further, from approximate depth of 7.7 mBGS at borehole BH/MW105 and 7.6 mBGS at boreholes BH/MW114 and BH/MW115; HQ size rock core samples were extracted to the depths of 23.4, 23.3 and 23.3 mBGS, respectively. The percentage of recoveries of rock core samples were between 69% to 100%, and the Rock Quality Designation (R.Q.D.) values were found between 27% and 98%, indicating poor to excellent quality of bedrock mass. Interbedded Limestone layers were also present within the core samples.

Pictures of Rock Core Samples are included in Appendix C.

5.5 Groundwater Observation

Groundwater observations were made in all boreholes during and immediately upon completion of drilling. However, it should be noted that the sufficient time was not available for the groundwater to stabilize within the monitoring wells immediately after completion of drilling and its installations.

In order to obtain the information on stabilized groundwater levels, all 15-boreholes were equipped with monitoring wells, one in each borehole, upon completion of drilling. Groundwater observation made in open boreholes during Site exploration as well as the groundwater levels recorded in the installed monitoring wells (including preliminary geotechnical investigation) on February 8, 2021 are tabulated below:

Groundwater Observation:

Borehole	Ground	Borehole	MW	Screen	Groundwater Dept	h (mBGS)/Ele	evation (m)		
No.	Elevation (m)	Depth (mBGS)	Depth (mBGS)	Length (m)	Upon Completion of Drilling	February	February 8, 2021		
BH/MW101	103.04	6.1	6.1	3	5.18	3.38	99.66		
BH/MW102	102.55	6.2	6.1	3	5.18	3.67	98.88		
BH/MW103	101.78	5.5	5.5	3	4.57	2.79	98.99		
BH/MW104	100.96	6.1	6.1	3	4.88	2.45	98.51		
BH/MW105	102.38	23.4	21.9	3	*	21.09	81.29		
BH/MW106	102.83	6.1	6.1	3	4.88	3.32	99.51		
BH/MW107	102.4	6.1	6.1	3	3.66	3.61	98.79		
BH/MW108	102.55	6.1	6.1	3	3.96	3.90	98.65		
BH/MW109	102.89	6.1	6.1	3	5.18	4.20	98.69		
BH/MW110	101.82	6.1	6.1	3	3.96	3.08	98.74		
BH/MW111	101.94	6.1	6.1	3	3.96	3.37	98.57		
BH/MW112	102.78	6.1	6.1	3	5.18	4.23	98.55		
BH/MW113	103.45	6.1	6.1	3	5.48	4.77	98.68		
BH/MW114	103.31	23.3	21.6	3	*	18.88	84.43		
BH/MW115	101.72	23.3	21.6	3	*	17.91	83.81		
BH/MW3	102.87	2.3	2.3	1.5	Dry	1.72	101.15		
BH/MW4	102.32	17.7	10.5	1.5	16.2	3.80	98.52		
BH/MW6	102.74	3.7	3.7	1.5	Dry	Dry	Dry		

mBGS: Meter Below Ground Surface

It should also be noted that the groundwater levels at the Site may fluctuate seasonally and should be expected to be somewhat higher during the spring months and in response to major weather events.

6 Engineering Discussion and Recommendation

It is our understanding that the proposed development will comprise of 2-condominium towers with 5-levels of underground parking structures. Final design drawings of the proposed developments were not available to BIG at the time of preparation of this report. Therefore, additional investigation and analysis may be necessary once the detailed design drawings are available. Once the final design drawings are available, this report should be reviewed by BIG and further recommendations will be provided as appropriate.

Based on the preliminary information mentioned above, it is anticipated that the slab-on-grade of 5-levels of underground parking structure will be at an approximate depth of 15.0 mBGS.

The comments and recommendations presented in this report are based on factual information and intended only to use for the design engineers. The report is prepared with the condition that the design will be in accordance with all applicable standards and codes, regulations of authorities having jurisdiction, and good engineering practice. The number of boreholes, tests data and their interpretation presented in this report may not be sufficient to determine all the factors that may have effects on the design and construction of the proposed new development.

The following discussion and recommendations should be revised and/or supplemented where necessary, when the conditions of the proposed development are different from the noted conditions/assumptions.

^{*:} Not measured due to introduced drilling water.

6.1 Grading and Site Preparation

Proper grading and site preparation are very important for the success of any planned development. As parts of effective and efficient design and construction of the proposed development, following items highlight the fundamental and essential geotechnical requirements to be considered during grading and site Preparation. Detailed recommendations are provided in the following sections:

- a) All ground surface cover (pavement, topsoil, etc.) should be stripped and removed from the area of the proposed development. Similarly, all existing shrubs, vegetation, trees and scattered debris should be removed from the area of the proposed development.
- b) It is our understanding that all-existing buildings at the site will be demolished, and all components of the demolished buildings, e.g., floor slabs, footings, walls and underground infrastructure, etc. should be sub-excavated and removed completely from the area of the proposed developments.
- c) Any existing infrastructures (e.g., manholes, catch basins, buried structures, etc.) should be sub-excavated and removed from the area of the proposed development, if they are located in the zone of influence of foundations of the proposed development. The zone of influence of the foundation is defined as an area laterally extending 1 m beyond the bottom edge of the foundation with downward slope of 1H:1V. Similarly, any existing underground services, outside of the foundation influence, should be either removed or abandoned by injecting with non-shrinkable grout.
- d) Care must be taken during the excavation near the vicinity of the existing structures and any underground utility services located within or adjacent to the excavation. Foundations of heavily loaded settlement sensitive structures and utilities located within the close proximity to the proposed excavation should be accurately located and supported adequately with the suitable temporary or permanent support system where required, prior to excavation, to preserve the integrity of these structures. Similarly, the excavation near the vicinity of any existing structure should be carried out without disturbing and/or undermining their foundations.
- e) Where open excavation is not feasible, a properly designed perimeter shoring system should be installed prior to the mass excavation for the proposed development. For the drilling and installation of shoring system (e.g., caissons, etc.), travel path and working platform areas of the Site for drill rig must be properly prepared, inspected and approved by a geotechnical engineer from BIG prior to starting the installation of shoring system.
- f) A provision of temporary groundwater control system should be available during the excavation, and the base of excavation should be kept dry all the time.
- g) The base of excavation at design subgrade level should be inspected and approved by a geotechnical engineer from BIG. During inspection, any soft/loose and wet spots identified, should be sub-excavated and replaced with compacted approved material as directed by the geotechnical engineer.
- h) Any fill, required to be used, should be used as an engineered fill. Materials used for engineered fill may consist of imported OPSS Granular B, OPSS Select Sub-grade and/or the on-site soils which do not contain organics and deleterious materials. Some reconditioning (i.e., drying) prior to re-use may require, if the materials are found to be too wet. However, any imported soils to the Site for engineered fill must meet the requirements of O. Reg. 153/04 as determined by BIG.
- i) To reduce the post-construction settlements, all new fills should be placed in thin lifts, not exceeding 200 mm thick loose lifts, within ±2 % of its optimum moisture content, and thoroughly compacted with suitable heavy compactors to at least 98% of Standard Proctor Maximum Dry Density (SPMDD), before placing the next lift.

j) The existing on-site soils are susceptible to disturbance when exposed to weather and construction traffic. Surface water runoff from the neighboring properties should not be permitted to enter and/or pond within the construction area. This is especially important to the success of the planned construction.

6.2 Foundation and Design Parameters

Based on the information obtained from the investigation, the Site is considered suitable for the construction of the proposed development from the geotechnical viewpoint.

Considering the 5-levels of underground parking structure, it is anticipated that the foundations of the proposed buildings will be founded between 16 to 17 mBGS. The proposed building can be supported by conventional spread/strip footings founded on good to excellent conditions of Shale bedrock, and can be designed and constructed by using the following geotechnical bearing resistance subject to inspection and adequate groundwater control during construction:

Factored Ultimate Limit State (ULS) = 5000 kPa

It should be noted that higher bearing capacity may be available subject to review and analysis of the final design drawings.

The minimum footing sizes, footing thickness, excavations and other footing requirements should be designed in accordance with the latest edition of the Ontario Building Code. However, a minimum width of 600 mm is recommended for the strip footings.

A provision of temporary groundwater control system should be available during the excavation, and the base of excavation should be kept dry all the time. In no case should the footing be placed on dilated or disturbed subgrade of bedrock.

The Shale bedrock, if left exposed, will slake. Therefore, we recommend that the foundations should be poured as soon as possible on completion of excavation, or the base of excavation should be skim coated with a lean mix concrete, minimum 75 mm thick, to level and protect the integrity of exposed subgrade.

Where, it is necessary to place foundations at different levels, the upper foundation must be founded below an imaginary 10 horizontal to 7 vertical line drawn up from the base of the lower foundation. The lower footing must be installed first to help minimize the risk of undermining the upper footings/foundations.

Total and differential settlements for footings founded on Shale bedrock and designed as outlined above should not exceed 25 and 19 mm respectively, provided that the founding subgrade is not loosened or softened by construction activities or prolonged exposure to the weather. However, for Shale bedrock, the foundation design is not governed by resistance at Serviceability Limit State (SLS) since the stress required to produce 25 mm of deformation will generally be much larger than the factored resistance at ULS.

It is well recognized that the Shale bedrocks found in Southern Ontario, including the Georgian Bay formation, exhibit stress induced time dependent deformation (TDD) when stress change occurs (i.e., deep excavation). In addition, Shale may also exhibit swelling potential (rock squeeze). Allowance should, therefore, be made for this long term TDD characteristic of the Shale bedrock. In this regard, it may be necessary to apply a layer of spray foam, minimum of 50 mm in thickness, between exposed vertical face of Shale bedrock and exterior side of basement wall. It is recommended that a decision in this regard be made at the time of basement excavation.

Prior to the placement of concrete, all footing subgrades must be inspected and approved by a geotechnical engineer from BIG to ensure that the founding bedrock are similar to those identified in the investigation and capable of supporting the design bearing resistance.

6.3 Floor Slab Construction

The subgrade under 5-level of underground parking floor-slab is anticipated to be good to excellent conditions of Shale bedrock. The floor-slab on these materials can be designed and constructed as a conventional slab-on-grade method provided that the proper dewatering measures are in place.

Floor bedding consisting of at least 200 mm of Granular A (OPSS 1010) or its approved equivalent is recommended under the floor slab. The bedding should be compacted to at least 98% of SPMDD. A modulus of subgrade reaction of 50,000 kN/m³ may be used for the design and construction of the floor-slab, provided that the construction is in accordance with the recommendations provided herein.

The floor slab should not be tied to any load-bearing walls or columns unless they have been designed accordingly. Contraction and expansion joints should be provided for the slabs as required by the designer.

6.4 Lateral Earth Pressure

The lateral pressures acting on basement walls, cantilever walls, etc. may be calculated from the following expression:

	$P = K[\gamma$	$(H-h_w) + \gamma' h_w + q] + \gamma_w h_w$	
Where,	Р	= Lateral earth pressure at depth H (m)	kPa
	K	= Lateral earth pressure coefficient	0.4
	γ	= Bulk unit weight of the soil	21.0 kN/m^3
	γ'	= Submerged unit weight of soil	11.2 kN/m ³
	γw	= Unit weight of water	9.8 kN/m ³
	Н	= Depth of the wall below the outer finish grade	m
	hw	= Depth of the wall below the groundwater level	m
	q	= Equivalent value of all surcharge loads on the ground surface	kPa

When the development of hydrostatic pressure behind the wall is eliminated with the installation of effective drainage system, the above expression can be simplified as follows:

$$P = K (\gamma H + q)$$

Equivalent value of surcharge loads on the ground surface should also including the loads of heavy construction equipment in the structural design.

6.5 Permanent Perimeter and Under-floor Drainage

Permanent perimeter drainage system should be provided around the perimeter walls of the underground parking structure. Where, adequate space is not available for open-cut excavation with slopes, then properly designed vertical shoring system should be installed to support the sides of excavation. In this case, a permanent perimeter drainage system consisting of pre-fabricated continuous vertical blanket, Miradrain 6000 or its equivalent, should be used at and along the shoring location, just outside of the perimeter walls of the underground parking structure. Several collection pipes, installed through the perimeter walls, connect the pre-fabricated perimeter vertical drains with the solid collector pipes. The collector pipes should be installed in a positive grade leading to a frost-free sump. The

installation and connections of pre-fabricated perimeter vertical drains should be carried out as per the manufacturer's specifications.

Considering the moisture content profiles of the Shale samples obtained from the core-holes, BIG is of the opinion that underfloor drainage system may not be required at this Site provided if any ingress of water under the slab is prevented. However, the need for vertical and underfloor drainage systems and the anticipated volumes of water to be pumped during and post construction should be based on the findings of the hydrogeological investigation report. The underfloor drainage system, if needed, should be kept separate from the perimeter drainage system.

A provision of additional groundwater control measures, consisting of underfloor sump pumps connected to an emergency power grid, should be installed below the lowest floor level of the parking for the consequence arising from a failure of the regular system.

A conceptual design of Permanent Perimeter & Under-floor Drainage System with Shoring is shown in Appendix D.

6.6 Frost Protection

The design frost penetration depth for the general Site area is 1.2 m. Therefore, any structural foundation (perimeter and other footings) and buried underground utilities exposed to seasonal freezing conditions should be provided with frost protection comprising at least 1.2 m of earth cover or its equivalent thermal insulation. As a general guidance, a 25 mm of insulation provides the same thermal equivalency as 600 mm of soil cover.

