

# PHASE II ENVIRONMENTAL SITE ASSESSMENT

581-587 Argus Road, Oakville, Ontario

## Client

Ms. Sasha Lauzon Oakville Argus Cross LP 1-90 Wingold Avenue Toronto, Ontario M6B 1P5

# **Project Number**

BIGC-ENV-490E

## **Prepared By:**

B.I.G Consulting Inc 12-5500 Tomken Road Mississauga, Ontario, L4W 2Z4 T: 416.214.4880 www.bigconsultinginc.com

## **Date Submitted**

March 17, 2022

# **Executive Summary**

B.I.G. Consulting Inc. (BIG) was retained by Ms. Sasha Lauzon on behalf of Oakville Argus Cross LP (Client), to complete a Phase II Environmental Site Assessment (ESA) at the property located at 581-587 Argus Road, Oakville, Ontario (Site). It is BIG's understanding that the Phase II ESA is required for due diligence purposes and that a Record of Site Condition (RSC) is not required at this time.

This Phase II ESA was conducted in accordance with CSA Standard Z769-00 (R2018) and with generally accepted professional practices. The objective of the Phase II ESA was to obtain soil and groundwater data to characterize the Site.

The results and findings of the Phase II ESA conducted at the Site are summarized as follows:

- 1. The general stratigraphy at the Site, as observed in the boreholes, consisted of asphalt at the ground surface followed by fill material, underlain by clayey silt till/silty clay till and then by shale bedrock.
- 2. Based on the textural descriptions of these materials as inferred from borehole observations, the applicable SCS selected to evaluate analytical data was determined to be medium/fine textured.
- 3. The depth to groundwater across the site ranged between 4.24 m bgs to 19.04 m bgs on October 18, 2021.
- 4. The soil analytical results from the samples collected and submitted for analysis of PAHs and metals indicated that all parameters were detected at concentrations below the applicable Ontario Ministry of Environment, Conservation and Parks (MECP) Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Property Use and medium/fine textured soil (Table 2 SCS), with the exception of:

| Soil Sample<br>ID | Identified Impact | MECP Table 3<br>Standard (μg/g) | Maximum Impact<br>Concentration (μg/g) | Impact<br>Depth<br>(m bgs) |
|-------------------|-------------------|---------------------------------|----------------------------------------|----------------------------|
| BH4-SS1           | Fluoranthene      | 0.69                            | 0.93                                   | 0.0 - 0.61                 |

5. The groundwater analytical results from the sample collected and submitted for PAHs indicated that all parameters were detected at concentrations below the applicable MECP Table 2 SCS.

## **Conclusions and Recommendations**

As a result of this Phase II ESA, further delineation of the PAH impact identified in soil is required. The PAH soil impact identified on-Site is present within the surficial soil at the Site and is likely localized. The impacted soil will be excavated and disposed of off-Site at a registered landfill facility. As the Site is intended for residential development, an RSC will be required in the future.



# **Table of Contents**

| 1 | Int  | roduction                                              | 1    |
|---|------|--------------------------------------------------------|------|
|   | 1.1  | Site Description                                       | 1    |
|   | 1.2  | Current and Proposed Future Uses                       | 1    |
|   | 1.3  | Applicable Site Condition Standards                    | 1    |
| 2 | Bac  | ckground Information                                   | 3    |
|   | 2.1  | Physical Setting                                       | 3    |
|   | 2.2  | Past Environmental Investigations                      | 3    |
| 3 | Sco  | pe of the Investigation                                | 5    |
|   | 3.1  | Overview of Site Investigation                         | 5    |
|   | 3.2  | Media Investigated                                     | 5    |
|   | 3.3  | Impediments                                            | 5    |
| 4 | Inv  | estigation Method                                      | 6    |
|   | 4.1  | General                                                | 6    |
|   | 4.2  | Borehole Drilling                                      | 6    |
|   | 4.3  | Deviations from Sampling and Analysis Plan             | 6    |
|   | 4.4  | Soil Sampling                                          | 6    |
|   | 4.5  | Groundwater: Monitoring Well Installation              | 7    |
|   | 4.6  | Monitoring Well Development                            | 7    |
|   | 4.7  | Groundwater Monitoring                                 | 7    |
|   | 4.8  | Monitoring Well Purging                                | 8    |
|   | 4.9  | Groundwater Sampling                                   | 8    |
|   | 4.10 | Analytical Testing                                     | 8    |
|   | 4.11 | Groundwater Levels                                     | 9    |
|   | 4.12 | Quality Assurance and Quality Control Measures         | 9    |
| 5 | Rev  | view and Evaluation                                    |      |
|   | 5.1  | Geology                                                | 10   |
|   | 5.2  | Soil Texture                                           |      |
|   | 5.3  | Soil Quality                                           |      |
|   | 5.4  | Groundwater Quality                                    |      |
|   | 5.5  | Quality Assurance and Quality Control (QA/QC) Measures |      |
| 6 |      | mmary of Findings                                      |      |
| 7 |      | neral Limitations                                      |      |
| 8 | Ref  | erences                                                | . 15 |



## **List of Figures**

Figure 1: Site Location Plan

Figure 2: Borehole/Monitoring Well Location Plan

Figure 3: PAH Impacts in Soil
Figure 4: Metals in Soil

Figure 5: PAHs in Groundwater

## **List of Appendices**

**Appendix A:** Site Sampling and Analysis Plan (SSAP)

**Appendix B:** Borehole Logs **Appendix C:** Analytical Results

**Appendix D:** Laboratory Certificates of Analysis



## 1 Introduction

B.I.G. Consulting Inc. (BIG) was retained by Ms. Sasha Lauzon on behalf of Oakville Argus Cross LP (Client), to complete a Phase II Environmental Site Assessment (ESA) at the property located at 581-587 Argus Road, Oakville, Ontario (Site). It is BIG's understanding that the Phase II ESA is required for due diligence purposes and that a Record of Site Condition (RSC) is not required at this time.

This Phase II ESA was conducted in general accordance with CSA Standard Z769-00 (R2018) and in accordance with generally accepted professional practices. Subject to this standard of care, BIG makes no express or implied warranties regarding its services, and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 7.

The objective of the Phase II ESA was to obtain soil and groundwater data to characterize the Site.

## 1.1 Site Description

The Site is located north of Cross Avenue and east of Argus Road in Oakville, Ontario. The Site location plan is provided as Figure 1. The Site measures approximately 3,800 m² and is currently occupied by two (2) commercial buildings (Site buildings). The Site buildings have a combined footprint of approximately 1,000 m², occupying approximately 26 % of the Site. The areas surrounding the Site buildings are covered with asphalt and landscaped areas. It is BIG's understanding that the Site is to be redeveloped with a high-rise residential condominium building with six (6) levels of underground parking.

The Site is bound to the north by Argus Road followed by commercial land use, to the east by commercial properties, to the south by vacant land followed by commercial land use, and to the west by Argus Road followed by commercial properties. A Site Plan is provided as Figure 2.

## 1.2 Current and Proposed Future Uses

At the time of the Phase II ESA investigation the Site was occupied by two (2) commercial buildings. The future proposed use is to develop the Site with a high-rise residential condominium building with six (6) levels of underground parking.

# 1.3 Applicable Site Condition Standards

Analytical results obtained for soil and groundwater samples were assessed against Site Condition Standards (SCS) as established under subsection 169.4(1) of the Environmental Protection Act and presented in the Ontario Ministry of the Environment, Conservation and Parks (MECP) document "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the *Environmental Protection Act'*, (SGWS Standards). Tabulated background SCS applicable to environmentally sensitive sites and effects based generic SCS applicable to non-environmentally sensitive sites are provided in the SCS. The effects based SCS are protective of human health and the environment for different groundwater conditions (potable and non-potable), land use scenarios (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil texture (coarse or medium/fine) and restoration depth (full or stratified).

Application of the generic or background SCS to a specific site is based on consideration of site conditions related to soil pH, thickness and extent of overburden material and proximity to an area of environmental sensitivity or of natural significance for some chemical constituents, consideration is also given to soil textural classification with SCS having been derived for both coarse and medium-fine textured soil conditions.



For assessment purposes, BIG selected the MECP Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Property Use and medium/fine textured soil (Table 2 SCS). The selection of this category was based on the following factors:

- a) More than two-thirds of the Site has an overburden thickness greater than 2 m.
- b) The Site is not located within 30 metres (m) of a surface water body or an area of natural significance.
- c) The soil at the Site has pH value between 5 and 9 for surficial soils; and, between 5 and 11 for subsurface soils.
- d) The property is not within an area of natural significance; does not include, nor is it adjacent to an area of natural significance, nor is it part of such an area; and, it does not include land that is within 30 m of an area of natural significance, nor is it part of such an area.
- e) The Site is supplied by the municipal drinking water system; however, the Site is considered potable.
- f) The intended future use of the Site is residential.
- g) Based on review of the borehole logs, medium/fine textured standards were applied as part of this Phase II ESA.
- h) There was no intention to carry out a stratified restoration at the Site.



# 2 Background Information

## 2.1 Physical Setting

The following physiographic, geological and soil maps were reviewed as part of this Phase II ESA:

- a) Atlas of Canada Toporama Topographic Map (Toporama)
- b) Ontario Base Map (OBM)
- c) Ontario Ministry of Energy, Northern Development and Mines website, Bedrock Geology of Ontario, 2011 – MRD 126; and Paleozoic Geology of Southern Ontario, 2007 – MRD 219 (KML format)
- d) Ontario Ministry of Energy, Northern Development and Mines website, Surficial Geology of Southern Ontario, 2010. (KML format)
- e) Ontario Ministry of Energy, Northern Development and Mines website, Physiography of Southern Ontario 2007 (KML format)

Based on the review of the above maps, the following information was obtained:

- a) The Site is at an elevation of approximately 105 m above sea level (asl), generally at the same elevation as the surrounding properties to the east and west of the Site. The surrounding properties located to the north are generally at higher elevations than the Site, and the surrounding properties to the south are generally at lower elevations than the Site.
- b) No water bodies are located on the Site. The nearest water body is Sixteen Mile Creek located approximately 510 m southwest of the Site and Lake Ontario is located approximately 2.2 km southeast of the Site.
- c) The bedrock in the general area of the Site consists of shale, limestone, dolostone and siltstone and is part of the Georgian Bay Formation, Blue Mountain Formation, Billings Formation, Collingwood Member and Eastview Member.
- d) The surficial geology of the Site is described as Paleozoic bedrock.
- e) The physiography of the Site is within the Iroquois Plains characterized as shale plains.