6.7 Earthquake Consideration

In conformance to the criteria in Table 4.1.8.4.A, Division B - Part 4 of the Ontario Building Code OBC 2012, the project site may be classified as Site Class "C-Soft Rock". The four values of the Spectral response acceleration Sa (T) for different periods and the Peak Ground Acceleration (PGA) can be obtained from Table C-2 in Appendix C, Division B. The design values of F_a and F_v for the project site should be calculated in accordance to Table 4.1.8.4.B and C.

6.8 Excavation and Temporary Groundwater Control

The excavation through the existing fills, glacial till and highly to moderately weathered shale bedrock can be handled by conventional mechanical excavation equipment. Allowance should be made for cobbles and boulders that may occur randomly in the earth fills and glacial till deposit. Similarly, it is expected that excavation through the good to excellent quality of shale bedrock may also be possible by using a large hydraulic hoe or excavator equipped with rock or tiger-toothed bucket. A jackhammer or hoe ram may also be required to penetrate relatively harder zones within the bedrock. Progressively more difficult conditions should be anticipated with increasing depth of excavation as well as in areas where limestone layers are encountered. The actual equipment required and method of excavation within the bedrock will also dependent upon the geometry of the cut and relative depth of excavation.

All excavations must be carried out in accordance with the Occupational Health and Safety Act (OHSA) and Regulation 213/1991 for Construction Projects to ensure the protection of workers from on-Site contaminants of concerned impacted soil and groundwater. Under the Act, the soils to be excavated can be classified as follows:

Fill soils	Type 3	When submerged/saturated	Type 4
Clayey Silt Till (firm to stiff)	Type 3;	When submerged/saturated	Type 4
Clayey Silt Till (Very stiff)	Type 2	when saturated and/or fissured	Type 3
Clayey Silt Till (hard)	Type 1	when saturated and/or fissured	Type 2

Type 2

Weathered Shale Type 1 when saturated and/or fissured

For Type 3 soils, a bank slope of 1H:1V is required. For Type 1 & 2 soils, a 1.2 m high vertical cut at the bottom of excavation may generally be used. Near the ground surface, occasional 3H:1V slopes may be required due to disturbed surficial soils. If an excavation contains more than one soil types, the excavation slope geometry shall be governed by the highest soil type number. In general, above the water table, side slopes of trenches deeper than 1.2 m should be cut to a gradient no steeper than 1V:1H upon the inspection of a qualified geotechnical engineer. Similarly, vertical to near vertical slopes are feasible in weathered shale bedrock, subject to inspection by a professional engineer during construction.

In areas where an open excavation slope cannot be maintained due to the close proximity of the existing structures on the adjacent properties (e.g., buildings, roads, etc.), the excavation within the overburden should be supported by using a shoring system (e.g., tight wooden bracing, sheet pile, trench box, strutted soldier pile & lagging wall etc.), designed by a shoring consultant. Further, the depths of shoring walls should be extended sufficiently below the base of the excavation to ensure that the toe resistance is maintained when the soil is excavated.

Perched water may be encountered in the earth fill and upper portion of the Shale bedrock above the groundwater level (e.g., first water strike). The amount of free water from that source is anticipated to be minor and the water accumulated in the excavation can readily be handled by using temporary filtered sump and pump. However, the hydrogeological investigation report provides details of the anticipated construction dewatering quantities and permit requirements.

Consideration should be given to carrying out the construction during the drier seasons of the year to reduce the need for dewatering and disturbances to the founding soils caused by the excavation below prevailing groundwater table.

6.9 Reuse of On-Site Soils

In general, portions of on-site excavated soils which do not contain organics and deleterious materials can be re-used for backfill as an engineered fill. However, depending upon the weather condition, the excavated soils may require some reconditioning prior to reuse, i.e., moisture contents of backfill soils should be within ±2% of SPMDD values to obtain the minimum compaction required. Unsuitable materials such as organic rich pockets, frozen soils, wet clayey soils, cobbles, boulders, remnants of demolished structures, etc., should be wasted. Ideally, dissimilar materials should be stockpiled separately during excavation.

For reuse as an engineered fill for foundation support, a uniform material must be used. Significant variations in fill type will require thinner lifts, more compaction effort and more field and laboratory testing. Less stringent requirements may be considered for fill quality and placement below slab-on-grade, above footing levels and pavement areas.

Considering this investigation, the on-site soils are not considered to be free draining. The clayey soils will likely be excavated in cohesive blocks and will be difficult to handle and compact. To re-use for backfill, the cohesive blocks will have to be reduced to smaller than 100 mm in size and placed in thin layers/lifts, provided their moisture contents are at or near the optimum moisture content (i.e., Proctor moisture values). The clayey soils will have to be compacted sufficiently using a suitable heavy equipment which may be difficult to operate in the narrow confine areas. Unless the clay soils are properly reduced in size and compacted sufficiently in thin lifts, post construction settlements could occur. Therefore, if the use of heavy equipment for compaction of the clayey soils is not possible in settlement sensitive areas and narrow confined areas (e.g., trenches), free draining on-site and/or imported granular soils (i.e., OPSS Select Subgrade Material or approved equivalent) should be used for backfilling, and compacted adequately with suitable equipment.

6.10 Underground Services

It is considered that the sewer depths will not exceed 4.0 m below grades. Trench excavation should be carried out in accordance with the most recent version of the Ontario Occupational Health and Safety Act & Regulations for Construction Projects. The boreholes show that the trenches, generally, will be dug through existing fill, glacial till deposits and highly weathered shale bedrock. Normal conventional excavation equipment will be suitable for excavating trenches within these materials.

Within these soils, above the groundwater table, the side-slopes of excavation are expected to be temporarily stable at 1V:1H. Flatter slopes will be required for the soils located below groundwater table, if encountered as noted on Section 6.8.

In areas where an open excavation slopes cannot be maintained, the excavation within the overburden should be supported using a temporary shoring system (e.g., tight wooden bracing, etc.), designed by a shoring consultant. Excavations can also be carried out at steeper side slopes by using movable trench box, designed in accordance with the Safety Regulations, for the protection of the workers.

Groundwater seepage into the excavations may occur from perched groundwater, surface water flow or wet seams within glacial deposits. Dewatering should be achievable by properly filtered sumps and pumps.

The groundwater level in the trench should be kept below the bottom of the excavation by dewatering. Ideally, to prevent disturbance of the soil/rock at the bedding levels, the groundwater table must be lowered to at least 0.6 m below the base of the trench. In no case should the pipes be placed on disturbed subsoil.

The boreholes show, the anticipated subgrade soils at the base of trench for pipe bedding may comprise of stiff to hard glacial till and/or highly weathered Shale bedrock. These soils, in their undisturbed state, provide adequate support for the pipes, provided the exposed subgrade soils are further assessed and approved by qualified geotechnical personnel from BIG during construction.

Pipe bedding should be in accordance with the pipe manufacture recommendations, appropriate local municipality requirements and standards (e.g., OPS). However, as a guideline, normal Class 'B' Type bedding (OPSD-802) may be considered. The thickness of the bedding material, however, may have to be increased depending on the pipe diameter or if wet or weak subgrade conditions are encountered. Subject to assessment by the geotechnical engineer on Site, the bedding used to support the pipes in weak soils (if any) may need to be wrapped by a geotextile (e.g., Terrafix 270R or equivalent). In general, a minimum of 150 mm thick of OPSS Granular A bedding is recommended for pipes 450 mm diameter or less; for large diameter pipes, the thickness of the bedding should be increased to 200 mm.

Based on visual and tactile examination of the soil samples, the on-site excavated soils can generally be re-used to backfill the service trenches subject to the conditions noted in Sections 6.8 and 6.9.

The backfills should be placed in thin lifts not exceeding 200 mm thick loose lifts, within ± 2 % of SPMDD values, and thoroughly compacted with suitable equipment to at least 95% of SPMDD, before placing the next lift. This value should be increased to at least 98 % within 0.6 m of the final subgrade of trench for the road pavement.

6.11 Shoring Considerations

In areas where an open excavation slope cannot be maintained, the excavation within the overburden should be supported by using a shoring system. Where settlement sensitive structures are located at the close proximity of the proposed excavation, shoring system consisting a series of caisson walls embedded sufficiently below the bottom of the excavation, will have to be used to prevent any movement in the

Oakville Argus Cross LP Geotechnical Investigation 217 & 227 Cross Avenue and 571 Argus Road, Oakville, ON BIGC-ENV-349B February 2021

adjacent properties. Shoring system consisting of soldier piles and timber laggings can be used, on the other sides, where slight movement in the ground surface can be tolerated, i.e., where non-sensitive structures exist.

The shoring system should be designed by an experienced shoring consultant in accordance with the guidelines provided in the latest edition of the Canadian Foundation Engineering Manual (Manual). Similarly, the construction of the shoring system should also be carried out by a contractor, experienced in this type of construction.

The soldier piles should be installed in pre-augured holes which should be filled up to excavation level with 20 MPa (3000 psi) concrete and above that with 1-1/2 bag mix.

The following thicknesses of lagging boards have been recommended in the Manual:

Thickness of lagging	Maximum Spacing of Soldier Piles
50 mm (2 in)	2.0 m (6.5 ft)
75 mm (3 in)	2.5 m (8.0 ft)
100 mm (4 in)	3.0 m (10 ft)

Local experience has indicated that the lagging thickness of 75 mm has been adequate for soldier pile spacing of 3 m for soil conditions similar to those encountered at the subject site. However, it is important to consider all local conditions, such as the duration of excavation, the weather likely to be encountered, seasonal variations in the ground water and ice lensing causing frost heave in determining the lagging thickness.

All spaces behind the lagging must be filled with free draining granular fill. If wet conditions are encountered the space between boards should be packed with geotextile filter fabric or straw to prevent loss of ground.

The shoring system should be designed for a factor of safety of F = 2 for soils and 3 for rocks. The overall factor of safety of the anchored block of soil must be considered. Minimum spacing and the depths of the soil anchors should be as recommended in the Manual.

6.12 Pavement Construction

Pavement design and pavement thicknesses are highly dependent on the subgrade conditions. The pavement subgrade should, therefore, be adequately prepared to receive the granular bases for the pavement construction noted in Section 6.1.

Following the Site grading and prior to the placement of granular bases, the exposed subgrade should be proof-rolled and approved by the qualified geotechnical personnel from BIG. Any wet/soft areas of subgrade, revealed by this process, should be sub-excavated and replaced with an approved on-site or imported fill compatible to the existing subgrade soils.

All new fills should be placed in a maximum of 200 mm loose lifts, within ±2 % of its optimum moisture content, and each lift should be compacted by a suitable heavy equipment to minimum 95% of SPMDD before placing the next lift. The uppermost 600 mm of the pavement subgrade should be compacted to a minimum 98% of SPMDD.

Considering the proposed pavement usage, frost susceptibility and assuming adequate drainage, the following minimum pavement structure thicknesses are recommended for the long-term satisfactory performance of the pavement:

Recommended Minimum Pavement Structure Thickness

Particulars	Heavy Duty Driveway (mm)	Standard Duty Driveway (mm)
Asphaltic Concrete: OPSS HL3	40	50
Asphaltic Concrete: OPSS HL8	70	50
Base Course - OPSS Granular A or equivalent	150	150
Sub-base Course - OPSS Granular B or equivalent	350	250

The pavement thickness should also confirm to the local regulations and standards inclusive of City of Toronto.

The granular base and subbase materials should conform to the OPSS 1010 and should be compacted to 98% of the ASTM D698 SPMDD within ±2% of the optimum moisture content.

Hot mix asphalt concrete should conform to OPSS 1150 and OPSS 310 and be placed and compacted to at least 92 to 96.5 % of the Marshall Maximum Relative Density (MMRD). It is recommended that the asphalt mix design be reviewed by BIG prior to the start of the paving.

The pavement thickness considers that construction will be carried out during the drier time of the year and that the subgrade is competent. If the subgrade becomes excessively wet or rutted during construction activities, additional sub-base material may be required. The need for additional subbase material is best determined during construction.

7 Construction Monitoring

Qualified Geotechnical personnel should monitor the foundation excavation, subgrade inspection, in-situ density tests and material testing services in all stages of the proposed development, to ensure that the materials and conditions comply with this geotechnical report and project requirements. Should the condition that encountered vary from those described in this report, our office should be informed immediately so that the proper measures are undertaken. The on-Site review of the condition of the foundation soil is an integral part of the geotechnical design function and is required by Section 4.2.2.2 of the Ontario Building Code.

All backfilling should be supervised to ensure that proper materials are used, and that adequate compaction is achieved. Strict quality control guidelines should be followed during the placement of fill materials.

8 Closure

The subsoil information and recommendations contained in this report was prepared solely for the purpose to use at the specific project as described in this report and should not be used to any other project or site location. The information contained in this report is for the sole benefit of the Client and his/her Consultants. In order to properly understand the contents of the report, reference must be made to the whole of the report. BIG cannot be held responsible for the use of portions of the report without reference to the entire report.

We recommend that BIG be retained to review the recommendations for this specific applicability, once the details of the proposed development are finalized and prior to the final design stage of the project.

We trust that the information contained in this report is satisfactory. Should you have any questions, please do not hesitate to contact this office.

Yours truly,

B.I.G. Consulting Inc.