## 2.2 Past Environmental Investigations

The following reports were available for the Site at the time of this Phase II ESA for BIG review:

- a) Fisher (2021a) Phase I Environmental Site Assessment, 581 Argus Road, Oakville, Ontario. Fisher Environmental Ltd. June 1, 2021.
- b) Fisher (2021b) Phase I Environmental Site Assessment, 587 to 595 Argus Road, Oakville, Ontario. Fisher Environmental Ltd. June 1, 2021.
- c) BIG (2021a) Memo Findings of Preliminary Geotechnical Investigation, 581 587 Argus Road, Oakville, Ontario. B.I.G. Consulting Inc. October 26, 2021.
- d) BIG (2021b) Memo Preliminary Findings of Hydrogeological Investigation, 581 587 Argus Road, Oakville, Ontario. B.I.G. Consulting Inc. October 29, 2021.

| Fisher (2021a) Phase I Environmental Site Assessment |                                                                            |  |  |  |
|------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|
| Objective                                            | Identify existing or former potential sources of environmental concern.    |  |  |  |
| Potential                                            | No evidence of actual surface or sub-surface contamination associated with |  |  |  |
| environmental impacts                                | the Site and other properties within the Phase I Study Area.               |  |  |  |
| identified                                           |                                                                            |  |  |  |



| Fisher (2021b) Phase I Environmental Site Assessment |                                                                            |  |  |
|------------------------------------------------------|----------------------------------------------------------------------------|--|--|
| Objective                                            | Identify existing or former potential sources of environmental concern.    |  |  |
| Potential                                            | No evidence of actual surface or sub-surface contamination associated with |  |  |
| environmental impacts                                | the Site and other properties within the Phase I Study Area.               |  |  |
| identified                                           |                                                                            |  |  |

| BIG (2021a) Memo – Findings of Preliminary Geotechnical Investigation |                                                                                                                                                                                    |  |  |
|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Objective                                                             | Establish geological setting at the Site                                                                                                                                           |  |  |
| Program                                                               | • Advance five (5) boreholes (BH1 to BH5) to depths ranging from 4.9 m to 27.6 m below existing grade (m bgs) and install with monitoring wells.                                   |  |  |
| Soil                                                                  | The soil profile generally consisted of asphalt pavement overlying existing fill material, which in turn was underlain by native clayey silt till and shale bedrock, respectively. |  |  |

| BIG (2021b) Memo – Preliminary Findings of Hydrogeological Investigation |                                                                                                                                                                                                             |  |  |  |
|--------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Objective                                                                | Establish local hydrogeological settings.                                                                                                                                                                   |  |  |  |
| Program                                                                  | <ul> <li>Advance five (5) boreholes (BH1 to BH5) to depths ranging from 4.9 m to 27.6 m below existing grade (m bgs) and install with monitoring wells.</li> <li>Collect a round of water levels</li> </ul> |  |  |  |
|                                                                          | Conduct single well response tests at selected monitoring wells                                                                                                                                             |  |  |  |
| Groundwater                                                              | • Water levels at the Site ranged from 4.24 m to 19.04 m below existing grade on October 18, 2021.                                                                                                          |  |  |  |
|                                                                          | • The estimate hydraulic conductivity ranges from 1.23 x 10 <sup>-5</sup> m/s to 6.12 x 10 <sup>-9</sup> m/s.                                                                                               |  |  |  |



# 3 Scope of the Investigation

## 3.1 Overview of Site Investigation

The objective of the Phase II ESA was to obtain soil and groundwater data to characterize the Site.

## 3.1.1 Scope of Work

The scope of work for the Phase II ESA was as follows:

- a) Request public and private utility locating companies (e.g., cable, telephone, gas, hydro, water, sewer and storm water) to mark any underground utilities present at the Site;
- b) Advance a total of five (5) boreholes (BH1 to BH5) up to a maximum depth of 27.6 m below ground surface (bgs);
- c) Instrument five (5) of boreholes as a monitoring wells (BH/MW1 to BH/MW5);
- d) Collect representative soil samples for laboratory analysis of polycyclic aromatic hydrocarbons (PAHs) and metals.
- e) Develop the newly installed groundwater monitoring wells;
- f) Collect groundwater levels from the newly installed monitoring wells;
- g) Collect a groundwater sample from a newly installed monitoring wells for laboratory analysis of PAHs; and,
- h) Analyze the data and prepare a report of the findings.

## 3.2 Media Investigated

The focus of the Phase II ESA was on the environmental conditions of the overburden material and groundwater beneath the Site. As there was no surface water body on the Site, no sediment sampling was required.

A copy of the Site Sampling and Analysis Plan (SSAP) prepared for the Site is provided in Appendix A.

## 3.3 Impediments

The entire portion of the Site was accessible at the time of the investigation, and no physical impediments were encountered during the field investigation.



# 4 Investigation Method

## 4.1 General

The Site investigative activities consisted of the drilling of five (5) boreholes to facilitate the collection of soil samples for geologic characterization and laboratory analysis and, the installation of five (5) monitoring wells for the collection of groundwater samples for laboratory analysis.

Boreholes were advanced in the surficial fill and overburden soils by a licensed drilling company under the full-time supervision of BIG staff. The drilling equipment used to advance the boreholes is described below. No petroleum-based greases or solvents were used during drilling activities. Monitoring wells were installed in the boreholes by a MECP licensed well contractor in accordance with Ontario Regulation 903/90, as amended (O.Reg.903) using manufactured well components (i.e., riser pipes and screens) and materials (i.e., sand pack and grout) from documented sources.

## 4.2 Borehole Drilling

Prior to the commencement of drilling activities, the locations of underground utilities including fibre optic cable, telephone, natural gas, electrical lines, as well as water, sewer, storm water and sanitary lateral conduits were marked out by public locating companies and a private utility locator.

The fieldwork for the soil investigative portion of the Phase II ESA was carried out on October 6 to 8, 2021.

Boreholes were advanced by Davis Drilling Ltd. under full-time supervision of BIG staff. A truck-mounted drill rig was used for the boreholes advanced at the Site. The boreholes were advanced to maximum depth of 27.6 m bgs at various on-Site locations to sufficiently assess and characterize the Site. The approximate locations of the boreholes and monitoring wells are shown on Figure 2.

BIG continuously monitored the drilling activities to record the physical characteristics of the soil, depth of soil sample collection and total depth of boreholes. Field observations are summarized on the borehole logs provided in Appendix B. Representative soil samples were recovered at regular intervals using a stainless-steel split spoon sampler in all boreholes.

## 4.3 Deviations from Sampling and Analysis Plan

The field investigative and sampling program was carried out following the requirements of the SSAP.

## 4.4 Soil Sampling

Soil samples for geologic characterization and laboratory analysis were collected on a discrete basis in the overburden materials using 5-centimetre (cm) diameter, 60 cm long, split spoon samples advanced in to the subsurface using a truck mounted drill rig. The soil cores were extruded from the samplers upon retrieval by drilling personnel. Geologic details of the recovered cores were logged by BIG field staff and samples were collected from selected cores for chemical analysis. Field observations are summarized on the borehole logs prepared from the field logs and provided in Appendix B.

Measures were taken in the field and during transport to preserve sample integrity prior to laboratory analysis. Recommended volumes of soil samples selected for laboratory analysis were collected from the recovered cores into pre-cleaned, laboratory-supplied glass sample bottles identified for the specified analytical test group. All soil samples were placed in clean coolers containing ice prior to and during transportation to the subcontracted laboratory, AGAT Laboratories (AGAT Labs) of Mississauga, Ontario. The samples were transported/submitted within acceptable holding times to AGAT Labs following Chain of Custody protocols for laboratory analysis.

Decontamination and other protocols were followed during sample collection and handling to minimize



the potential for sample cross-contamination. New disposable nitrile gloves were used for the handling and sampling of each retrieved soil core. Five (5) of the boreholes advanced were completed as monitoring wells (BH/MW1 to BH/MW5).

Soil samples submitted for specific laboratory analysis were selected on the basis of visual inspection of the recovered cores, sample location and depth interval.

Geologic details of the soil cores recovered from the boreholes advanced at the Site are provided in the borehole logs presented in Appendix B.

## 4.5 Groundwater: Monitoring Well Installation

Five (5) of the boreholes advanced at the Site were instrumented as groundwater monitoring wells (BH/MW1 to BH/MW5). The monitoring wells were installed in general accordance with the Ontario Water Resources Act - R.R.O. 1990, Regulation 903/90 - amended to O. Reg. 128/03, and was installed by a licensed well contractor.

The monitoring wells consisted of a 3 m length, 50-millimetre (mm) diameter polyvinyl chloride (PVC) screen and an appropriate length of PVC riser pipe. All pipe connections were factory machined threaded flush couplings. The annular space around the well was backfilled with sand to an average height of 0.6 m above the top of the screen. A bentonite seal was added from the top of the sand pack to approximately 0.3 m bgs.

When the monitoring wells are no longer required, they must be decommissioned in accordance with the procedure outlined in the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 - amended to O. Reg. 128/03.

Measures taken to minimize the potential for cross contamination or the introduction of contaminants during well construction included:

- a) The use of well pipe components (e.g. riser pipe and well screens) with factory machine threaded flush coupling joints;
- b) Construction of wells without the use of glues or adhesives;
- c) Removing the protective plastic wraps from well components at the time of borehole insertion to prevent contact with the ground and other surfaces; and,
- d) Cleaning of augers between sampling locations.

## 4.6 Monitoring Well Development

Upon completion of monitoring well installation, the new monitoring wells were developed to remove any fine sediment materials introduced during the drilling processes from within and around the sand pack to enhance hydraulic communication from the surrounding formation waters. The monitoring wells were developed on October 29 and November 1, 2021 by using a groundwater pump and bailers to disturb the water column and recover groundwater containing dislodged sediment particles.