Subir Shrestha, M.Eng., P.Eng. Principal Geotechnical Engineer

Darko Strajin, P.Eng. Managing Partner

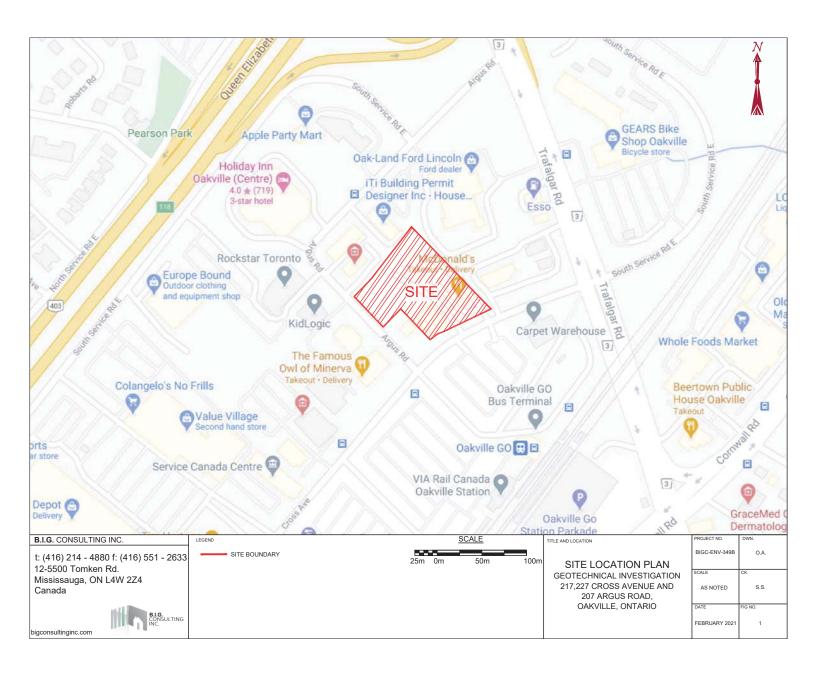
9 Report Limitations

The conclusions and recommendations given in this report are based on information determined at the test hole (borehole, test pit, probe hole, etc.) locations. The information contained herein in no way reflects on the environmental aspects of the project, unless otherwise stated. Subsurface and groundwater conditions between and beyond the testholes may differ from those encountered at the testhole locations, and conditions may become apparent during construction which could not be detected or anticipated at the time of the site investigation. It is a recommended practice that the Geotechnical Engineer be retained during the construction to confirm that the subsurface conditions across the site do not deviate materially from those encountered in the testholes.

The design recommendations and opinions given in this report are applicable only to the project described in the text, and then only if constructed substantially in accordance with the details stated in this report. Since all details of the design may not be known, we recommend that we be retained during the final design stage to verify that the design is consistent with our recommendations, and that assumptions made in our analysis are valid.

The comments made in this report relating to potential construction problems and possible methods of construction are intended only for the guidance to the designer. The number of testholes may not be sufficient to determine all the factors that may affect construction methods and costs. The anticipated construction conditions are also discussed, but only to the extent that they may influence design decisions. Construction methods discussed, however, express BIG's opinion only and are not intended to direct the contractors on how to carry out the construction. Contractors should also be aware that the data and their interpretation presented in this report may not be sufficient to assess all the factors that may have an effect upon the construction. For example, the thickness of surficial topsoil or fill layers may vary markedly and unpredictably at the site. The contractors bidding on this project or undertaking the construction should, therefore, make their own interpretation of the factual information presented and draw their own conclusions as to how the subsurface conditions may affect their work. This work has been undertaken in accordance with normally accepted geotechnical engineering practices. No other warranty is expressed or implied.

The report is prepared with the condition that the design will be in accordance with all applicable standards and codes, regulations of authorities having jurisdiction, and good engineering practice.


The benchmark and elevations mentioned in this report were obtained strictly for use by this office in the geotechnical design of the project. They should not be used by any other party for any other purpose.

Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. BIG accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Appendix A - Figures

Appendix B – Records of Boreholes

NOTES TO RECORD OF BOREHOLES

DRILLING METHOD		SAM	IPLE TYPE	LABO	DRATORT DATA
SSA	Solid Stem Auger	SS	Split Spoon	W	Water Content
HSA	Hollow Stem Auger	AS	Auger Flight Sample	W_p	Plastic Limit
WB	Wash Boring	TW	Thin Wall Open	W_{l}	Liquid Limit
RM	Rotary Mud Drilling	TP	Thin Wall Piston	γ	Natural Unit Weight (kN/m³)
		WS	Washed Sample	C_u	Undrained Shear Strength (kPa)
		VT	Vane Test	PP	Pocket Penetrometer
		GS	Grab Sample	UC	Unconfined Compression
		RC	Rock Core	UU	Unconsolidated Undrained
		PH	Sample Advanced Hydraulically	CU	Consolidated Undrained
		PM	Sample Advanced Manually	CD	Consolidated Drained
		CC	Continuous Core	TOV	Total Organic Vapors

STANDARD PENETRATION TEST (SPT 'N'): The number of blows required to advance a standard 51 mm outer diameter split spoon sampler to penetrate 0.3 m distance into the undisturbed ground in a borehole driven by means of a 63.5 kg hammer falling freely from a distance of 0.76m.

DYNAMIC CONE PENETRATION TEST (DCPT): The number of blows required to advance a 51 mm diameter – 60 degree cone fitted to the end of the drill rods to penetrate 0.3 m distance into the undisturbed ground driven by 475 Joules driving energy per blow.

SOILS ARE DESCRIBED BY THEIR COMPOSITION AND CONSISTENCY OR RELATIVE DENSITY

CONSISTENCY: Cohesive soils are described on the basis of their undrained shear strength (Cu) or 'N' values as follows:

N (blows/0.3m)	0 - 2	2 - 4	4 - 8	8 - 15	15 - 30	>30
Consistency	VERY SOFT	SOFT	FIRM	STIFF	VERY STIFF	HARD
Cu (kPa)	0 - 12	12 - 25	25 - 50	50 - 100	100 - 200	>200

RELATIVE DENSITY: Cohesionless soils are described on the basis of their relative density as indicated by 'N' values as follows:

N (blows/0.3m)	0 - 4	4 - 10	10 - 30	30 - 50	>50
Relative Density	VERY LOOSE	LOOSE	COMPACT	DENSE	VERY DENSE

ROCKS ARE DESCRIBED BY THEIR COMPOSITION AND STRUCTURAL FEATURES AND/OR STRENGTH

RECOVERY: Sum of the lengths of all recovered rock core pieces divided by the total length of the core run (expressed as a percent).

ROCK QUALITY DESIGNATION (RQD): Sum of the lengths of intact rock core pieces, 100 mm or more in lengths, divided by the total length of the core run (expressed as a percent). Classifications of a rock based on the RQD value are as follows:

RQD (%)	0 - 25	25 - 50	50 - 75	75 - 90	90 - 100
Quality	VERY POOR	POOR	FAIR	GOOD	EXCELLENT

JOINTING AND BEDDING:

SPACING	50 Millimeters	50 - 300 Millimeters	0.3 – 1.0 Metres	1.0 – 3.0 Metres	> 3.0 Metres
JOINTING	VERY CLOSE	CLOSE	MOD. CLOSE	WIDE	VERY WIDE
BEDDING	VERY THIN	THIN	MEDIUM	THICK	VERY THICK

RECORD OF BOREHOLE No. BH/MW101 Project Number: BIGC-ENV-349B Drilling Location: See BH Location Plan Logged by: TVH Project Client: **Distrikt Capital** Drilling Method: 150 mm Solid Stem Augering Compiled by: TVH **Truck Mounted Drill Rig** Project Name: Geotechnical Investigation Drilling Machine: Reviewed by: SS Project Location: 217 & 227 Cross Ave. and 571 Argus Rd., Oakville, ON Date Started: Date Completed: 13 Jan 21 13 Jan 21 Revision No.: 1, 9/2/21 LITHOLOGY PROFILE SOIL SAMPLING **FIELD TESTING** LAB TESTING Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 NSTRUMENTATION NSTALLATION PenetrationTesting Value/RQD Ξ SPT DCPT Sample Number **COMMENTS DESCRIPTION** Plot % Sample Type MTO Vane* Nilcon Vane Ξ ELEVATION wer Explosive Limit (LEL) ♦ Intact Remould .ithology △ Intact ▲ Remould ż * Undrained Shear Strength (kPa) Plastic Liquid Geodetic Ground Surface Elevation: 103.04 m ASPHALT:100 mm asphalt concrete over 200 40 60 20 40 60 20 mm granular base SS 41 22 Ö 23 FILL: clayey silt, trace sand, trace gravel, SS1 sampled for Metals and mottled, grey, moist, very stiff to hard Inorganics and PAHs on January 13, 2021 022 SS 2 100 60 0 101.97 102 SS2 sampled for VOCs and PHCs on CLAYEY SILT TILL: trace sand, trace gravel, fragments of Shale, grey, moist, hard January 13, 2021 o¹⁰ SS 3 93 71 0 2 101 50 15 o¹18 BEDROCK: Shale, highly weathered, occasiona2.3 SS 4 53 50/15 limestone seams, grey, damp, hard 50 C 100 6 50/8 63 ¥ -first water strike 99 Groundwater sampled for PHCs, VOCs, Metals and Inorganics on February 3, 2021 50 3 98 97 50 96.92 End of Borehole 1. Borehole open upon completion of drilling. 2. Groundwater level at 5.18 m bgs measured upon completion of drilling. Groundwater level reading at 3.38 m bgs on February 8, 2021. B.I.G. Consulting Inc. $\overline{\underline{\lor}}$ Groundwater depth on completion of drilling: 5.18 m. 3.38 m

Proj	ect Number:	OF BOREHOLE No BIGC-ENV-349B Distrikt Capital	0.	BH/	MW	102		•	g Location: g Method:			ation Plan lid Stem Au	gering		Logged by: TVH Compiled by: TVH
Project Name: Geotech		Geotechnical Investigation	stigation					Drilling	g Machine:	Tre	Truck Mounted Drill Rig			Reviewed by: SS	
Proj	ect Location:	217 & 227 Cross Ave. and 571	Argus	Rd., O	akville	, ON		Date \$	Started:	<u>13</u>	Jan 21	_ Date Con	npleted: 13 Ja	n 21	Revision No.: 1, 9/2/21
	LITH	OLOGY PROFILE	SC	OIL SA	MPLI	NG			FIELD	TES	STING		ESTING		
Lithology Plot		DESCRIPTION d Surface Elevation: 102.55 m	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	O SPT MTO Vane △ Intact ▲ Remould * Undrained:	e* Nil	DCPT Icon Vane* Intact Remould trength (kPa) 0 80	Soil Vapo parts per m 100 200 Lower Expl	ralues 8 10 12 9 17 12 9 10 12	INSTRUMENTATION INSTALLATION	COMMENTS
) mm asphalt concrete over 200	SS	1	90	50/15	-			50 15		o ¹⁹			
	very moist, cor	It, some clay, mottled, brown/grey0.3 npact 101.79					- - - - -	102 -		15					SS1 sampled for Metals and Inorganics and PAHs on January 13, 2021
*******	trace gravel, fr stiff to hard - sand seam,	TILL: trace sand, trace sand, 0.8 agments of Shale, grey, moist, very 100 mm thick	SS	2	46	24	- - - 1 - - - -		0			o16			SS2 sampled for VOCs and PHCs on January 13, 2021
1			SS	3	90	50/15	<u>-</u>	101 -		50		o ¹³			
111							_ - - 2 -	•		:15					
<i>/ / / / / / / / / /</i>	BEDROCK: S	99.96_ hale, highly weathered, occasiona2.6	SS	4	100	50/13	- - - -	100 -		50		o ⁷			
		ments, grey, damp, hard					Ē.,								
			-88	5	100	50/3	- 3 - -		1	50		o ⁶			
							- - - - - - 4	99 -							
	-first water stril	ke	SS	6	63	50/8	- - - - - - -	98 -		50		o ⁶			
							5 - <u>5</u> - = -	<u>Z</u>							
							- - - 6		-						
	Groundwate upon completi	en upon completion of drilling. er level at 5.18 m bgs measured on of drilling. er level reading at 3.67 m bgs on 121.	SS	7	60	50/5				5 5		o ⁶			

B.I.G. Consulting Inc. 12-5500 Tomken Rd. Mississauga, ON L4W 2Z4 Canada T: 416-214-4880 F: 416-551-2633

 $\frac{\mathbf{Y}}{\mathbf{Y}}$ Groundwater depth observed on $\underline{08/02/2021}$ at a depth of: $\underline{3.67}$ m.

RECORD	OF BOREHOLE NO	ο.	<u>BH/</u>	MW	103								B.I.G. CONSULTING INC.
Project Number:							Drillinç	Location:	Se	e BH Loca	ation Plan		Logged by: TVH
Project Client:	Distrikt Capital							Method:	_15	50 mm So	lid Stem Augering	Compiled by: TVH	
Project Name: Geotechnical Investigation							_ Drilling Machine:			uck Mount	ted Drill Rig		Reviewed by: SS
Project Location:	217 & 227 Cross Ave. and 571 A	Argus	Rd., O	akville	, ON		Date 9	Started:	<u>13</u>	Jan 21	_ Date Completed: 13 Ja	n 21	Revision No.: 1, 9/2/21
LITH	IOLOGY PROFILE	SC	IL SA	MPLI	NG			FIELD	TES	STING	LAB TESTING		
	DESCRIPTION and Surface Elevation: 101.78 m	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DЕРТН (m)	ELEVATION (m)	Penetr O SPT MTO Vane Δ Intact ▲ Remould * Undrained S 20 4	* Nil	DCPT lcon Vane* Intact Remould	★ Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading Δ parts per million (ppm) 100 200 300 400 ▲ Lower Explosive Limit (LEL) W _v W _v Plastic Liquid 20 40 60 80	INSTRUMENTATION INSTALLATION	COMMENTS
mm granular	10 mm asphalt concrete over 300 bases 101.38 and gravel, brown, moist, compa@103- F TILL: some sand, trace gravel, 0.5	SS	1	51	13	- - - - -	- - - -	0			o ¹³		SS1 sampled for Metals and Inorganics and PAHs on January 13,
CLAYEY SIL' fragments of stiff to hard	I IILL: some sand, trace gravel, 0.9 Shale, reddish brown, moist, very	SS	2	84	26	- - - - 1 - - - -	101 -	0			015		2021
		SS	3	93	70	- - - - - - 2	100 -			0	o ¹¹		
BEDROCK: S	99.49 Shale, highly weathered, occasiona£.3 gments, grey, damp, hard	SS	4	87	50/15	- - - - - -	- - - -		50 O 15		o ⁶		
	:	SS	5	100	50/5	_ 3	99 -		50 5		p2		
	96.29	<u>\$\$</u>	6	60	50/5	- 4 4 =	98 —		50 5		o ⁴		Groundwater sampled for Na/Cl on February 3, 2021
refussal on in Notes: 1. Borehole o 2. Groundwat upon complet	er level reading at 2.79 m bgs on 021.						4.57 m.						

B.I.G. Consulting Inc. 12-5500 Tomken Rd. Mississauga, ON L4W 2Z4 Canada T: 416-214-4880 F: 416-551-2633

Groundwater depth observed on 08/02/2021 at a depth of: 2.79

RECORD OF BOREHOLE No. BH/MW104 Project Number: BIGC-ENV-349B Drilling Location: See BH Location Plan Logged by: TVH Project Client: **Distrikt Capital** Drilling Method: 150 mm Solid Stem Augering Compiled by: TVH **Truck Mounted Drill Rig** Project Name: Geotechnical Investigation Drilling Machine: Reviewed by: SS Project Location: 217 & 227 Cross Ave. and 571 Argus Rd., Oakville, ON Date Started: Date Completed: 13 Jan 21 13 Jan 21 Revision No.: 1, 9/2/21 LITHOLOGY PROFILE SOIL SAMPLING **FIELD TESTING** LAB TESTING Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 NSTRUMENTATION NSTALLATION PenetrationTesting Value/RQD Ξ SPT DCPT Sample Number **COMMENTS DESCRIPTION** Plot % Sample Type MTO Vane* Nilcon Vane Ξ ELEVATION wer Explosive Limit (LEL) ♦ Intact Remould ithology. △ Intact ▲ Remould ż DEPTH Plastic * Undrained Shear Strength (kPa) Liquid Geodetic Ground Surface Elevation: 100.96 m ASPHALT: 100 mm asphalt concrete over 200 40 60 20 40 60 20 mm granular bases 23 Ö FILL: sand and gravel, brown, moist, compact 0.3 SS1 sampled for Metals and lnorganics and PAHs on January 13, 2021 sandy silt, some clay, trace gravel 100 012 SS 2 62 13 Ö CLAYEY SILT TILL: some sand, trace gravel, 1.4 fragments of Shale, brown, moist, hard o¹³ SS 3 95 42 Ö 99 2 50 8 BEDROCK: Shale, highly weathered, occasiona2.3 **Y** Limestone fragments, grey, moist, hard ٥7 98 50 3 3 50/3 100 6 97 Groundwater sampled for PHCs, VOCs and PAHs on February 3, 50 5 100 ٥7 96 95 6 50 94.84 End of Borehole 1. Borehole open upon completion of drilling. 2. Groundwater level at 4.88 m bgs measured upon completion of drilling. Groundwater level reading at 2.45 m bgs on February 8, 2021. B.I.G. Consulting Inc. $\overline{\underline{Y}}$ Groundwater depth on completion of drilling: $\underline{4.88 \text{ m}}$. 2.45 m

RECORD OF BOREHOLE No. BH/MW105 Project Number: BIGC-ENV-349B Drilling Location: See BH Location Plan Logged by: TVH Project Client: **Distrikt Capital** Drilling Method: 150 mm Hollow Stem Augering + Rock Compiled by: TVH Coring Truck Mounted Drill Rig Project Name: Geotechnical Investigation Drilling Machine: Reviewed by: SS Project Location: 217 & 227 Cross Ave. and 571 Argus Rd., Oakville, ON Date Completed: 15 Jan 21 Date Started: 14 Jan 21 Revision No.: 1, 9/2/21 LITHOLOGY PROFILE LAB TESTING **SOIL SAMPLING FIELD TESTING** Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 NSTRUMENTATION NSTALLATION PenetrationTesting Value/RQD Ξ SPT DCPT Sample Number **COMMENTS DESCRIPTION** Plot % Sample Type MTO Vane* Nilcon Vane Ξ ELEVATION wer Explosive Limit (LEL) ♦ Intact Remould .ithology △ Intact ▲ Remould SPT 'N' \ Liquid 80 * Undrained Shear Strength (kPa) Plastic Geodetic Ground Surface Elevation: 102.38 m ASPHALT:100 mm asphalt concrete over 200 40 60 20 40 60 20 mm granular base 62 37 0 FILL: clayey silt, trace to some sand and gravel,0.3 102 o⁶ SS1 sampled for Metals and brown/grey, moist, hard to very stiff lnorganics and PAHs on January 14, 2021 01:4 SS 2 70 23 0 CLAYEY SILT TILL: trace sand, trace gravel, fragments of Shale, grey, moist, very stiff to hard 101 o⁹ 3 0 SS 84 55 SS3 sampled for VOCs and PHCs on January 14, 2021 2 BEDROCK: Shale, highly weathered to excellen 2.3 ٥7 100 SS 50/8 4 100 qaulity, occasional Limestone layers, grey, moist 50 5 100 50/5 99 98 50 5 o¹18 -first water strike 5 97 o¹⁶ 96 95 .50 .50 **ROCK CORE BEGINS** RC 27 0 78 - Poor Quality 8 94 B.I.G. Consulting Inc. $\overline{\underline{\lor}}$ Groundwater depth on completion of drilling: NOT MEASURED DUE TO DRILLING WATER m. 12-5500 Tomken Rd. Mississauga, ON L4W 2Z4 Groundwater depth observed on 08/02/2021 at a depth of: 21.09 m. Canada T: 416-214-4880 Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and requires interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was F: 416-551-2633 Scale: 1:47 commisioned and the accompanying Notes to Record of Boreholes'. Page: 1 of 3

RECORD OF BOREHOLE No. BH/MW105

B.I.G. CONSULTING

Project Number: BIGC-ENV-349B Drilling Location: See BH Location Plan Logged by: TVH LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING LAB TESTING * Rinse pH Values
2 4 6 8 10 12

Soil Vapour Reading
A parts per million (ppm)
100 200 300 400 INSTRUMENTATION INSTALLATION PenetrationTesting 'N' Value/RQD% Ξ O SPT DCPT COMMENTS Sample Number **DESCRIPTION** ithology Plot Recovery (%) Sample Type MTO Vane* Nilcon Vane* ELEVATION Ξ Lower Explosive Limit (LEL)
W_P W W_L

Plastic Liquid △ Intact
 ◆ Remould
 ◆ Remould DEPTH * Undrained Shear Strength (kPa) SPT 40 60 20 40 60 20 - Good Quality **BEDROCK:** Shale, highly weathered to excellent qaulity, occasional Limestone layers, grey, moist 93 10 92 RC 3 99 82 Ö - Good Quality 91 12 RC 4 99 91 0 - Excellent Quality 90 13 89 RC 97 5 99 - Excellent Quality 14 88 15 RC 6 99 96 - Excellent Quality 87 16 86 RC 95 99 - Excellent Quality 17 85 18 RC 8 98 - Excellent Quality 84 19

Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and requires interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying Notes to Record of Boreholes'.

Scale: 1:47 Page: 2 of 3

RECORD OF BOREHOLE No. BH/MW105

Project Number: BIGC-ENV-349B Drilling Location: See BH Location Plan Logged by: TVH

	LITHOLOGY PROFILE		SOIL SAMPLING					FIELD TESTING	LAB TESTING		
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	PenetrationTesting O SPT	VV _P VV VV _L	INSTRUMENTATION INSTALLATION	COMMENTS
	BEDROCK: Shale, highly weathered to excellent quality, occasional Limestone layers, grey, moist - Good Quality	RC	9	98	83	- - - - - - - 20 - -	83 — - - - - - - - - - - - - - - - - - - -	O			
	- Excellent Quality	RC	10	99	93	- - - - - - - - - - - - - -	81 —	0			
	- Excellent Quality	RC	11	99	92	- 22 23 	80 -	0			
	Borehole terminated at 23.42 Solves: 1. Borehole open upon completion of drilling. 2. Groundwater level not measured upon completion of drilling due to introduced drilling water. 3. Groundwater level reading at 21.09 m bgs on February 8, 2021.						79 =				

RECORD OF BOREHOLE No. BH/MW106 Project Number: BIGC-ENV-349B Drilling Location: See BH Location Plan Logged by: TVH Project Client: Distrikt Capital Drilling Method: 150 mm Solid Stem Augers Compiled by: TVH Project Name: Geotechnical Investigation Drilling Machine: Truck Mounted Drill Rig Reviewed by: SS Project Location: 217 & 227 Cross Ave. and 571 Argus Rd., Oakville, ON Date Started: Date Completed: 20 Jan 21 20 Jan 21 Revision No.: 1, 9/2/21 LITHOLOGY PROFILE SOIL SAMPLING **FIELD TESTING** LAB TESTING Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 NSTRUMENTATION NSTALLATION PenetrationTesting Value/RQD Ξ SPT DCPT Sample Number **COMMENTS DESCRIPTION** Plot % Sample Type ELEVATION MTO Vane* Nilcon Vane Ξ wer Explosive Limit (LEL) ♦ Intact Remould .ithology △ Intact ▲ Remould SPT 'N' \ DEPTH * Undrained Shear Strength (kPa) Plastic Liquid 80 Geodetic Ground Surface Elevation: 102.83 m ASPHALT:75 mm asphalt concrete over 150 mm granular base 40 60 20 40 60 20 014 FILL: clayey silt, trace sand, trace gravel, rootlets, mottled, brown, moist, stiff to hard SS 92 12 0 SS1 sampled for VOCs and PHCs on January 20, 2021 102 63 C 23 o¹⁴ 2 63/23 SS 95 101.77 SS2 sampled for Metals and Inorganics and PAHs on January 20, CLAYEY SILT TILL: trace sand, trace gravel, 1.1 fragments of Shale, brown, moist, hard 50 15 015 SS 3 93 50/15 BEDROCK: Shale, highly weathered, occasional .7 Limestone fragments, grey, damp, hard 101 2 50 5 o⁶ 50/5 100 50 5 6. 100 50/5 ¥ 99 4 \\ \breve{\pi} -first water strike 50 3 98 5 97 6 50 96.71 End of Borehole 1. Borehole open upon completion of drilling. 2. Groundwater level at 4.88 m bgs measured upon completion of drilling. Groundwater level reading at 3.32 m bgs on February 8, 2021. B.I.G. Consulting Inc. $\overline{\underline{\lor}}$ Groundwater depth on completion of drilling: 3.96 m. 12-5500 Tomken Rd.

B.I.G. Consulting Inc. 12-5500 Tomken Rd. Mississauga, ON L4W 2Z4 Canada T: 416-214-4880 F: 416-551-2633

R	ECORD	OF BOREHOLE N	0.	BH/	MW	<u> 107</u>									B.I.G. COMPLETING
>rc	ject Number:	BIGC-ENV-349B						_ Drilling Location:			e BH Loca	ation Plan	Logged by: TVH		
⊃ro	ject Client:	Distrikt Capital						_ Drilling Method:		_1	50 mm So	lid Stem A	Compiled by: TVH		
Project Name: Geotechnical Investigation								Drilling Machine:		Tr	uck Mount	ted Drill R	ig		Reviewed by: SS
Pro	ject Location:	217 & 227 Cross Ave. and 571	Argus	Rd., O	akville	, ON		Date 9	Started:	20	Jan 21	_ Date Co	ompleted: 20 J	an 21	Revision No.: 1, 9/2/21
	LITH	OLOGY PROFILE	SC	DIL SA	MPLI	NG			FIEL) TE	STING		TESTING		
Lithology Plot		DESCRIPTION d Surface Elevation: 102.40 m	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DЕРТН (m)	ELEVATION (m)	O SPT MTO Vane Δ Intact ▲ Remoule * Undrained	e* Ni ⇔ d ◆	DCPT Icon Vane* Intact Remould strength (kPa) 00 80	Soil Va A parts per 100 2	6 8 10 12 pour Reading million (ppm) 00 300 400 plosive Limit (LEL) W W Liquid	INSTRUMENTATION INSTALLATION	COMMENTS
	mm granular b	ilt, trace gravel, rootlets, mottled, 0.3	SS	1	59	12	- - - - - -	102 -	0			o ¹⁶			SS1 sampled for Metals and Inorganics and PAHs on January 20, 2021
*****	oxidized fissur very stiff to ha	es, mottled, brownish grey, moist,	SS	2	92	28	- - 1 - - - -	101 —	0			··· _o 12····		• •	
1	BEDROCK: S Limestone frag	100.57 hale, highly weathered, occasionall.8 yments, grey, damp to moist, hard	SS	3	70	51	- - - - - 2			0		o ¹¹			
			SS	5	100	50/5	- - - - - - - - 3	100 -		50 5 5 5 5		o ⁸			
	-first water stri	ke					- - - - - - - -	99 -		5					
			- SS	6	100	50/5	- - - - - -	98 -		50 5		o ²³			Groundwater sampled for Na/Cl on February 3, 2021
							— 5 - - - - - -	97 —							
		06.20					- - - 6			50_	: :				
	Groundwate	pen upon completion of drilling. er level at 3.66 m bgs measured on of drilling. er level reading at 3.61 m bgs on	=38=	7	100	50/3				3					
12-5	G. Consulting In 5500 Tomken Rd sissauga, ON L4	. = Groundwa				n of drilli		3.66 m.	in aft.	S1 m		-			