## 4.7 Groundwater Monitoring

Groundwater monitoring activities, which consisted of measuring the depths to groundwater in each newly installed monitoring well, were conducted on the monitoring well network, so that groundwater flow and direction below the Site could be assessed and groundwater samples can be collected. These groundwater monitoring activities were conducted on October 18, 2021 and March 10, 2022. Water levels were measured with respect to the top of casing by means of an electronic water level meter and recorded on water level log sheets or in a bound field notebook.



## 4.8 Monitoring Well Purging

Monitoring wells were purged prior to groundwater sample collection. Approximately three (3) well volumes of water were purged form each well to remove standing water and draw in fresh formation water. Water levels and wetted well volumes were determined by means of an electronic water level meter.

Equipment used during groundwater monitoring were thoroughly cleaned and decontaminated between wells. Well purging details were documented on a log sheet or in a bound hard cover notebook.

## 4.9 Groundwater Sampling

Upon completion of purging, the monitoring well BH/MW4 was sampled on March 10, 2022 using dedicated polyethylene bailers. Recommended groundwater sample volumes were collected into laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. The samples were placed in an insulated cooler pre-chilled with ice immediately upon collection. The groundwater samples were transported to AGAT Labs under Chain of Custody protocols within 24 hours of sample collection or approved holding times.

A groundwater sample was collected from one (1) monitoring well (BH/MW4) installed by BIG.

## 4.10 Analytical Testing

All analytical testing was performed by AGAT Labs, an accredited laboratory under the Standards Council of Canada/Canadian Association of Environmental Analytical Laboratories (Accredited Laboratory No. A3200) in accordance with ISO/IEC 17025:2017 - "General Requirements for the Competence of Testing and Calibration Laboratories".

## 4.10.1 Soil Sampling

Representative soil samples from each borehole were selected for laboratory analysis based on field screening results, sample location and depth interval. The requested laboratory analysis was based on the identified contaminants of concern. The representative soil samples selected for laboratory analysis and the requested analyses are summarized below.

Table 1: Summary of Soil Samples Submitted for Laboratory Analyses

| Soil Sample ID Requested Analyses   |                                     | Date Sampled    | Consultant |
|-------------------------------------|-------------------------------------|-----------------|------------|
| BH1-SS2 PAHs, Metals and Inorganics |                                     | October 8, 2021 | BIG        |
| BH2-SS1 PAHs, Metals and Inorganics |                                     | October 7, 2021 | BIG        |
| BH3-SS1                             | BH3-SS1 PAHs, Metals and Inorganics |                 | BIG        |
| BH4-SS1 PAHs, Metals and Inorganics |                                     | October 8, 2021 | BIG        |
| BH5-SS1 PAHs, Metals and Inorganics |                                     | October 6, 2021 | BIG        |

## 4.10.2 Groundwater Sampling

Representative groundwater samples were submitted for specific chemical analysis based on the identified contaminants of concern. The representative groundwater samples selected for lab analysis, the rationale for each sample, and the required analyses are summarized below.

Table 2: Summary of Groundwater Samples Submitted for Laboratory Analyses

| Monitoring<br>Well ID | Requested Analyses | Well Screen Depth (m bgs) | Date Sampled   | Consultant |
|-----------------------|--------------------|---------------------------|----------------|------------|
| BH/MW4                | PAHs               | 4.30 – 7.30               | March 10, 2022 | BIG        |



## 4.11 Groundwater Levels

A summary of groundwater levels is provided below.

**Table 3: Summary of Groundwater Levels and Elevations** 

|         | Ground Well Dont     |                       | October 13, 2021       |                      | October 18, 2021       |                      |
|---------|----------------------|-----------------------|------------------------|----------------------|------------------------|----------------------|
| Well ID | Elevation<br>(m asl) | Well Depth<br>(m bgs) | Water Level<br>(m bgs) | Elevation<br>(m asl) | Water Level<br>(m bgs) | Elevation<br>(m asl) |
| BH/MW1  | 104.53               | 7.00                  | 4.39                   | 100.14               | 4.38                   | 100.15               |
| BH/MW2  | 104.24               | 15.20                 | 1.49                   | 102.75               | 9.05                   | 95.19                |
| BH/MW3  | 104.37               | 4.70                  | 4.21                   | 100.16               | 4.24                   | 100.13               |
| BH/MW4  | 103.61               | 7.30                  | 4.76                   | 98.85                | 4.71                   | 98.90                |
| BH/MW5  | 103.75               | 22.90                 | 15.23                  | 88.52                | 19.04                  | 84.71                |

## 4.12 Quality Assurance and Quality Control Measures

Quality Assurance/Quality Control (QA/QC) measures, as set out in the SSAP, were implemented during sample collection, storage and transport to provide accurate data representative of conditions in the surficial fill and upper overburden soils and the water table aquifer. The QA/QC measures included decontamination procedures to minimize the potential for sample cross contamination, the execution of standard operating procedures to collect representative and unbiased samples, the collection of quality control samples to evaluate sample precision and accuracy, and the implementation of measures to preserve sample integrity.

Decontamination protocols were followed during sample collection and handling to minimize the potential for cross-contamination. During the collection of soil samples, split-spoon samplers were scraped and decontaminated between sampling intervals by washing with a potable water/phosphate-free detergent solution followed by a rinse with potable water. New disposable nitrile gloves were used for the handling and collection of samples from each soil core and for sample collection from each borehole.

Soil samples selected for laboratory analyses were collected from the retrieved soil cores and placed into pre-cleaned, laboratory-supplied bottles. Sample volumes were consistent with analytical test group requirements as specified by the receiving laboratory.

Groundwater samples were collected into pre-cleaned laboratory-supplied bottles provided with analytical test group specific preservatives, as required. Recommended analytical test group specific sample volumes were collected as specified by the contractual laboratory. Sample vials for analysis of VOCs were inspected for the presence of gas bubbles and the presence of head space, where volatiles may partition into.

Measures were followed to preserve sample integrity between collection and receipt by the laboratory. All samples, immediately upon collection were placed in insulated coolers pre-chilled with ice for storage and transport to the laboratory. Samples were received by the laboratory within specific analytical test group holding time requirements.

Documentation procedures were followed to confirm sample identification and tracked sample movement. Each sample was assigned a unique identification ID number, which was recorded along with the date, time of sampling and requested analyses on labels affixed to the sampling containers, and in a bound field notebook. Chain of Custody protocols were followed to track sample handling and movement until receipt by the laboratory.

For deviations from the SSAP, please see section 4.3.



## 5 Review and Evaluation

## 5.1 Geology

The soil investigation conducted at the Site consisted of the advancement of five (5) boreholes into the surficial material and the underlying native materials to a maximum depth of 27.6 m bgs. Borehole logs describing geologic details of the soil cores recovered during the Site drilling activities are presented in Appendix B. Boundaries of soil indicated on the log sheets are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change.

The general stratigraphy at the Site, as observed in the boreholes, consisted of asphalt at the ground surface followed by fill material, underlain by clayey silt till/silty clay till and then by shale bedrock. A brief description of the soil stratigraphy at the Site, in order of depth, is summarized in the following sections.

#### 5.1.1 Surficial Material

Asphalt was present at the ground surface of all five (5) boreholes advanced at the Site. The asphalt layer was approximately 50 - 70 mm over 100 - 200 mm thick granular base.

#### 5.1.2 Fill

Beneath the ground surface covers at all borehole locations, existing fills consisting of silty clay/clayey silt was encountered. The fill material extended to depths generally varying from 0.90 m to 1.50 m bgs.

#### **5.1.3** Native

Clayey Silt Till/ Silty Clay Till

Clayey silt till/silty clay till was observed in all boreholes advanced at the Site beneath the fill material and extended to depths ranging from 2.30 m to 2.60 m bgs.

## 5.1.4 Bedrock

Bedrock was observed below the till material at all boreholes advanced at the Site. Highly weathered shale was observed from approximately 2.30 m to 2.60 m bgs with competent shale bedrock observed at 7.32 m bgs in BH2 and BH5.

## 5.2 Soil Texture

The native materials encountered are comprised of clayey silt till/silty clay till. Based on the textural descriptions of these materials as inferred from borehole observations, the applicable SCS selected to evaluate analytical data was determined to be for medium/fine textured soil classification.

## 5.3 Soil Quality

In accordance with the scope of work, chemical analyses were performed on selected soil samples recovered from the boreholes. The selection of representative "worst case" soil samples was based on field screening, visual and/or olfactory evidence of impacts, and the presence of potential water bearing zones. Analytical results summary tables are provided in Appendix C and copies of the laboratory Certificates of Analysis for the analyzed soil samples are provided in Appendix D.

## 5.3.1 PAHs

The soil samples submitted for PAHs analysis indicated that all parameters were detected at concentrations below the applicable MECP Table 2 SCS and all laboratory RDLs were below the applicable SCS, with the exception of:



| Soil Sample<br>ID | Identified Impact | MECP Table 3<br>Standard (μg/g) | Impact Concentration (µg/g) | Impact Depth |
|-------------------|-------------------|---------------------------------|-----------------------------|--------------|
| BH4-SS1           | Fluoranthene      | 0.69                            | 0.93                        | 0.0 - 0.61   |

## 5.3.2 Metals and Inorganics

The soil samples submitted for metals and inorganics analysis indicated that all parameters were either non-detect or were detected at concentrations below the applicable MECP Table 2 SCS and all laboratory RDLs were below the applicable SCS.

## 5.3.3 Evidence of Non-Aqueous Phase Liquid

Inspection of the soil cores retrieved from the boreholes did not indicate the presence of non-aqueous phase liquid (NAPL), staining or sheen.

## 5.4 Groundwater Quality

Representative groundwater samples were collected from the existing and newly installed monitoring wells to assess groundwater quality at the Site. Evidence of free product (i.e., visible film or sheen), and odour was not observed during well purging.

Analytical results summary tables are provided in Appendix C and copies of the laboratory Certificates of Analysis for the analyzed groundwater samples are provided in Appendix D.

#### 5.4.1 PAHs

The groundwater sample submitted for PAHs analysis indicated that all parameters were detected at concentrations below the applicable MECP Table 2 SCS and all laboratory RDLs were below the applicable SCS.

## 5.4.2 Evidence of Non-Aqueous Phase Liquid

Inspection of the purged groundwater retrieved from the monitoring wells did not indicate the presence of non-aqueous phase liquid (NAPL), staining or sheen.

## 5.5 Quality Assurance and Quality Control (QA/QC) Measures

QA/QC measures were taken during the field activities to meet the objectives of the sampling and QA plan to collect unbiased and representative samples to characterize existing conditions in the fill/upper overburden materials and water table aquifer unit at the Site. QA/QC measures included:

- a) The collection of soil samples following standard operating procedures;
- b) The implementation of decontamination procedures to minimize the potential for sample cross contamination;
- c) The collection of recommended analytical test group specific volumes into pre-cleaned laboratory supplied containers provided with necessary preservatives as required;
- Sample preservation in insulated coolers pre-chilled with ice and meeting holding time requirements; and,
- e) Sample documentation including Chain of Custody protocols.

Review of field activity documentation indicated that recommended sample volumes were collected from soil and groundwater for each analytical test group into appropriate containers and preserved with proper chemical reagents in accordance with the protocols set out in the "Protocol for Analytical Methods used in the Assessment of Properties under Part XV.1 of the *Environmental Protection Act'*, dated March 9,



Oakville Argus Cross LP Phase Il Environmental Site Assessment 581-581 Argus Road, Oakville, Ontario BIGC-ENV-490E March 2022

2004, as amended July 1, 2011. Samples were preserved at the required temperatures in pre-chilled insulated coolers and met applicable holding time requirements, when relinquished to the receiving laboratory.

The subcontracted laboratory used during this investigation, AGAT Labs, is accredited by the Standards Council of Canada/Canadian Association for Laboratory Accreditation (Accredited Laboratory No. A3200), in accordance with ISO/IEC 17025:2017 - "General Requirements for the Competence of Testing and Calibration Laboratories" for the analysis of all parameters for all samples in the scope of work for which SCS have been established under O.Reg.153/04.

Certificates of Analysis were received from AGAT Labs reporting the results of all the chemical analyses performed on the submitted soil and groundwater samples. Copies of the AGAT Labs Certificates of Analysis are provided in Appendix D. A review of the Certificates of Analysis prepared by AGAT Labs indicates that they were in compliance with the requirements set out under subsection 47(3) of O.Reg.153/04.

The analytical program conducted by AGAT Labs included analytical test group specific QA/QC measures to evaluate the accuracy and precision of the analytical results and the efficiency of analyte recovery during solute extraction procedures. The laboratory QA/QC program consisted of the preparation and analysis of laboratory duplicate samples to assess precision and sample homogeneity, method blanks to assess analytical bias, spiked blanks and QC standards to evaluate analyte recovery, matrix spikes to evaluate matrix interferences and surrogate compound recoveries (VOCs only) to evaluate extraction efficiency. The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificate of Analysis prepared by AGAT Labs. The QA/QC results are reported as percent recoveries for matrix spikes, spike blanks and QC standards, RPDs for laboratory duplicates and analyte concentrations for method blanks.

The AGAT Labs QA/QC results were assessed against test group control limits in the case of spiked blanks, matrix spikes and surrogate recoveries and alert criteria in the case of method blanks and laboratory duplicates. Review of the laboratory QA/QC results reported by AGAT Labs indicated that they were within acceptable control limits or below applicable alert criteria for the sampled media and analytical test groups. Based on the assessment of the QA/QC, the analytical results reported by AGAT Labs are of acceptable quality and data qualifications were not required.



# 6 Summary of Findings

The results and findings of the Phase II ESA conducted at the Site are summarized as follows:

- 1. The general stratigraphy at the Site, as observed in the boreholes, consisted of asphalt at the ground surface followed by fill material, underlain by clayey silt till/silty clay till and then by shale bedrock.
- 2. Based on the textural descriptions of these materials as inferred from borehole observations, the applicable SCS selected to evaluate analytical data was determined to be medium/fine textured.
- 3. The depth to groundwater across the site ranged between 4.24 m bgs to 19.04 m bgs on October 18, 2021.
- 4. The soil analytical results from the samples collected and submitted for analysis of PAHs and metals indicated that all parameters were detected at concentrations below the applicable Ontario Ministry of Environment, Conservation and Parks (MECP) Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential/Parkland/Institutional Property Use and medium/fine textured soil (Table 2 SCS), with the exception of:

| Soil Sample<br>ID | Identified Impact | MECP Table 3<br>Standard (μg/g) | Maximum Impact Concentration (µg/g) | Impact Depth<br>(m bgs) |
|-------------------|-------------------|---------------------------------|-------------------------------------|-------------------------|
| BH4-SS1           | Fluoranthene      | 0.69                            | 0.93                                | 0.0 - 0.61              |

5. The groundwater analytical results from the sample collected and submitted for PAHs indicated that all parameters were detected at concentrations below the applicable MECP Table 2 SCS.

#### **Conclusions and Recommendations**

As a result of this Phase II ESA, further delineation of the PAH impact identified in soil is required. The PAH soil impact identified on-Site is present within the surficial soil at the Site and is likely localized. The impacted soil will be excavated and disposed of off-Site at a registered landfill facility. As the Site is intended for residential development, an RSC will be required in the future.



# 7 General Limitations

The information presented in this report is based on field investigation activities completed by BIG and designed to provide information to support an assessment of the current environmental conditions at the Site. The conclusions and recommendations presented in this report reflect Site conditions existing at the time of the investigation.

This report was prepared for the exclusive use of the Client and may not be reproduced in whole or in part, without the prior written consent of BIG, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. BIG accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Yours truly,

**B.I.G.** Consulting Inc.

Rebecca Morrison, M.Env.Sc.