RECORD OF BOREHOLE No. BH/MW108 Project Number: BIGC-ENV-349B Drilling Location: See BH Location Plan Logged by: TVH Project Client: **Distrikt Capital** Drilling Method: 150 mm Solid Stem Augers Compiled by: TVH Project Name: Geotechnical Investigation Drilling Machine: Truck Mounted Drill Rig Reviewed by: SS Project Location: 217 & 227 Cross Ave. and 571 Argus Rd., Oakville, ON Date Started: Date Completed: 20 Jan 21 20 Jan 21 Revision No.: 1, 9/2/21 LITHOLOGY PROFILE SOIL SAMPLING **FIELD TESTING** LAB TESTING Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 NSTRUMENTATION NSTALLATION PenetrationTesting Value/RQD Ξ SPT DCPT Sample Number **COMMENTS DESCRIPTION** Plot % Sample Type ELEVATION MTO Vane* Nilcon Vane Ξ wer Explosive Limit (LEL) ♦ Intact Remould .ithology △ Intact ▲ Remould SPT 'N' \ DEPTH * Undrained Shear Strength (kPa) Plastic Liquid Geodetic Ground Surface Elevation: 102.55 m ASPHALT:150 mm asphalt concrete over 200 40 60 20 40 60 20 80 mm granular base 015 9 0 FILL: clayey silt, trace gravel, rootlets, organic 0.4 SS1 sampled for Metals and lnorganics and PAHs on January 20, 2021 staining, mottled, brown, moist, stiff 102 CLAYEY SILT TILL: trace sand, trace gravel, 0.8 oxidized fissures, mottled, brown, moist, very stiff 012 to hard 2 100 25 0 101 011 0 65 SS 3 100 2 BEDROCK: Shale, highly weathered, occasiona2.1 Limestone fragments, grey, moist o⁸ 100 50 5 6 100 50/5 99 -first water strike Groundwater sampled for Metals and Inorganics on February 3, 2021 50 C 98 5 97 6 50 96.43 End of Borehole 1. Borehole open upon completion of drilling. 2. Groundwater level at 3.96 m bgs measured upon completion of drilling. Groundwater level reading at 3.90 m bgs on February 8, 2021. B.I.G. Consulting Inc. $\overline{\underline{\lor}}$ Groundwater depth on completion of drilling: 3.96 m.

RECORD OF BOREHOLE No. BH/MW109 Project Number: BIGC-ENV-349B Drilling Location: See BH Location Plan Logged by: TVH Project Client: **Distrikt Capital** Drilling Method: 150 mm Solid Stem Augers Compiled by: TVH Project Name: Geotechnical Investigation Drilling Machine: Truck Mounted Drill Rig Reviewed by: SS Project Location: 217 & 227 Cross Ave. and 571 Argus Rd., Oakville, ON Date Started: Date Completed: 20 Jan 21 20 Jan 21 Revision No.: 1, 9/2/21 LITHOLOGY PROFILE SOIL SAMPLING **FIELD TESTING** LAB TESTING Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 NSTRUMENTATION NSTALLATION PenetrationTesting Value/RQD Ξ SPT DCPT Sample Number **COMMENTS DESCRIPTION** Plot % Sample Type MTO Vane* Nilcon Vane Ξ ELEVATION wer Explosive Limit (LEL) ♦ Intact Remould .ithology △ Intact ▲ Remould ż DEPTH * Undrained Shear Strength (kPa) Plastic Liquid Geodetic Ground Surface Elevation: 102.89 m ASPHALT: 140 mm asphalt concrete over 160 40 60 20 40 60 20 80 mm granular base 014 102.59 SS 92 13 0 FILL: clayey silt, trace gravel, rootlets, mottle $q_{02}0_43$ brown, moist, stiff CLAYEY SILT TILL: trace sand, trace gravel, fragments of Shale, oxidized fissures, mottled, SS1 sampled for Metals and lnorganics and PAHs on January 20, 2021 brownish grey, moist, hard 102 011 SS 2 100 33 Ö 010 76 20 3 SS 83 76/20 101.06 BEDROCK: Shale, highly weathered, occasional 8 101 Limestone fragments, grey, moist to damp, hard 2 50 5 8ه 50/5 100 6 50/3 100 99 50 5 100 -first water strike 97 6 50 96.77 30 End of Borehole 1. Borehole open upon completion of drilling. 2. Groundwater level at 5.18 m bgs measured upon completion of drilling. Groundwater level reading at 4.20 m bgs on February 8, 2021. B.I.G. Consulting Inc. $\overline{\underline{\lor}}$ Groundwater depth on completion of drilling: 5.18 m. 12-5500 Tomken Rd. 4.20 m

Mississauga, ON L4W 2Z4 Canada T: 416-214-4880 F: 416-551-2633

Groundwater depth observed on 08/02/2021 at a depth of:

Project Name: Geote		Distrikt Capital Geotechnical Investigation	kt Capital echnical Investigation 227 Cross Ave. and 571 Argus Rd., Oakville, ON								See BH Location Plan 150 mm Solid Stem Augers Truck Mounted Drill Rig 21 Jan 21 Date Completed: 21 Jan 21				Logged by: TVH Compiled by: TVH Reviewed by: SS Revision No.: 1,9/2/21
nogy Flot		DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DЕРТН (m)	EVATION (m)	Penet O SPT MTO Vane △ Intact ▲ Remould	♦ Intact ★ Remove	* Rins 2 1	se pH Value 4 6 8 Il Vapour I s per million 200 3 rer Explosive W	s 3 10 12 Reading	INSTRUMENTATION INSTALLATION	COMMENTS
Lithology		ad Surface Elevation: 101.82 m	Sam	Sam	Reco	SPT		ELE	* Undrained :	Shear Strength (I			Liquid 60 80	INST	
	mm granular b	0 mm asphalt concrete over 300 base 101.40 silt, some gravel, occasional glass 0.4 offets, brown, moist, compact	SS	1	79	21	- - - - - - -	101	0		012				SS1 sampled for Metals and Inorganics and PAHs on January 21, 2021
₩ // //	CLAYEY SILT fragments of 5 brownish grey	100.75 TTILL: trace sand, trace gravel, 1.1 Shale, oxidized fissures, mottled, , moist, stiff to hard	- SS	2	95	12	- 1 - 1 	101 -	0		12				SS2 sampled for VOCs and PHCs on January 21, 2021
******		99.53	SS	3	100	37	- - - - 2	100 -			o ¹⁰				
		Shale, highly weathered, occasiona£.3 gments, grey, damp, hard	SS	4	100	50/5	- - - - -	99 —		50 5	07				
			SS	5	100	50/5	3 =	98 -		50	03				
	-first water stril	ke	SS	6	60	50/5	- - - - - - 5 - -	97 —	-	50 O 5	07				
	End of Boreh		\$\$	-7	100	50/3	- - - - - 6	96 -		50	0.17	7			
	Borehole op Groundwate upon completi	er level reading at 3.08 m bgs on													

RI	ECORD	OF BOREHOLE N	ο.	BH/	MW	111							B.I.G. CONSULTING
		BIGC-ENV-349B						Drilling	g Location:	See BH Loc	cation Plan	Logged by: TVH	
Project Client: Distrikt Capital Project Name: Geotechnical Investigation							Drillin	g Method:	150 mm Se	olid Stem Augers	Compiled by: TVH		
							Drillin	g Machine:	Truck Mour	nted Drill Rig	Reviewed by: SS		
Proj	ect Location:	217 & 227 Cross Ave. and 571	Argus	Rd., O	akville	, ON		Date 8	Started:	21 Jan 21	Date Completed: 21 Ja	n 21	Revision No.: 1, 9/2/21
	LITH	OLOGY PROFILE	SC)IL SA	MPLI				FIEL	TESTING	LAB TESTING		
Lithology Plot	Geodetic Ground	DESCRIPTION Surface Elevation: 101.94 m	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	O SPT MTO Vane △ Intact ▲ Remoule * Undrained	Intact	Lower Explosive Limit (LEL) W _P W W _L	INSTRUMENTATION INSTALLATION	COMMENTS
***	mm granular b	mm asphalt concrete over 250 ase 101.71 It, trace gravel, rootlets, organic 0.2 n, moist, compact	ss	1	95	15	- - - - - -	-	0		o ¹³	1	SS1 sampled for Metals and norganics and PAHs on January 21, 2021
**	clayey silt, firm		SS	2	100	8	- - 	101 -	0		o15		
	CLAYEY SILT fragments of S grey, moist, ha	100.26 TILL: trace sand, trace gravel, 1.7 hale, oxidized fissures, mottled, rd	SS	3	100	34	- - - - - - 2	100 -	0		o ¹³		
<u>}</u>		99.65 nale, highly weathered, occasionate.3	SS	4	63	50/8	Ę	-	1	50	o ⁵		
	Limestone frag	ments, grey, moist					F	•					
							Ē	99 -	1				
			ss	5	100	50/5	— 3 —	99		50 O 5	07		
							- ¥	<u>r</u>					
	-first water strik	xe					- 4 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	Z 98 –					Groundwater sampled for PAHs on February 3, 2021
			SS	6	60	50/5	- - -	- -		50 O 5	o ⁸		
							- - - 5	97 -					
							- - -						
						-	- - -						
	End of Boreho	95.82 ble 6.1	SS	7	100	50/3	6	96 -		50	o ⁷		
	Notes: 1. Borehole op 2. Groundwate	en upon completion of drilling. or level at 3.96 m bgs measured on of drilling. or level reading at 3.37 m bgs on											
BIG	3. Consulting Inc	c											
12-5	500 Tomken Rd. issauga, ON L4V	. Groundwa						3.96 m. at a dep	th of: 3.	<u>37 m</u> .			

RECORD OF BOREHOLE No. BH/MW112 Project Number: BIGC-ENV-349B Drilling Location: See BH Location Plan Logged by: TVH Project Client: Distrikt Capital Drilling Method: 150 mm Solid Stem Augers Compiled by: TVH Project Name: Geotechnical Investigation Drilling Machine: Truck Mounted Drill Rig Reviewed by: SS Project Location: 217 & 227 Cross Ave. and 571 Argus Rd., Oakville, ON Date Completed: 21 Jan 21 Date Started: 21 Jan 21 Revision No.: 1, 9/2/21 LITHOLOGY PROFILE **FIELD TESTING** LAB TESTING **SOIL SAMPLING** Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 NSTRUMENTATION NSTALLATION PenetrationTesting Value/RQD Ξ SPT DCPT Sample Number **COMMENTS DESCRIPTION** Plot % Sample Type **ELEVATION** MTO Vane* Nilcon Vane Ξ wer Explosive Limit (LEL) ♦ Intact Remould .ithology △ Intact ▲ Remould SPT 'N' \ DEPTH Plastic * Undrained Shear Strength (kPa) Liquid 40 60 Geodetic Ground Surface Elevation: 102.78 m TOPSOIL: 150 mm 20 40 60 20 80 FILL: clayey silt, trace gravel, rootlets, brown, moist, stiff o¹³ 59 9 0 SS1 sampled for Metals and Inorganics and PAHs on January 21, 2021 102 grey 015 SS 2 100 21 Ö SS2 sampled for VOCs and PHCs CLAYEY SILT TILL: trace sand, trace gravel, fragments of Shale, oxidized fissures, mottled, on January 21, 2021 grey, moist, very stiffto hard o¹³ 101 0 SS 3 95 44 2 o⁵ 75 25 SS 4 100 75/25 100.18 BEDROCK: Shale, highly weathered, occasiona2.6 Limestone fragments, grey, moist, hard 100 07 100 50/5 99 Groundwater sampled for PHCs, VOCs, Metals and Inorganics and PAHs on February 3, 2021 (DUP11201) 50 5 o⁸ -first water strike 98 $\overline{\underline{\wedge}}$ 6 50 96.66 End of Borehole 1. Borehole open upon completion of drilling. 2. Groundwater level at 5.18 m bgs measured upon completion of drilling. Groundwater level reading at 4.23 m bgs on February 8, 2021. B.I.G. Consulting Inc. $\overline{\underline{\lor}}$ Groundwater depth on completion of drilling: 5.18 m. 4.23 m

RECORD OF BOREHOLE No. BH/MW113 Project Number: BIGC-ENV-349B Drilling Location: See BH Location Plan Logged by: TVH Project Client: **Distrikt Capital** Drilling Method: 150 mm Solid Stem Augers Compiled by: TVH Project Name: Geotechnical Investigation Drilling Machine: Truck Mounted Drill Rig Reviewed by: SS Project Location: 217 & 227 Cross Ave. and 571 Argus Rd., Oakville, ON Date Completed: 21 Jan 21 Date Started: 21 Jan 21 Revision No.: 1, 9/2/21 LITHOLOGY PROFILE LAB TESTING **SOIL SAMPLING FIELD TESTING** Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 NSTRUMENTATION NSTALLATION PenetrationTesting Value/RQD Ξ SPT DCPT Sample Number **COMMENTS DESCRIPTION** Plot % Sample Type **ELEVATION** MTO Vane* Nilcon Vane Ξ wer Explosive Limit (LEL) ♦ Intact Remould .ithology △ Intact ▲ Remould ż DEPTH * Undrained Shear Strength (kPa) Plastic Liquid 40 60 20 40 60 20 80 eodetic Ground Surface Elevation: 103.45 m GRAVEL:50 mm FILL: clayey silt, trace gravel, rootlets, organic o¹⁴ staining, brown, moist, very stiff to stiff 100 19 Ó 103 SS1 sampled for Metals and Inorganics and PAHs on January 21, 2021 012 CLAYEY SILT TILL: trace sand, trace gravel, fragments of Shale, oxidized fissures, mottled, grey, moist, stiff to hard SS 2 100 13 Ö SS2 sampled for VOCs and PHCs on January 21, 2021 102 011 0 SS 3 100 44 2 o¹³ 101 100 90 0 100.85 BEDROCK: Shale, highly weathered, occasiona2.6 Limestone fragments, grey, moist 50 5 100 50/5 100 Groundwater sampled for PAHs on February 3, 2021 50 7 5 -first water strike ⊻ 98 50 97.33 End of Borehole 1. Borehole open upon completion of drilling. 2. Groundwater level at 5.48 m bgs measured upon completion of drilling. Groundwater level reading at 4.77 m bgs on February 8, 2021. B.I.G. Consulting Inc. $\overline{\underline{\lor}}$ Groundwater depth on completion of drilling: 5.48 m. 4.77 m