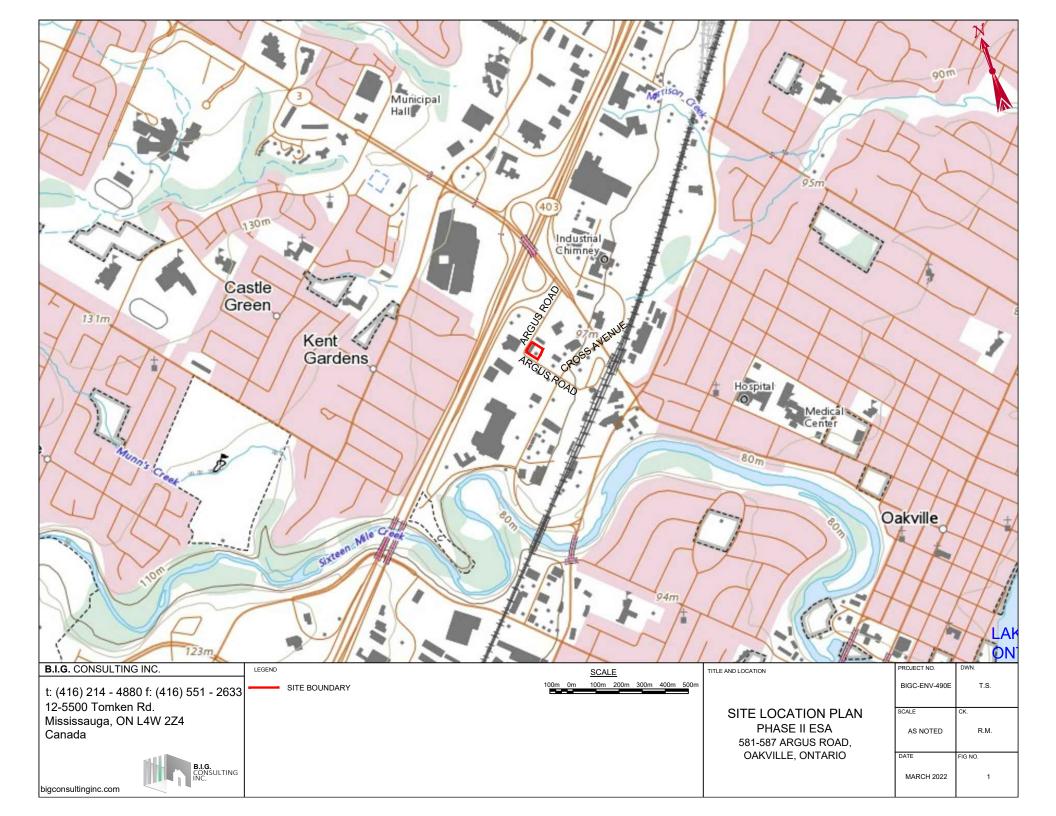
Project Manager

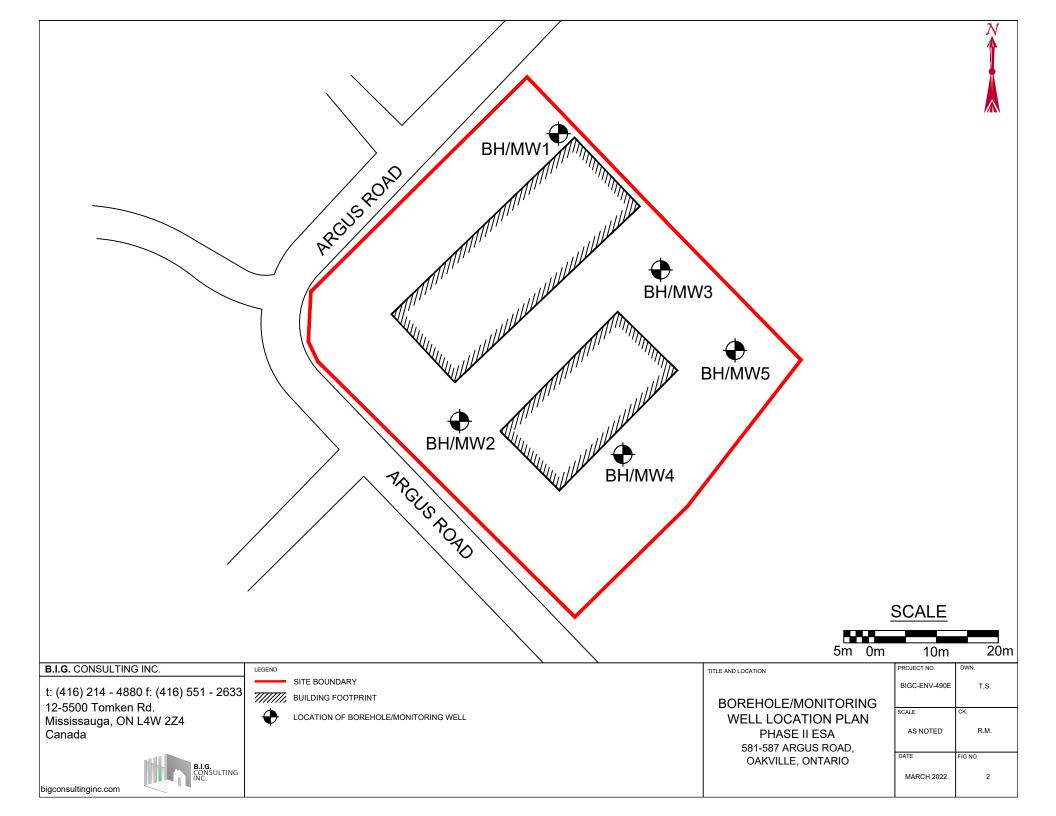
Darko Strajin, P.Eng. Managing Partner

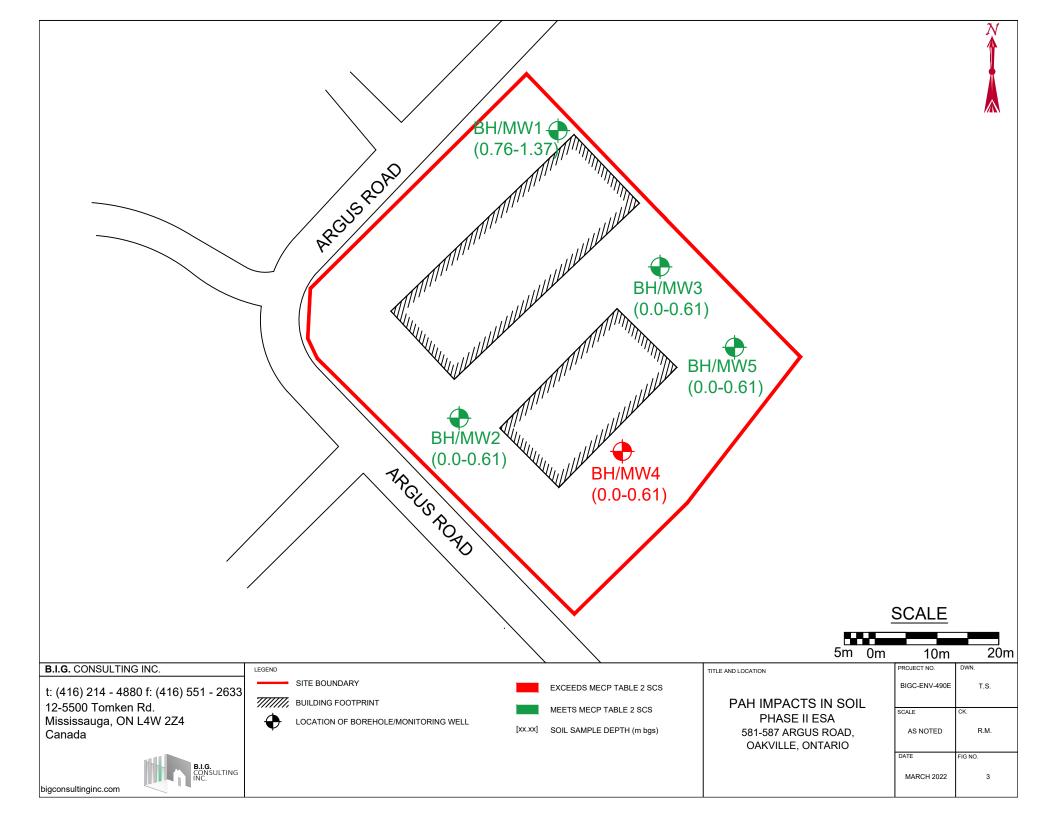


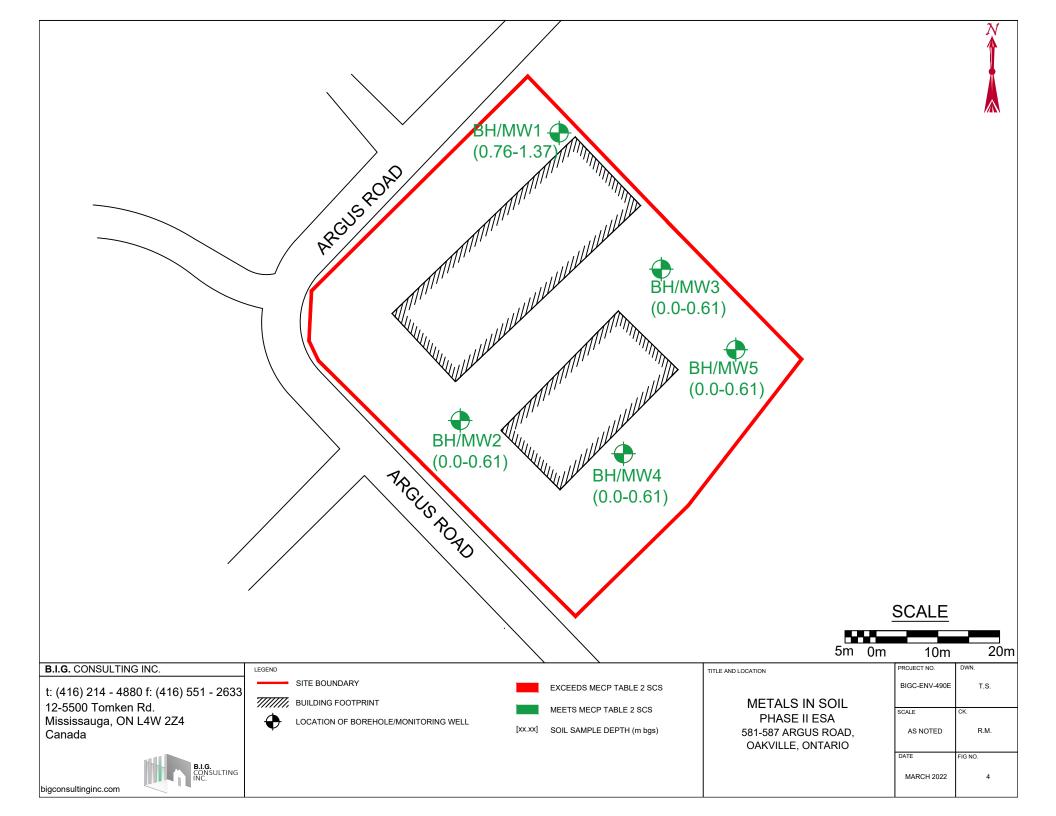
## 8 References

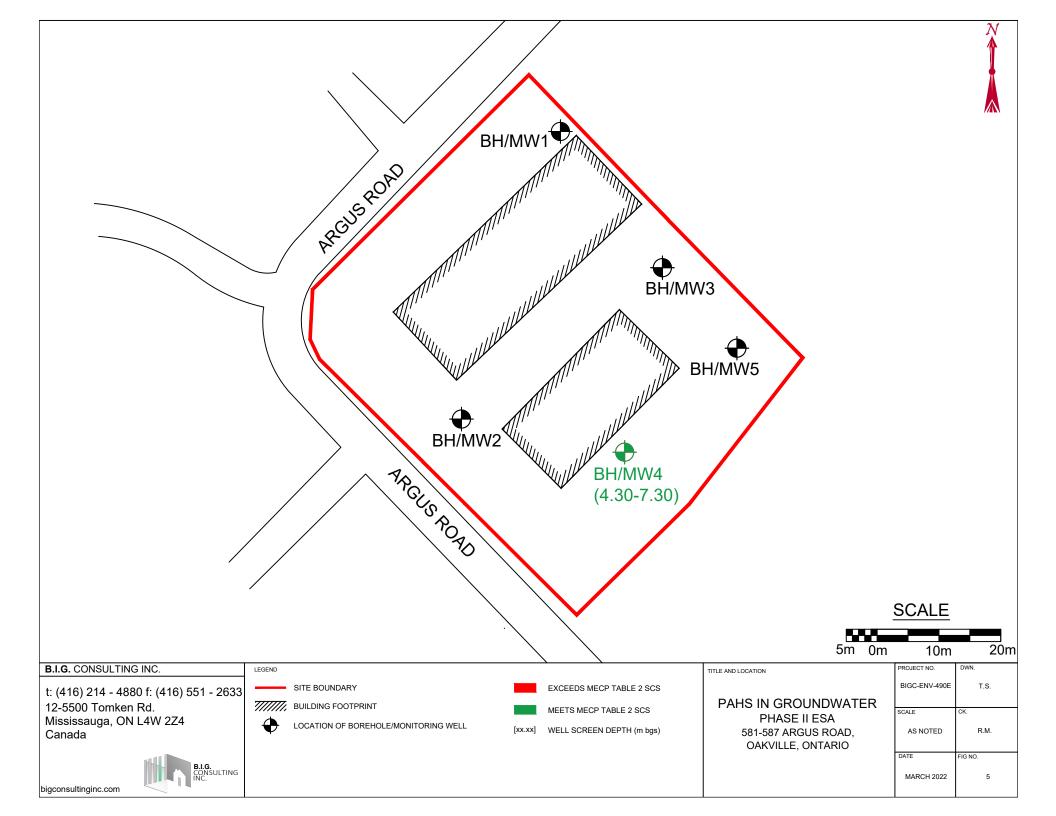
- 1. Canadian Standards Association. 2018. Z769-00 Phase II Environmental Site Assessment.
- 2. MECP (2011a) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the *Environmental Protection Act*";
- 3. MECP (2011b) Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the *Environmental Protection Act*. PIBS 4696e01
- 4. NHIC (2017); Make a Natural Heritage Map. Retrieved from http://www.gisapplication.lrc.gov.on.ca/mamnh/Index.html?site=MNR\_NHLUPS\_NaturalHeritage& viewer=NaturalHeritage&locale=en-US
- 5. Topographic Map available at the Natural Resources Canada (NRC) website. Accessed online at http://atlas.nrcan.gc.ca/site/english/maps/topo/map


Previous environmental reports reviewed as part of this Phase II ESA:


- a) Fisher (2021a) Phase I Environmental Site Assessment, 581 Argus Road, Oakville, Ontario. Fisher Environmental Ltd. June 1, 2021.
- b) Fisher (2021b) Phase I Environmental Site Assessment, 587 to 595 Argus Road, Oakville, Ontario. Fisher Environmental Ltd. June 1, 2021.
- c) BIG (2021a) Memo Findings of Preliminary Geotechnical Investigation, 581 587 Argus Road, Oakville, Ontario. B.I.G. Consulting Inc. October 26, 2021.
- d) BIG (2021b) Memo Preliminary Findings of Hydrogeological Investigation, 581 587 Argus Road, Oakville, Ontario. B.I.G. Consulting Inc. October 29, 2021.





# **Figures**














Appendix A: Site Sampling and Analysis Plan



## 1. Introduction

This appendix presents the Sampling and Analysis Plan (SAAP) that was developed in support of the Phase II Environmental Site Assessment (ESA), which will be conducted to provide further characterization of the Site subsurface conditions. The SAAP presents the procedures and measures that will be undertaken during field investigative activities to characterize the Site conditions and meet the data quality objectives of the Phase II ESA.

The SAAP presents the sampling program proposed for the Site, the recommended procedures and protocols for sampling and related field activities, the data quality objectives, and the quality assurance/quality control (QA/QC) measures that will be undertaken to provide for the collection of accurate, reproducible and representative data. These components are described in further detail below.

# 2. Field Sampling Program

The field sampling program was developed to provide for the collection of samples of the surficial and subsurface soil materials for chemical analysis of parameters identified as potential contaminants of concern identified in the Phase I ESA.

The soil samples will be collected from of the surficial fill and overburden material. The groundwater samples will be collected from each monitoring well.

The monitoring wells will be installed at selected boreholes to intercept the groundwater table aquifer. The monitoring wells will be installed with 3 m long screens extending to a maximum depth of approximately 22.90 m below grade.

Elevation of the boreholes and monitoring wells will be obtained through the completion of an elevation survey with reference to a Site temporary benchmark or a local geodetic benchmark. Groundwater flow will be determined through groundwater level measurements and the relative groundwater elevations established in the Site elevation survey.

# 3. Field Methods

To meet the requirements of the field sampling program, the following field investigative methods will be undertaken:

- a) Borehole Drilling;
- b) Soil Sampling;
- c) Monitoring Well Installation;
- d) Monitoring Well Development;
- e) Groundwater Level Measurements;
- f) Elevation Survey;
- g) Groundwater Sampling; and
- h) Residue Management Procedures.



The field investigative methods will be performed as described below:

## a) Borehole Drilling

Boreholes will be advanced at the Site to facilitate the collection of soil samples for chemical analysis and geologic characterization and for the installation of groundwater monitoring wells. Boreholes will be advanced at the Site to a maximum depth of approximately 27.6 m below grade, within the overburden materials to provide for the collection of soil samples beneath the Site. The borehole locations will be selected to assess soil and groundwater quality at the Site.

Prior to borehole drilling, utility clearances will be obtained from public locators, as required. Boreholes will be advanced into the surficial fill and overburden soils by a drilling company under the full-time supervision of BIG staff. A truck mounted drilling machine equipped with solid stem augers, hollow stem augers and split spoons will be utilized to advance the boreholes through the overburden materials.

## b) Soil Sampling

Soil samples for geologic characterization and chemical analysis will be collected from the overburden boreholes using 5 cm diameter, 60 cm long, stainless steel split-spoon sampling devices advanced ahead of the augers. The split-spoon samplers will be attached to drill rods and advanced into the soil by means of a machine-driven hammer. Spilt-spoon soil samples will be collected where possible, beginning at the ground surface and subsequently at continuous intervals. Geologic and sampling details of the recovered cores will be logged and the samples will be assessed for the potential presence of non-aqueous phase liquids. A portion of each soil sample will be placed in a sealed "zip-lock" plastic bag and allowed to reach ambient temperature prior to field screening with a photoionization detector (PID) that will be calibrated by the supplier with an appropriate reference gas and zeroed in ambient conditions prior to use. The vapour measurements will be made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These readings will provide a real-time indication of the relative concentration of volatile organic vapours encountered in the subsurface during drilling. Samples for chemical analysis will be selected on the basis of visual, combustible gas and olfactory evidence of impacts and at specific intervals to define the lateral and vertical extent of suspected impacts.

Recommended volumes of soil samples selected for chemical analysis will be collected into pre-cleaned, laboratory supplied, analytical test group specific containers. The samples will be placed into clean insulated coolers chilled with ice for storage and transport. Samples intended for VOC analysis will be collected using a laboratory-supplied soil core sampler, placed into the vials containing methanol for preservation purposes and sealed using Teflon lined septa lids. The samples will be assigned unique identification numbers, and the date, time, location, and requested analyses for each sample will be documented in a bound field notebook. The samples will be submitted to a CAEL certified laboratory within analytical test group holding times under Chain of Custody (COC) protocols. New disposable chemical resistant gloves will be used during the handling and sample collection for each soil core to prevent sample cross-contamination.

## c) Monitoring Well Installation

Monitoring wells will be installed in general accordance with Ontario Regulation 903/90, as amended and will be installed by a licensed well contractor.

The monitoring wells will be constructed using 50 mm diameter, Schedule 40, PVC riser pipe and number 10 slot size (0.25 mm) well screens. The base of the well screens will be sealed with PVC end caps. All well pipe connections will be factory machined threaded flush couplings. The pipe components will be prewrapped in plastic, which will be removed prior to insertion in the borehole to minimize the potential for



contamination. No lubricants or adhesives will be used in the construction of the monitoring wells. The annular space around the well screens will be backfilled with silica sand to at least 0.3 m above the top of the screen. Granular bentonite will be placed in the borehole annulus from the top of the sand pack to approximately grade. The monitoring wells will be completed with protective casings.

## d) Monitoring Well Development

Monitoring wells will be developed to remove fine sediment particles potentially lodged in the sand pack and well screen to enhance contact with the surrounding formation groundwater and will be developed using dedicated bailers. Monitoring well development will be monitored by multiparameter water quality meter visual observations of turbidity, and by taking field measurements of pH and conductivity for every well volume removed. Standing water volumes will be determined by means of a water level meter. Water quality parameter measurements will be recorded using a multiparameter water quality meter. A minimum of approximately three (3) well volumes will be removed; and, well development will continue until the purged water has chemically stabilized as indicated by field parameters measurements.

Well development details will be documented on a well development log sheet or in a bound hard cover notebook. All water accumulated during well development will be collected and stored in sealed containers.

## e) Groundwater Level Measurements

Groundwater level measurements will be recorded from monitoring wells to determine groundwater flow and direction at the Site. Water levels will be measured with respect to the top of the casing by means of a groundwater level meter. The water levels will be recorded on water level log sheets or in a bound field notebook. The water level meter probe will be decontaminated between monitoring well locations.

## f) Groundwater Sampling

Groundwater samples will be collected from monitoring wells for chemical analysis. The monitoring wells will be purged first of three to five wetted well volumes of water to remove standing water and draw in fresh formation water as previously described. Dedicated well materials will be used for well purging and sample collection.

Recommended groundwater sample volumes will be collected into pre-cleaned, laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. The samples will be placed in an insulated cooler chilled with ice for storage and transport. Where needed, bottles will be checked for head-space.

All groundwater samples will be assigned unique identification numbers, and the date, time, project number and company name will be specified on each bottle. The samples will be submitted to the contractual laboratory within analytical test group holding times under COC protocols. New disposable chemical resistant gloves will be used for each sampling location to prevent sample cross-contamination.

## g) Residue Management Procedures

The residue materials produced during the borehole drilling, soil sampling programs and monitoring well sampling programs comprised of decontamination fluids from equipment cleaning, and waters from well development and purging will be placed in sealed drums for future off-Site disposal.

# 4. Field Quality Assurance/Quality Control Program

The objective of the field quality assurance/quality control (QA/QC) program is to obtain soil and groundwater samples and other field measurements that provide data of acceptable quality that meets the



Oakville Argus Cross LP Phase Il Environmental Site Assessment 581-581 Argus Road, Oakville, Ontario BIGC-ENV-490E March 2022

objectives of the Phase II ESA. The objectives of the QA/QC program will be achieved through the implementation of procedures for the collection of unbiased (i.e., non-contaminated) samples, sample documentation and the collection of appropriate QC samples to provide a measure of sample reproducibility and accuracy. The field QA/QC measures will comprise:

- a) Decontamination Protocols;
- b) Equipment Calibration;
- c) Sample Preservation;
- d) Sample Documentation; and,
- e) Field Quality Control Samples.

Details on the field QA/QC measures are provided in the following sections.

## a) Decontamination Protocols

Decontamination protocols will be followed during field sampling where non-dedicated sampling equipment is used to prevent sample cross contamination. For the borehole drilling and soil sampling, split soil sampling devices will be cleaned/decontaminated between sampling intervals and auger flights between borehole locations. For the monitoring well installation, well components are not to come into contact with the ground surface prior to insertion into boreholes. Electronic water level meters will be decontaminated between monitoring well locations during well development, purging activities and rising head tests. All decontamination fluids will be collected and stored in sealed containers.

## b) Equipment Calibration

All equipment requiring calibration will be calibrated according to manufacturer's requirements using analytical grade reagents, or by the supplier prior to conducting field activities.

## c) Sample Preservation

All samples will be preserved using appropriate analytical test group specific reagents, as required, and upon collection placed in ice-filled insulated coolers for storage and transport.

## d) Sample Documentation

All samples will be assigned a unique identification number, which is to be recorded along with the date, time, project number and company name. All samples will be handled and transported following COC protocols.