RECORD OF BOREHOLE No. BH/MW114 Project Number: BIGC-ENV-349B Drilling Location: See BH Location Plan Logged by: TVH Project Client: **Distrikt Capital** Drilling Method: 150 mm Hollow Stem Augering + Rock Compiled by: TVH Coring Truck Mounted Drill Rig Project Name: Geotechnical Investigation Drilling Machine: Reviewed by: SS Project Location: 217 & 227 Cross Ave. and 571 Argus Rd., Oakville, ON Date Started: Date Completed: 27 Jan 21 21 Jan 21 Revision No.: 1, 9/2/21 LITHOLOGY PROFILE LAB TESTING **SOIL SAMPLING FIELD TESTING** Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 NSTRUMENTATION NSTALLATION PenetrationTesting Value/RQD Ξ SPT DCPT Sample Number **COMMENTS DESCRIPTION** Plot % Sample Type ELEVATION MTO Vane* Nilcon Vane Ξ wer Explosive Limit (LEL) ♦ Intact Remould .ithology △ Intact ▲ Remould SPT 'N' \ Plastic * Undrained Shear Strength (kPa) Liquid 40 60 Geodetic Ground Surface Elevation: 103.31 m TOPSOIL: 150 mm 20 40 60 20 FILL: clayey silt, trace gravel, mottled, grey, moist, very stiff to firm 100 20 103 Ó 011 SS1 sampled for Metals and Inorganics and PAHs on January 21, 2021 019 SS2 sampled for Metals and Inorganics and PAHs on January 21, SS 2 100 8 Ö 102 CLAYEY SILT TILL: trace sand, trace gravel, 011 3 37 frgments of Shalr, oxidized fissures, mottled, grey, moist, hard SS 100 O 2 101 o¹¹ SS 4 100 57 0 **BEDROCK:** Shale, highly weathered to excellen 2.8 qaulity, occasional Limestone layers, grey, moist to damp 9 100 50/5 100 99 50 5 07 - first water strike 5 98 o¹⁹ 97 96 ROCK CORE BEGINS RC 35 0 - Poor Quality 8 95 RC 2 28 69 0 - Poor Quality B.I.G. Consulting Inc. $\overline{\underline{\sl}}$ Groundwater depth on completion of drilling: NOT MEASURED DUE TO DRILLING WATER m. 12-5500 Tomken Rd. Mississauga, ON L4W 2Z4 Groundwater depth observed on 08/02/2021 at a depth of: 18.88 m. Canada T: 416-214-4880 Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and requires interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was F: 416-551-2633 Scale: 1:47 commisioned and the accompanying Notes to Record of Boreholes'.

Page: 1 of 3

Project Number: BIGC-ENV-349B Drilling Location: See BH Location Plan Logged by: TVH LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING LAB TESTING * Rinse pH Values
2 4 6 8 10 12

Soil Vapour Reading
A parts per million (ppm)
100 200 300 400 INSTRUMENTATION INSTALLATION PenetrationTesting 'N' Value/RQD% Ξ O SPT DCPT COMMENTS Sample Number **DESCRIPTION** ithology Plot Recovery (%) Sample Type ELEVATION MTO Vane* Nilcon Vane* Ξ Lower Explosive Limit (LEL)
W_P W W_L

Plastic Liquid △ Intact
 ◆ Remould
 ◆ Remould DEPTH SPT * Undrained Shear Strength (kPa) 40 60 20 40 60 20 **BEDROCK:** Shale, highly weathered to excellent qaulity, occasional Limestone layers, grey, moist to damp 94 10 93 RC 3 98 62 Ö - Fair Quality 92 0 RC 4 100 87 - Good Quality 12 91 13 90 RC 5 100 76 0 - Good Quality 89 RC 6 100 83 0 - Good Quality 15 88 16 87 RC 100 98 - Excellent Quality 86 0 RC 8 97 89 18 - Good Quality 19⁻

Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and requires interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying Notes to Record of Boreholes'.

Scale: 1:47

Project Number: BIGC-ENV-349B Drilling Location: See BH Location Plan Logged by: TVH

	LITHOLOGY PROFILE	SC	DIL SA	MPLI	NG			FIELD TESTING	LAB TESTING		
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DЕРТН (m)	ELEVATION (m)	PenetrationTesting O SPT	# Rinse pH Values 2	INSTRUMENTATION INSTALLATION	COMMENTS
	BEDROCK: Shale, highly weathered to excellent qaulity, occasional Limestone layers, grey, moist	, , , , , , , , , , , , , , , , , , ,	0,		- 0,		84 —				
	to damp	RC	9	100	94	-	-	0			
	- Excellent Quality					-	-				
						Ė	-				
						— 20 -	-				
						-	83 —				
						-	-				
						-					
						Ė					
	- Excellent Quality	RC	10	100	90	— 21 -		0			
						-	82 —				
						F	-				
		L	L	L		F	-				
						- 22	-				
						- 22	-				
						-	81 —				
		RC	11	100	97	-	-				
	- Excellent Quality					-	-				
						_ 23					
						_ 23	-				
	79.99 Borehole terminated at 23.32 23.3						80 -				
	Notes: 1. Borehole open upon completion of drilling. 2. Groundwater level not measured upon completion of drilling due to introduced drilling water. 3. Groundwater level reading at 18.88 m bgs on February 8, 2021.										

RECORD OF BOREHOLE No. BH/MW115 Project Number: BIGC-ENV-349B Drilling Location: See BH Location Plan Logged by: TVH TVH Project Client: Distrikt Capital Drilling Method: 150 mm Hollow Stem Augering + Rock Compiled by: Coring Truck Mounted Drill Rig Project Name: Geotechnical Investigation Drilling Machine: Reviewed by: SS Project Location: 217 & 227 Cross Ave. and 571 Argus Rd., Oakville, ON Date Completed: 26 Jan 21 Date Started: 22 Jan 21 Revision No.: 1, 9/2/21 LITHOLOGY PROFILE LAB TESTING **SOIL SAMPLING FIELD TESTING** Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 NSTRUMENTATION NSTALLATION PenetrationTesting Value/RQD Ξ SPT DCPT Sample Number **COMMENTS DESCRIPTION** Plot % Sample Type ELEVATION MTO Vane* Nilcon Vane Ξ wer Explosive Limit (LEL) ♦ Intact Remould .ithology △ Intact ▲ Remould SPT 'N' \ DEPTH * Undrained Shear Strength (kPa) Plastic Liquid Geodetic Ground Surface Elevation: 101.72 m ASPHALT:100 mm asphalt concrete over 300 40 60 20 40 60 20 mm granular bases 59 16 0 015 FILL: clayey silt, trace gravel, rootlets, organic 0.4 staining, dark brown, moist, very stiff SS1 sampled for Metals and Inorganics and PAHs on January 22, 2021 101 CLAYEY SILT TILL: trace sand. trace gravel, 0.8 o¹³ oxidized fissures, mottled, grey, moist, stiff to hard SS2 sampled for Metals and Inorganics and PAHs on January 22, 2 100 12 Ö 100 o¹² 32 0 SS 3 84 2 010 50 13 50/13 100 BEDROCK: Shale, highly weathered to excellen 2.4 qaulity, occasional Limestone layers, grey, moist to damp 99 50 5 6 100 50/5 98 - first water strike 50 5 97 5 96 95 94 **ROCK CORE BEGINS** RC 83 30 0 - Poor Quality 8 93 RC 2 98 74 0 - Fair Quality B.I.G. Consulting Inc. ☑ Groundwater depth on completion of drilling: NOT MEASURED DUE TO DRILLING WATER m. 12-5500 Tomken Rd. Mississauga, ON L4W 2Z4 Groundwater depth observed on 08/02/2021 at a depth of: 17.91 m. Canada T: 416-214-4880 Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and requires interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was F: 416-551-2633 Scale: 1:47 commisioned and the accompanying Notes to Record of Boreholes'.

Page: 1 of 3

Project Number: BIGC-ENV-349B Drilling Location: See BH Location Plan Logged by: TVH LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING LAB TESTING * Rinse pH Values
2 4 6 8 10 12

Soil Vapour Reading
A parts per million (ppm)
100 200 300 400 INSTRUMENTATION INSTALLATION PenetrationTesting 'N' Value/RQD% Ξ O SPT DCPT **COMMENTS** Sample Number **DESCRIPTION** ithology Plot Recovery (%) Sample Type ELEVATION MTO Vane* Nilcon Vane* Ξ Lower Explosive Limit (LEL)
W_P W W_L

Plastic Liquid △ Intact
▲ Remould ♦ Intact♦ Remould DEPTH * Undrained Shear Strength (kPa) SPT 40 60 20 40 60 20 **BEDROCK:** Shale, highly weathered to excellent qaulity, occasional Limestone layers, grey, moist to damp 92 10 RC 3 99 61 Ö - Fair Quality 91 90 RC 4 99 77 Ö. - Good Quality 12 89 13 RC 5 100 98 - Excellent Quality 88 87 RC 6 98 87 0 15 - Good Quality 86 16 RC 100 95 - Excellent Quality 85 84 RC 8 100 92 0 - Excellent Quality 83 19

Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and requires interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying Notes to Record of Boreholes'.

Scale: 1:47 Page: 2 of 3

Project Number: BIGC-ENV-349B Drilling Location: See BH Location Plan Logged by: TVH

	LITHOLOGY PROFILE	SC	IL SA	MPLI	NG			FIELD TESTING	LAB TESTING		
	-				О%			PenetrationTesting	★ Rinse pH Values 2 4 6 8 10 12	INSTRUMENTATION INSTALLATION	
			er		/RQ		Œ	O SPT • DCPT	Soil Vapour Reading Δ parts per million (ppm) 100 200 300 400	ξ×	COMMENTS
Plot	DESCRIPTION	ype	g m	(%)	alue	Ê	S	MTO Vane* Nilcon Vane*	100 200 300 400		COMMENTS
)go		e I	<u>e</u>	ery	>	-	¥		▲ Lower Explosive Limit (LEL) W _P W W _L	53	
Lithology Plot		Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION	* Undrained Shear Strength (kPa)	Plastic Liquid	ISTE IST/	
	BEDROCK: Shale, highly weathered to excellent	Ö	Ö	ď	ν̈		<u> </u>	20 40 60 80	20 40 60 80		
	BEDROCK: Shale, highly weathered to excellent qaulity, occasional Limestone layers, grey, moist to damp					-	_				
	- Excellent Quality	RC	9	100	91	-	-	0		: : .	Groundwater sampled for Metals and Inorganics on February 3, 2021
						E	82 —				Inorganics on February 3, 2021
						F	-			· ·	
						— 20 -	_				
						Ė	_				
						-	-			目	
						_	-				
						F	81 —				
		RC	10	96	89	_ 21	_	0			1
	- Good Quality				00	-	-				
						<u> </u>	-				
						Ŀ	=				
						F	80 —				
						F	-				
						— 22 -	-		1		
						E	-				
						-	-				
	- Excellent Quality	RC	11	100	92	F	_				
						- -	79 —				
=						- 23	-				
						°	-				
	78.40 Borehole terminated at 23.32 23.3										
	Notes:										
	Borehole open upon completion of drilling.										
	Borehole open upon completion of drilling. Groundwater level not measured upon completion of drilling due to introduced drilling										
	l water										
	Groundwater level reading at 17.91 m bgs on February 8, 2021.										

				R	ECO	RD C)F BC	REF	HOLE	E No	. BH	1					ME	TRIC	1 OF 1
PROJ	I. NO. BIGC-GEO-349A	LOC	ATIO	ON _	571 Arg	gus Road	and 21	7 Cross	Avenue	, Oakvi	ille						ORIG	SINATED	BY F.V.G
DATL	JM Geodetic	BOF	REHO	OLE TY	/PE	Contino	ous flight	, 6 inche	es, Solid	d Stem	Auger						СОМ	PILED B	YS.L
l	I. NAME Geotechnical Investigation																		′
	SOIL PROFILE			SAMPL	FS		T	DYNA	MIC CO	NE PEI	NETRA	TION							
	30IL FROI ILL	T ₊		JAIVII L		GROUND WATER CONDITIONS	ELEVATION SCALE	ı	IANCE 0 4			30 1	00	PLASTI LIMIT	C NATI MOIS CON	URAL TURE	LIQUID LIMIT	UNIT	REMARKS &
ELEV		PLO	BER	TYPE	LUE	ND W	NO.	_			TH kP		<u> </u>	W _P		<i>N</i>	W _L	J. Ä	GRAIN SIZE DISTRIBUTION
DEPTH	DESCRIPTION	STRAT PLOT	NUMBER		'N" VALUES	ROUN	EVAT		NCONE		+ - ×	FIELD		WA.	TER CC	ONTENT	Γ(%)	γ	(%)
101.55		S			F	ō	╗					30 1		2	0 4	10 6	30	kN/m³	GR SA SI CL
101:5	ASPHALT: 90 mm GRANULAR: 350 mm													ľ					
0.1	GRANGLAR. 550 IIIII		,																
			1	SS1	25														
101.1 0.4	FILL: clayey silt to silty clay, some		í																
0.4	sand, organic staining, dark brown to black, moist		1																
	black, moist	\otimes																	
			_			1								_ c					
		\otimes																	
100.5																			
100.5	CLAYEY SILT TILL/SILTY CLAY	1/2	2	SS2	6														
	TILL: brown, moist, hard - trace rootlets between 1.1 m and 1.5 m																		
	1.5 111																		
		9	<u> </u>											0					
		97	1																
		11/2	1																
		11	3	SS3	55														
			1																
			L																
			ł																
		17	<u> </u>			-								0					
		1	ł																
		9/	·																
98.9		9/	4	SS4	80														
2.7	SHALE: highly weathered, grey, damp																		
	·																		
00.0																			
98.4 3.2	Borehole terminated at 3.2 m	+																	
	Notes: 1. Open and dry upon completion of																		
	drilling																		

				R	ECO	RD C	F BC	DREH	IOLE	E No	. BH	2					ME	TRIC	1 OF 1
PROJ	NO. BIGC-GEO-349A	LOC	ATIC	ON _	571 Arg	gus Road	and 21	7 Cross	Avenue	, Oakvi	ille						ORIG	SINATED	BY F.V.G
DATU	M Geodetic	BOF	REHO	DLE TY	/PE	Contino	ous flight	, 6 inche	s, Solic	d Stem	Auger						COM	PILED B	Y S.L
1	. NAME_Geotechnical Investigation																		·
	SOIL PROFILE		5	SAMPL	FS		l	DYNAI	VIC CO	NE PEI	NETRA	TION							
ELEV DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	SHEA O UN	0 4 AR STI NCONF JICK TF	0 6 RENG INED RIAXIAL	60 8 6TH kP + - ×	30 10 Pa FIELD V	VANE ANE	W _P 	TER CC	TENT W DOMTENT	` ,	NUI Y	REMARKS & GRAIN SIZE DISTRIBUTION (%)
101.93 109:9	ASPHALT: 75 mm							2	0 4	0 6	8 08	30 10	00	o2	0 4	0 6	80	kN/m³	GR SA SI CL
0.1	GRANULAR: 330 mm																		
101.5 0.4	FILL: clayey silt to silty clay, topsoil inclusion, some rootlets, dark brown to black, moist		1	SS1	14														
101.0	SILT TO CLAYEY SILT: trace rootlets, reddish brown, very moist, loose		2	SS2	9									0					
100.4	CLAYEY SILT TILL/SILTY CLAY TILL: brown, moist, hard		3	SS3	31									0					
	- grey below 1.8 m					-													
99.6	SHALE: weathered, grey, damp		4	SS4	100	-								0					
			\vdash			1													
						1								0					
98.7	- limestone at 3.2 m Borehole terminated at 3.2 m Notes: 1. Open and dry upon completion of drilling		5	SSS	100									0					

				REC	COR	D OF	BOR	ЕНО	LE N	lo. E	BH/M	W3					ME	TRIC	1 OF 1
PROJ	I. NO. BIGC-GEO-349A	LOC	ATIO	_ NC	571 Ar	gus Road	and 21	7 Cross	Avenue	, Oakvi	lle						ORIG	SINATED	BY <u>F.V.G</u>
DATU	JM Geodetic	BOF	REH	T JJC	YPE .	Contino	ous flight	, 8 inche	s, Hollo	w Sten	n Auger						СОМ	PILED B	Y <u>S.L</u>
PROJ	I. NAME Geotechnical Investigation																	CKED BY	,
	SOIL PROFILE		-	SAMPL	ES	T~	Щ	DYNA	MIC CO	NE PEI	NETRA	TION		Ι					DELUIDIO.
		<u> </u>			ω	GROUND WATER CONDITIONS	ELEVATION SCALE	1	0 4			30 10	00	PLASTI LIMIT	C NATU MOIS CON	JRAL TURE TENT	LIQUID LIMIT	UNIT	REMARKS &
ELEV	DECODIDEION	LPLO	NUMBER	TYPE	I NE	ND W	NO	SHEA	R STI	RENG	TH kP	'a		W _P	V		W _L		GRAIN SIZE DISTRIBUTION
DEPTH	DESCRIPTION	STRAT PLOT	N	}	'N" VALUES	ROU	EVA		NCONF			FIELD LAB VA		WA ⁻	TER CC	NTENT	Γ(%)	γ	(%)
102.87	ASPHALT: 65 mm	0)			_	١٠	ı ıı					80 10		2	0 4	0 6	60	kN/m³	GR SA SI CL
10 2.9 0.1	GRANULAR: 330 mm		,			F													
						F													
102.5			1	SS1	14		İ												
0.4	FILL: clayey silt, organic staining, dark brown, moist	\otimes																	
102.3 0.6	CLAYEY SILT TILL/SILTY CLAY	+	_																
0.0	TILL: mottled brown, moist, very stiff to hard	1																	
		97												0					
		97																	
		1	2	SS2	60														
		11																	
		11	1																
		11] 目:													
	 shale-till complex below 1.5 m, brownish grey, moist, hard 	1																	
l			3	SS3	100														
101.1	SHALE: weathered, grey, damp													0					
			4	SS4	100														
100.6	Borehole terminated at 2.3 m					.:													
	Notes: 1. Open and dry upon completion of drilling																		
	2. Water level at 1.70 m bgs (Elev. 101.17 m asl) on November 29, 2019																		
	101.17 III day 011 November 20, 2010																		
				1	1			1			1	1				1		I	

				REC	ORI	O OF	BOR	EHC)LE I	No. E	BH/M	W4					ME	TRIC	1 I V
Dal "	8YI8 <u>I%/cNKyIN605</u> C	Нс	CF9	6Υ _	4e1 Crl	M7vaixr	r xkr . 1	e c ri vv	Cf ok7	obl xBf	ΜO						_la%K	%CFy9	IL <u>V8 8</u> K
9 CFP	A Koirotw	IIa	уЈІ	Hy FL	.Dy	ciktwki	i7∨-,\ M ¢	tbSwkr:p	ovbJi,,	i d mtos	C7Wor	1					_cl Al	D%Hy91	m8H
Dal "a	BYCAy_Koi to: pkwx, %f ovt\%twk	9 CF	у _	. 215811	8 1 N. 2	158118 4	1										cJyc	&y91L	
	ml%/dDalV%/dy		r	mCA DH	lv m			9LYC	A% cl	Yy Dy` / DH F									I
y Hy/ 9 y DFJ	9ymca%2F%Y	mFa CF DH F	YPAI ya	FLDy	'Y" / СНРу ш	al PY9 GCFya cl Y9%%Ym	/ CF%Y mcCHy	mJ y	.2 (CamF YclY\	02 3 ayYK /%y9	FJ BC	52 1: 0x V%H9	/ CYy	DHCmF9 H%A%6 d _D	cl Y	PaCH nFPay FyYF d o YFyYI	H% P%3 H%A %6 d _H	PY% Gy%JF	ayACa&m & KaC%/m%% 9%mFa%PF% ZMQ
12. 86.		붙				Kal c	y Hy/			a % X % H D 2 3		HCI / 0			-	-	32	BYTs 6	Ka mC m%
122 8 2 281	ASPHALT: e4 s s GRANULAR: . S2 s s													·					
12.82	CLAYEY SILT TILL/SILTY CLAY		1	mm1	14														
	TILL: s i tt,or gri d kbs i wtbf orh vtw- ti pxrr	1	<u> </u>																
		97	-											0					
		9/		mm	60														
			-																
	Nvpx,oNtwy∶is Qou go,id 184 s b		F											0					
	gnidkwop Whohbsiwitbpxnr		6	mm6	122														
		1	-																
12282																			
. 86	SHALE: doxtporor bWohbr xs O		0	mm0	122									ਁ					
5588 . &e	Na 7k (1E&esti0&2s																		
	a) 9 U2 M ao:i forh U40 M																		
	Np.W/p,h doxtporor b-wko.NV/nkwkor W/oh vpx,o dwtp,wsrovtiko wktorgor v																		
	N,worovtikoxt. 86 s xkr 682 s Nfontwx,-nx:t7noxt. 85 s		1	clay															
	Ns i tt, wk Wr 70 ti dxton wktr 7 vwk xt 682																		
5000	Nsorwis tipxnrni:B																		
5S86 082	Na 7k (. E082 s ti 484 s																		
	a) 9 U41 M ao:ifonhU5SM NpwMp,hdoxtponor Whohypx,o gotdook 082 s xkr 085 s Nysrovtiko gotdook 082 s ti 080 s dwp 122 s s i - wttongorror ypx,o xt																		
	08is			clay															
	Nsitt,wk:Wxt0&2s N-nx:t7no-v,wkn:Wsxtonwx,igvonforxt 08s		1																
Fam	Nkxt7nx,-nx:t7novgotdook0&esxkr 0&5s																		
538S 484	N7kdoxtporor Whoh vpx,o gotdook 085 s xkr 484 s	===																	
	Na7k (6E484 s ti e s a) 9 U34 M																		
	a) 9 U34 M ao:iforh U122 M NWoh vpx,ob-wko NWok wkor bsor w7s ti																		
	pxrr Nv,Wpt,hdoxtporor ti 7kdoxtporor		6	clay															
	vo: twkv gotdook 484 s xkr 483 s b gotdook 488 s xkr 38 s bxkr																		
	gotdook 380 s xkr e82 s Npwyo,h doxtporor vo: twk gotdook																		
5486 e82	483 s xkr 48ès ¬ N:is Qoto,h doxtponor dwtp s xRn ┌																		
eœ	-nx:t7nov gotdook 48es xkr 485sb -wyor dwtp Wroh:,xhoh vynt twy																		
	Ns xRn-nx: t7rov -wor dwp Wroh : ,xhoh vwt twy gotd ook 386 s xkr 380																		
	s N42 s s inx: t7no -w, wk.W: , x hoh vvyt tvy		,	01.51															
	igvorfor xt3&es Na7k (0 Ees xkr S&4s		0	cl ay															
	a) 9 Ue. M ao:iforhU5SM																		
Fem	Nv,Whot,h doxtporor Whoh vpx,o dwlp .4 s s i-,ws ovtiko wktorgor v xte&6																		
568S S84	s bforh-wkoNVn/xwkorbpxnr N:,oxkfortwx,-nx:t7noxte&6s						1												
	Nri 7V/p -nx: t7rov dvlp -nx: t7ro -www.W s xtonwi, gotdook e80 s xkr e84 s																		
	xkr gotdook e&Ss xkr e&Ss Nnor vtxwkrwktWigxkrwkrWgotdook e&4s						1												
	xkr e&e s		4	clay			1												
			L				L	<u></u>											<u></u>