Appendix B – Borehole Logs



#### B.I.G. RECORD OF BOREHOLE No. BH/MW1 Project Number: BIGC-GEO-490A Drilling Location: See Borehole Location Plan Logged by: Project Client: Oakville Argus Cross LP Drilling Method: 150 mm Mud Rotary/ HQ Core Compiled by: ΜV Project Name: Preliminary Geotechnical Investigation Drilling Machine: Truck Mounted Drill Reviewed by: SS Project Location: 581-587 Argus Road, Oakville Date Started: Date Completed: 8 Oct 21 Revision No.: 0, 25/10/21 8 Oct 21 LITHOLOGY PROFILE SOIL SAMPLING **FIELD TESTING LAB TESTING** RUMENTATION ALLATION PenetrationTesting Value/RQD Ξ SPT DCPT Sample Number **COMMENTS** DESCRIPTION 둳 Sample Type ecovery (%) MTO Vane\* Nilcon Vane Ξ ELEVATION wer Explosive Limit (LEL) ♦ Intact Remould -ithology [ △ Intact ▲ Remould ż DEPTH NST VST, \* Undrained Shear Strength (kPa) Plastic Liquid 80 ASPHALT PAVEMENT: 50mm Asphalt over104.38 40 60 20 40 60 20 100mm granular base SS 5 1 62 FILL: silty clay to clayey silt, possibly reworked, mottled brown, moist, firm 104 silty sand with clay, trace gravel, compact, 103.46 \possibly reworked below 0.76 m 1.1 SS 2 59 22 Ö SILTY CLAY TILL: trace sand, trace gravel, occasional Shale fragments, reddish brown, moist, very stiff to hard 103 SS 3 100 43 0 2 pale grey, hard below 1.83 m 50 15 SS 4 100 50/15 102 BEDROCK: Shale, highly weathered, occasiona2.6 limetone layers throughout, grey, moist to damp 50 C 8 50/8 101 50 5 - first water strike 99 50 5 6 98 97 50 96.86 End of Borehole Notes: 1. Borehole open and dry upon completion of drilling. 2. Groundwater level reading at 4.38 m bgs on October 18, 2021. B.I.G. Consulting Inc. $\overline{\underline{\lor}}$ Groundwater depth on completion of drilling: Dry m. 12-5500 Tomken Rd.

B.I.G. Consulting Inc. 12-5500 Tomken Rd. Mississauga, ON L4W 2Z4 Canada T: 416-214-4880 F: 416-551-2633

#### RECORD OF BOREHOLE No. BM/MW2 Project Number: BIGC-GEO-490A Drilling Location: See Borehole Location Plan Logged by: Project Client: Oakville Argus Cross LP Drilling Method: 96 mm Mud Rotary/ HQ Core Compiled by: ΜV Truck Mounted Drill Project Name: Preliminary Geotechnical Investigation Drilling Machine: Reviewed by: SS Project Location: 581-587 Argus Road, Oakville Date Started: Date Completed: 7 Oct 21 Revision No.: 0, 25/10/21 7 Oct 21 LITHOLOGY PROFILE SOIL SAMPLING **FIELD TESTING LAB TESTING** NSTRUMENTATION NSTALLATION PenetrationTesting Value/RQD Ξ SPT DCPT Sample Number **COMMENTS** DESCRIPTION 둳 Sample Type ecovery (%) MTO Vane\* Nilcon Vane Ξ ELEVATION wer Explosive Limit (LEL) ♦ Intact Remould ithology I ▲ Remould SPT 'N' \ DEPTH \* Undrained Shear Strength (kPa) Plastic Liquid 80 Geodetic Ground Surface Elevation: 104.24 m ASPHALT PAVEMENT: 70mm Asphalt over 103.97 40 60 20 40 60 20 200mm granular base SS 16 104 70 0 FILL: silty clay to clayey silt, trace gravel, dark greenish black, damp, very stiff mottled greenish brown, stiff below 0.76 m SS 2 12 75 Ö 103 CLAYEY SILT TILL: trace sand, trace gravel, grey to reddish brown, damp, hard SS 3 79 34 0 102 50 23 50/23 SS 4 100 101.65 BEDROCK: Shale, highly weathered to excellen2.6 . 500. 5 quality, occasional limetone layers throughout, grey, moist to damp 50/5 101 100 50 C 99 50 5 6 - first water strike 97 0 ROCK CORE BEGINS at 7.32 m RC 1 83 - Very Poor Quality 96 RC 2 70 100 0 - Fair Quality 95 10 RC 3 72 99 O. - Fair Quality 94 - Good Quality soft zone from 12.06 to 12.2 m 93 RC 4 97 78 O 12 92 13 RC 5 100 77 0 - Good Quality 91 B.I.G. Consulting Inc. ☑ Groundwater depth on completion of drilling: Not measured m. 12-5500 Tomken Rd. Mississauga, ON L4W 2Z4 Groundwater depth observed on 18/10/2021 at a depth of: 9.05 m Canada T: 416-214-4880 Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and requires interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying Notes to Record of Boreholes'. F: 416-551-2633 Scale: 1:74

Page: 1 of 2

RECORD OF BOREHOLE No. BM/MW2 Project Number: BIGC-GEO-490A Drilling Location: See Borehole Location Plan Logged by: LITHOLOGY PROFILE SOIL SAMPLING **FIELD TESTING LAB TESTING** Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 INSTRUMENTATION INSTALLATION PenetrationTesting 'N' Value/RQD9 Ξ O SPT DCPT **COMMENTS** Sample Number 둳 **DESCRIPTION** % Sample Type MTO Vane\* Nilcon Vane ELEVATION Ξ wer Explosive Limit (LEL)

W
W
astic Liquid Lower E W<sub>P</sub> △ Intact
▲ Remould ♦ Intact
Remould ithology | DEPTH SPT \* Undrained Shear Strength (kPa) 60 20 40 60 20 80 BEDROCK: Shale, highly weathered to excellent quality, occasional limetone layers throughout, grey, moist to damp 90 100 79 Ó - Good Quality some oxidised laminae at 13.87 m 15 soft zone from 14.38 to 14.54 m 89 16 RC 100 90 0 - Excellent Quality 88 87 RC 8 97 95 - Excellent Quality some oxidised laminae at 16.92 m. 18 86 19 RC 9 97 89 0 85 - Good Quality 20 RC 10 100 100 - Excellent Quality 21 83 22 RC 100 99 82 11 - Excellent Quality 23 81 RC 12 97 79 0 Good Quality 24 fracture zone with slickenside from 24.01 to 24.29 80 25 79 88 RC 0 13 97 - Good Quality 26 78 RC 14 100 84 :0 - Good Quality soft zones at 26.25 m and 27.02 to 27.07 m 27 77 End of Borehole

Borehole open completion of drilling.
 Groundwater level reading not measured upon completion of drilling due to introduced drilling

3. Groundwater level reading at 9.05 m bgs on October 18, 2021.

#### RECORD OF BOREHOLE No. BM/MW3 Project Number: BIGC-GEO-490A Drilling Location: See Borehole Location Plan Logged by: 150 mm Solid Stem Augering Compiled by: Project Client: Oakville Argus Cross LP Drilling Method: ΜV Project Name: Preliminary Geotechnical Investigation Drilling Machine: Truck Mounted Drill Reviewed by: SS Project Location: 581-587 Argus Road, Oakville Date Started: Date Completed: 8 Oct 21 8 Oct 21 Revision No.: 0, 25/10/21 LITHOLOGY PROFILE SOIL SAMPLING **FIELD TESTING LAB TESTING** RUMENTATION ALLATION PenetrationTesting Value/RQD Ξ SPT DCPT Sample Number **COMMENTS** DESCRIPTION 둳 Sample Type ecovery (%) MTO Vane\* Nilcon Vane Ξ ELEVATION wer Explosive Limit (LEL) ♦ Intact Remould ithology I ▲ Remould ż NST VST, \* Undrained Shear Strength (kPa) Plastic Liquid 80 Geodetic Ground Surface Elevation: 104.37 m ASPHALT PAVEMENT: 50mm Asphalt over104.17 40 60 20 40 60 20 150mm granular base SS 9 38 0 FILL: silty clay to clayey silt, possibly reworked, trace sand, trace gravel, mottled brown, moist, stiff to year stiff. 104 stiff to very stiff 103.30 silty sand with clay, trace gravel, mottled pale 1.1 grey, possibly reworked, compact below 0.76 m CLAYEY SILT TILL: trace sand, trace gravel, occasional Shale fragments, reddish brown to SS 2 70 18 Ö 103 grey, moist, very stiff to hard SS 3 100 39 Ó 101.93 50/8 102 SS 100 BEDROCK: Shale, highly weathered, occasiona2.4 limetone layers throughout, grey, moist to damp 50 5 50/5 101 100 50 5 $\nabla$ 99.49 first water strike End of Borehole on Auger Refusal Borehole open upon completion of drilling. Groundwater level at 4.72 m bgs upon completion of drilling. 3. Groundwater level reading at 4.24 m bgs on October 18, 2021. B.I.G. Consulting Inc. $\overline{\underline{\underline{}}}$ Groundwater depth on completion of drilling: $\underline{4.72 \text{ m}}$ .

B.I.G. Consulting Inc. 12-5500 Tomken Rd. Mississauga, ON L4W 2Z4 Canada T: 416-214-4880 F: 416-551-2633

#### B.I.G. RECORD OF BOREHOLE No. BM/MW4 Project Number: BIGC-GEO-490A Drilling Location: See Borehole Location Plan Logged by: 150 mm Solid Stem Augering Compiled by: Project Client: Oakville Argus Cross LP Drilling Method: ΜV Project Name: Preliminary Geotechnical Investigation Drilling Machine: Truck Mounted Drill Reviewed by: SS Project Location: 581-587 Argus Road, Oakville Date Started: Date Completed: 8 Oct 21 Revision No.: 0, 25/10/21 8 Oct 21 LITHOLOGY PROFILE SOIL SAMPLING **FIELD TESTING LAB TESTING** Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 NSTRUMENTATION NSTALLATION PenetrationTesting Value/RQD9 Ξ SPT DCPT Sample Number **COMMENTS** DESCRIPTION ithology Plot Sample Type ecovery (%) MTO Vane\* Nilcon Vane Ξ ELEVATION wer Explosive Limit (LEL) ♦ Intact Remould ▲ Remould ż DEPTH Plastic Liquid 80 \* Undrained Shear Strength (kPa) Geodetic Ground Surface Elevation: 103.61 m ASPHALT PAVEMENT: 50mm Asphalt over103.41 40 60 20 40 60 20 150mm granular base SS 14 1 75 $\circ$ FILL: sity clay to clayey silt, thale fragments, brown to grey, moist, stiff 103 CLAYEY SILT TILL: trace sand, trace gravel, 0.9 pale slightly mottled brown to grey, moist to damp, SS 2 31 Ö 51 stiff to hard 102 SS 3 14 0 82 75 23 SS 4 47 75/23 101.02 101 BEDROCK: Shale, highly weathered, occasiona2.6 limetone layers throughout, grey, moist to damp 50 C 8 3 50/8 100 50 C 50/8 99 $\blacksquare$ - first water strike 98 50 8 6 100 50/8 97 7 ⊻ 96.29 End of Borehole on Auger Refusal Borehole open upon completion of drilling. Solution of open upon completion of mining. Groundwater level at 7.01 m bgs upon completion of drilling. Groundwater level reading at 4.71 m bgs on October 18, 2021. $\overline{\underline{\underline{}}}$ Groundwater depth on completion of drilling: 7.01 m.