+ 6 b× 6 E $^{\rm Y7s}$ gonv ro-onti $^{\rm CF}$ VC%Pa y

				REC	ORI	O OF	BOR	ЕНО	LE N	lo. B	H/M	W4					ME	TRIC	. I V .
Dal "	8YI 8 1 % c NKyl N605C	Нс	CF%	ΔY _	4e1 Cnl	M⊽vaixr	xkr . 1e	e c ni vv	Cf ok7o	blxBfw,	,O						1 a % K	%CFy9	IL_V8.8K
9 CFF	A Koirotw	Па	уЈІ	Hy FL	.Dy _	ciktwki	7v -,\ W pt	bSwkr:po	i"i Ldvo	d mtos	C7Von	1					cl A	D%Hy9 IL	m8H
Dal "	8YCA y Koi to: pkwx, %f ovtWktwk	9 CF	у _	2158 18	8 1 N. 2	1581184											сЈус	&y91L	
	ml%/dDalV%/dy		n	nCA DH	ly m	Б	£	9LYC/ aym‰	Noscl FCYcy	Yy DyY DHIF	y Fa CF	%Y		DI PwE	∡ YCFF	Pa CH	H% P%	Ш	ayACa&m
<u>y Hy /</u> 9 y DFJ	9 ymca 169F% Y	mFa CF DH F	YPAI ya	FLDy	"Y" / CHPym	Kal PY9 GCFya cl Y9%%Ym	y Hy / CF% Y mc CHy	mJ y (○ P` •) I	CamFa ColyV	%X%H	FJ BD + ×	V%H9 / HCI / C	CYy Yy	d _□ G CF	=ya cl	FyYF d > YFyYF	H%A.%6 d _H ────────────────────────────────────	Α PY% Gy%%J	& Ka C% m%y 9 %Fa %PF%Y ZMQ
5.8. 1281 528e 1183 \$58 1681	Na7k (4ES84 s xkr 1281 s a) 9 Ue2 M a) 1 Ue2 M Ao:i forth U5S M NWohypx,o dup, w ovti ko Wetorgor vb forh-wcNWokwor bf orh pxrr ri:B Nf ortwx, -n: t7ro xt 582 s Nd wo -n: t7ro -wor dup -n: t7ro -wwkVbx xtonw, xt 581 s Ns i ttwkVlygotdook 581 s xkr 584 s Ns i ro txx tdofo 21. +Qpi nwi ktx, so:pxkwx, -n: t7rov (continued) Na7k (3E1281 s xkr 1183 s a) 9 US2 M ao:i forth U122 M Nv.Wyth doxtporor ti 7kdoxtporor Vyoh yxy, od vp ys ovti ko wtorgor vb forh pxrr ri:B Nf ortwx, -n: t7rov xt 1281 s xkr 1184 s Ni forth dox -n:: t7ro -wor dvp r xrB Woh xkr forth s i wt vpx,oNw; i s Qou xt 1283 s Ns i tt,or xkr g,i t: por r wr.i,i 7rxtvkrvi -wybt ti r xrB Woh Na7k (eE1183 s xkr 1681 s a) 9 USS M ao:i forth U122 M N7kdoxtporor Woh yx,o dvp s wki n ys ovti ko wtorgor vbpxrr ri:B Ne4 s s i -fortwx, -n: t7ro v xt 1.83 s Nf orth kxrri dby,Wybt,ni r 7yb pi nwi ktx, -n:: t7rov v wt ori ror Txs wtxtor vpx,o gotdook 1.8e s xkr 1.85 s b-n:: t7rov -vor dvp si wt vpx,oNy; i s Qou Ns i ro tpxk owybt 25+Qpi nwi ktx, sc :pxkwx, -n:: t7rov Na7k (SE1681 s xkr 1083 s a) 9 U5e M ao:i forth U122 M		е	cl ay			14		2 0	2 3	2 S	2 12	222	•	2 0	2 3	2	BY To 6	Ka mC m% cH
108	MWoh vpx,o d Vp, ys ovti ko Vetorgor vb forh pxrr ri: B Nki dwo-nx: t7rov xt 168 s Ntproo 26Cf orh kxmi d xkr vs i i tp pi nwi ktx, s o: pxkwx, -nx: t7rov Na 7k (SE108 s xkr 138 s a) 9 U 5e M ao: i forh U 122 M N7kd oxtporor Woh vpx,o d Vp ys ovti ko Vetorgor vbf orh -vs vok ko Vetorgor vbf orh -vs vok ko Vetorgor vbf orh -vs vok vbf vpx,o d Vp		5	clay															
138	Nror vixwhwt/Vijtxkrwht/Wijtxdtook 1088 s xkr 1085 s Nforthwx,-rx: t7ro xt 1085 s -i n142 s s Nforthwx,-rx: t7ro xt 1085 s -i n142 s s Nforth xxmi d xkr vs i i tp -rx: t7rov d typ ki -rx: t7ro -wwht/Ws xtonwt,v Orovokt Na 7k (12E138 s xkr 1e8e s a) 9 U54 M ao: i forth US4 M N7kdoxtporor Whoh vpx,o d wtp, wtt,o ti ki ws ovti ko wt,7vwhvbforth -wton/Wkwtwor bforth pxm ni: B		12	clay															
1e&e	Niko Z (Ckxmid xkr:,oxk-nx:t7ro dwlp ki-nx:t7ro-wykt/Wsxtonwt, Nswhosx,pinzeiktx,-nx:t7nok/Wbki fortwx,-nx:t7rov Borehole terminated at 17.7 m YitovE 18G xtonxt 138 s 7 Clk:is Qotwik i-rnwkt/W . I Cok 7 Clk:is Qotwiki-rnwkt/W 68G xton,ofo,xt6843 s gW Zy,of8 558e3 s xv,Clk Yifos gon.5b.215																		

				R	ECO	RD O	F BC	DREHC	LE N	lo. E	3H5					ME	TRIC	1 OF 1
PROJ	. NO. BIGC-GEO-349A	LOC	ATIC	ON _	571 Arg	gus Road	and 21	7 Cross Ave	nue, Oa	akville						ORIG	SINATED	BY <u>F.V.G</u>
DATU	M Geodetic	BOR	EHC	DLE TY	PE .	Contino	ous flight	t, 6 inches,	Solid Ste	em Aug	jer					COM	PILED B	YS.L
PROJ	. NAME_Geotechnical Investigation	DAT	E _2	2019.11	.21 - 20	19.11.21										CHE	CKED BY	·
	SOIL PROFILE		S	AMPL	ES	H	\LE	DYNAMIC RESISTAL	CONE ICE PL	PENET	TRATION		DI ASTI	_ NATL	JRAL	LIQUID	-	REMARKS
ELEV DEPTH	DESCRIPTION	STRAT PLOT	NUMBER	TYPE	"N" VALUES	GROUND WATER CONDITIONS	ELEVATION SCALE	SHEAR O UNCO	40 STREI ONFINE (TRIA)	60 NGTH D (IAL	80 I kPa + FIEI × LAB	100 D VANE VANE	W _P WA	C NATU MOIS' CONT W	v > NTEN	LIMIT W _L ——	γ UNIT WEIGHT	& GRAIN SIZE DISTRIBUTION (%)
103.39	FILL: clayey silt, some sand, mottled						Ш	20	40	60	80	100	0	0 4	0 6	50	kN/m³	GR SA SI CL
102.9	brown, moist		1	SS1	14													
0.5	CLAYEY SILT TILL/SILTY CLAY TILL: mottled brown, moist, hard			SS2	20	-							0					
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	2	552	28	-							0					
			3	SS3	38	-												
	- shale-till complex below 2.7 m, brownish grey, moist, hard		4	SS4	51								o					
100.3	SHALE: weathered, grey, damp		5	SS5	100	-							0					
99.4	Borehole terminated at 4.0 m																	
+.0	Notes: 1. Open and dry upon completion of drilling																	

				REC	ORI	D OF	BOR	ЕНО	LE N	No. E	BH/M	W6					ME	TRIC	1 OF 1
PROJ.	NO. BIGC-GEO-349A	LOC	ATIC	ON _	571 Arg	gus Roa	d and 21	7 Cross	Avenue	e, Oakvi	ille						ORIG	SINATED	BY F.V.G
DATU	M Geodetic	BOR	REHC	DLE TY	PE .	Contin	ous flight	, 8 inche	s, Hollo	ow Sten	n Auger						СОМ	PILED B'	YS.L
PROJ.	NAME_Geotechnical Investigation																		,
	SOIL PROFILE		S	SAMPL	FS	T.,	Гш	DYNAM	VIC CO	NE PE	NETRA	TION							
	00.2.1.101.122					GROUND WATER CONDITIONS	ELEVATION SCALE	1	0 4			30 1	00	PLASTI LIMIT	C NATI MOIS CON	URAL TURE	LIQUID LIMIT	UNIT	REMARKS &
ELEV		STRAT PLOT	NUMBER	ЭE	'N" VALUES	W QI	NO NO		Ĺ	<u> </u>	TH kP	1	1	W _P		N	WL	N II	GRAIN SIZE DISTRIBUTION
DEPTH	DESCRIPTION	IRAT	NOM	TYPE	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	SOUN	EVAT		ICK T			FIELD LAB VA		WA	TER CC	_	Γ(%)	γ	(%)
102.74		S			F	9						10 10 10 10 10 10 10 10 10 10 10 10 10 1					60	kN/m³	GR SA SI CL
102:7	TOPSOIL: 90 mm	- 				Ħ													
0.1	FILL: clayey silt, some sand, some rootlets, organic staining, dark brown, moist		1	SS1	8														
101.8	CLAYEY SILT TILL/SILTY CLAY					-								0					
	TILL: mottled brown, moist, very stiff to hard		2	SS2	21	-													
			3	SS3	65									0					
	- shale-till complex below 2.3 m, grey, moist, hard		4	SS4	33									0					
99.6	SHALE: weathered, grey, damp		5	SS5	100									0					
3.7	Borehole terminated at 3.7 m Notes: 1. Open and dry upon completion of drilling 2. Dry on November 29, 2019																		

Appendix C – Pictures of Rock Core Samples

ROCK CORE PICTURES BH/MW105

B.I.G. Consulting Inc.

12-5500 Tomken Road Mississauga, Ontario, L4W 2Z4

Tel: (416) 214-4880 Fax: (416) 551-2633 www.bigconsultinginc.com

Project No.:	BIGC-ENV-349B			Prepared By:	SS
Project:	Geotechnical Investiga	ation		Checked By:	SS
Location:	217 & 227 Cross Aven	ue and 571 Argus Ro	ad, Oakville, ON	Date:	Feb. 02'21
Rock Core	Core Depth From	Core Length	Core Recovery		RQD
No.	(m)	(m)	(%)		(%)
RC-1	7.67	0.56	78		27
RC-2	8.23	1.52	100		81
RC-3	9.75	1.52	99		82
RC-4	11.28	1.52	99		91
RC-5	12.80	1.52	99		97
RC-6	14.33	1.52	99		96
RC-7	15.85	1.52	99		95
RC-8	17.37	0.80	97		98
RC-9	18.90	1.52	98		83
RC-10	20.42	1.52	99		93
RC-11	21.95	1.47	99		92

FIGURE- C1

ROCK CORE PICTURES BH/MW114

B.I.G. Consulting Inc.

12-5500 Tomken Road Mississauga, Ontario, L4W 2Z4

Tel: (416) 214-4880 Fax: (416) 551-2633 www.bigconsultinginc.com

Project No.:	BIGC-ENV-349B			Prepared By:	SS
Project:	Geotechnical Investig	ation		Checked By:	SS
Location:	217 & 227 Cross Aven	ue and 571 Argus Ro	ad, Oakville, ON	Date:	Feb. 02'21
Rock Core	Core Depth From	Core Length	Core Recovery		RQD
No.	(m)	(m)	(%)		(%)
RC-1	7.62	0.46	98		35
RC-2	8.08	1.52	69		28
RC-3	9.60	1.52	98		62
RC-4	11.13	1.52	100		87
RC-5	12.65	1.52	100		76
RC-6	14.18	1.52	100		83
RC-7	15.70	1.52	100		98
RC-8	17.22	1.52	97		89
RC-9	18.75	1.52	100		94
RC-10	20.27	1.52	100		90
RC-11	21.80	1.52	100		97

FIGURE- C2

ROCK CORE PICTURES BH/MW115

B.I.G. Consulting Inc.

12-5500 Tomken Road Mississauga, Ontario, L4W 2Z4

Tel: (416) 214-4880 Fax: (416) 551-2633 www.bigconsultinginc.com

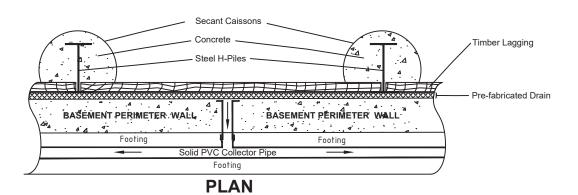

Project No.:	BIGC-ENV-349B			Prepared By:	SS
Project:	Geotechnical Investig	ation		Checked By:	SS
Location:	217 & 227 Cross Aven	ue and 571 Argus Ro	ad, Oakville, ON	Date:	Feb. 02'21
Rock Core	Core Depth From	Core Length	Core Recovery		RQD
No.	(m)	(m)	(%)		(%)
RC-1	7.62	0.46	83		30
RC-2	8.08	1.52	98		74
RC-3	9.60	1.52	99		61
RC-4	11.13	1.52	99		77
RC-5	12.65	1.52	100		98
RC-6	14.18	1.52	98		87
RC-7	15.70	1.52	100		95
RC-8	17.22	1.52	100		92
RC-9	18.75	1.52	100		91
RC-10	20.27	1.52	96		89
RC-11	21.80	1.52	100		92

FIGURE- C3

Appendix D – Conceptual Permanent Perimeter and Underfloor Drainage System with Shoring

Timber Lagging - Filter Fabric Plastic Core Pre-fabricated Vertical Drain: Miradrain or equivalent Solid PVC Connector Pipe (75-100mm dia.): Install at regular intervals. At one end, flange of pipe secure on plastic surface of Drain; the other end, connect to Solid PVC Collector pipe leading to frost free sump/outlet. Basement Concrete Floor -Cut-out Plastic Core Drain without damaging the Filter Fabric at the Locations of Connectivity only. Free Draining Granulr Base. **POOTING** Under-floor Drain (If Required): Comprising 75-100mm diameter perforated pipe surrounded by minimum 150mm thick layer of 19mm clear stone wrapped in a synthetic filter febric (Mirafi 140 or equivalent) draining to a frost-free outlet (REFER GEOTECHNICAL REPORT) Secant Caisson Wall 100mm Solid PVC Collector Pipe leading to a frost free sump Steel H-Pile

TYPICAL SECTION

Note:

- A continuous blanket of prefabricated drainage system, Miradrain 6000 or equivalent, should extend continuously from the top of footings to approximately 1.2m below the ground surface.
- 2. All terminal end openings (top, bottom & sides) of drain must be covered with terminal fabic flaps and fasten to prevent intrusion of concrete and soils into the drainage core.
- 3. All surface joints of the Miradrain should be sealed with tape.
- 3. The backfill materials behind the lagging should be free draining. If wet conditions are encountered, geotextile filter fabric or straw should be used to prevent loss of ground.
- 4. Subfloor drainage system (if required) should keep/treat separate from the perimeter drainage system.

B.I.G. CONSULTING INC.	LEGEND	TITLE AND LOCATION	PROJECT NO.	DWN.
t: (416) 214 4000 f: (416) 551 2622		CONCEPTUAL PERMANENT	BIGC-ENV-349B	O.A.
t: (416) 214 - 4880 f: (416) 551 - 2633 12-5500 Tomken Rd.		PERIMETER AND		
Mississauga, ON L4W 2Z4		UNDER-FLOOR DRAINAGE	SCALE	CK.
Canada		SYSTEM WITH SHORING	NOT TO SCALE	S.S.
- Canada		GEOTECHNICAL INVESTIGATION		
III BIG		217,227 CROSS AVENUE AND	DATE	FIG NO.
B.I.G. CONSULTING INC.		207 ARGUS ROAD,	FEBRUARY 2021	D
bigconsultinginc.com		OAKVILLE, ONTARIO		