B.I.G. Consulting Inc. 12-5500 Tomken Rd. Mississauga, ON L4W 2Z4 Canada T: 416-214-4880 F: 416-551-2633

| RI             | ECORD                                                | OF BORE                                                  | HOLE N                                             | <b>o.</b>     | BM/                   | MW           | <u>'5</u>          |                              |                                              |                              |                                    |                            |                                  |                    |                                                              |                       |                               |                                       |                                 |     |            | B.I      | I.G.<br>INSULTING |
|----------------|------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------|---------------|-----------------------|--------------|--------------------|------------------------------|----------------------------------------------|------------------------------|------------------------------------|----------------------------|----------------------------------|--------------------|--------------------------------------------------------------|-----------------------|-------------------------------|---------------------------------------|---------------------------------|-----|------------|----------|-------------------|
| Pro            | ject Number:                                         | BIGC-GEO-490A                                            |                                                    |               |                       |              |                    |                              | Drilling                                     | Loca                         | tion:                              | Sec                        | e Bor                            | rehol              | e Loca                                                       | tion Pl               | lan                           |                                       |                                 | Log | ged by:    | MV       |                   |
| Pro            | ject Client:                                         | Oakville Argus C                                         | ross LP                                            |               |                       |              |                    |                              | Drilling                                     | Meth                         | od:                                | 96                         | 96 mm Solid Stem Augers          |                    |                                                              |                       |                               |                                       | Compiled by: MV                 |     |            |          |                   |
| Pro            | ject Name:                                           | Preliminary Geot                                         | echnical Inves                                     | stigation     |                       |              |                    |                              | _ Drilling Machine:                          |                              |                                    | Truck Mounted Drill        |                                  |                    |                                                              |                       | Rev                           | riewed by:                            | ss                              |     |            |          |                   |
| Pro            | ject Location:                                       | 581-587 Argus R                                          | oad, Oakville                                      |               |                       |              |                    |                              | Date 9                                       | Started                      | l:                                 | <u>6 C</u>                 | Oct 21                           | 1                  | _ Date                                                       | e Comp                | oleted:                       | 6 Oct                                 | 21                              | Rev | ision No.: | 0, 25/   | 10/21             |
|                | LITH                                                 | OLOGY PROFIL                                             | .E                                                 | SOIL SAMPLING |                       |              |                    |                              | FIELD T                                      |                              |                                    | TES                        | TIN                              | G                  |                                                              | AB TE                 |                               | G                                     |                                 |     |            |          |                   |
| Lithology Plot |                                                      | DESCRIPTION                                              |                                                    | Sample Type   | Sample Number         | Recovery (%) | SPT 'N' Value/RQD% | DEРТН (m)                    | LEVATION (m)                                 | O SF MTO Δ Int. ▲ Re * Undra | Vane*<br>act<br>emould<br>ained SI | Nile  Nile                 | DCPT<br>con Va<br>Intact<br>Remo | ane* ould (kPa)    | 2<br>Soi<br>Δ part<br>100<br>▲ Low<br>W <sub>P</sub><br>Plas |                       | Read ion (ppm) 300 sive Limit | ing<br>400<br>(LEL)<br>W <sub>L</sub> | INSTRUMENTATION<br>INSTALLATION | Ó   | COMMENTS   | ITS      |                   |
| ~~~            | ASPHALT PA \(\bar{1}30\text{mm granu}\)              | d Surface Elevation: 1 VEMENT: 70mm Asp                  | halt over103.55_                                   |               |                       |              |                    | -                            | <u>                                     </u> | 20                           | 0 4 <u>(</u> 0<br>:                | ) 6 <u>(</u>               | ) 8 <u>.</u>                     | 0                  | 20                                                           | 40                    | 60<br>:                       | 8 <u>0</u>                            |                                 |     |            |          |                   |
|                | FILL: silty clay gravel, mottled                     | to clayey silt, trace sa<br>d pale grey, damp, stif      | f to hard                                          | SS            | 2                     | 70           | 9<br>50/15         |                              | 103                                          | 0                            |                                    | 50<br>15                   |                                  |                    |                                                              |                       |                               |                                       |                                 |     |            |          |                   |
| <b>※</b>       | below 0.76 m                                         | oble, mottled greenish                                   | 102.23                                             |               |                       |              |                    | - 1<br>-<br>-<br>-<br>-<br>- | -                                            |                              |                                    | 15                         |                                  |                    |                                                              |                       |                               |                                       |                                 |     |            |          |                   |
|                | gravel and pel                                       | obles, pale grey, dam                                    | p, hard<br>101.46                                  | SS<br>SS      | 3                     | 62           | 32<br>50/8         | 2                            | 102 -                                        |                              | 0                                  | 50<br>8                    |                                  |                    |                                                              |                       |                               |                                       |                                 |     |            |          |                   |
|                | BEDROCK: S<br>quality, occasi<br>grey, moist to      | hale, highly weathere<br>onal limetone layers to<br>damp | d to excellen2.3<br>hroughout,                     |               | -4                    |              |                    | 3                            | 101                                          |                              | :                                  | :                          |                                  |                    |                                                              |                       |                               |                                       |                                 |     |            |          |                   |
|                |                                                      |                                                          |                                                    | SS            | 5                     | 100          | 50/8               |                              |                                              |                              |                                    | 50<br>O<br>8               |                                  |                    |                                                              |                       |                               |                                       |                                 |     |            |          |                   |
|                |                                                      |                                                          |                                                    |               |                       |              |                    | - 4<br>- 4                   | 100 -                                        |                              |                                    |                            |                                  |                    |                                                              |                       |                               |                                       |                                 |     |            |          |                   |
|                |                                                      |                                                          |                                                    | SS            | 6                     | 100          | 50/10              | 5                            | 99 -                                         |                              |                                    | 10                         |                                  |                    |                                                              |                       |                               |                                       |                                 |     |            |          |                   |
|                |                                                      |                                                          |                                                    |               |                       |              |                    |                              | 98 -                                         |                              |                                    | •                          |                                  |                    |                                                              |                       |                               |                                       |                                 |     |            |          |                   |
|                |                                                      |                                                          |                                                    | ss            | 7                     | 100          | 50/8               | 6                            | -                                            |                              |                                    | 8                          |                                  |                    |                                                              |                       |                               |                                       |                                 |     |            |          |                   |
|                | - first water str                                    | ike                                                      |                                                    |               |                       |              |                    | 7                            | 97 -                                         |                              |                                    |                            |                                  |                    |                                                              |                       |                               |                                       |                                 |     |            |          |                   |
|                | ROCI<br>- Very Poor Q                                | CORE BEGINS at 7                                         | .32 m                                              | RC            | 1                     | 87           | 0                  | -<br>-<br>-<br>-<br>8        | 96 –                                         |                              |                                    |                            |                                  |                    |                                                              |                       |                               |                                       |                                 |     |            |          |                   |
|                |                                                      | from 8.16 to 8.72 m<br>eratic layers through             | out run                                            | RC            | 2                     | 100          | 61                 | 9                            | 95 –                                         |                              |                                    |                            | )                                |                    |                                                              |                       |                               |                                       |                                 |     |            |          |                   |
|                | - Fair Quality                                       |                                                          |                                                    | RC            | 3                     | 95           | 70                 | 10                           | 94 -                                         |                              |                                    |                            | 0                                |                    |                                                              |                       |                               |                                       |                                 |     |            |          |                   |
|                | - Good Quality                                       |                                                          |                                                    | RC            | 4                     | 100          | 87                 | 11                           | 93 -                                         |                              |                                    |                            |                                  | 0                  |                                                              |                       |                               |                                       |                                 |     |            |          |                   |
|                | - Fair Quality<br>some oxidised                      | laminae from 12.34 t                                     | o 15.39 m                                          | RC            | 5                     | 98           | 72                 | 13                           | 91 -                                         |                              |                                    |                            | 0                                |                    |                                                              |                       |                               |                                       |                                 |     |            |          |                   |
| 12-5           | G. Consulting In                                     |                                                          | ∑ Groundwa                                         |               |                       |              |                    |                              | 90 –                                         |                              | <u>m</u> .                         | •                          |                                  |                    |                                                              | :                     | :                             | :                                     |                                 |     |            |          |                   |
| Can<br>T: 4    | issauga, ON L4¹<br>ada<br>16-214-4880<br>16-551-2633 | N 2Z4                                                    | Borehole details from a qualified Commissioned and | as prese      | nted, do<br>ical Engi | not const    | titute a th        | orough                       | understar<br>mation sh                       | nding of                     | all pote                           | )4 m.<br>ential c<br>conju | ondition                         | ons pre<br>with th | esent and<br>ne geotec                                       | requires<br>hnical re | interpre                      | etative as                            | ssistance<br>was                |     |            | Scale: 1 |                   |

#### RECORD OF BOREHOLE No. BM/MW5



Project Number: BIGC-GEO-490A Drilling Location: See Borehole Location Plan Logged by: MV

|                | LITHOLOGY PROFILE                                                                                                                                                                                                                                    |             | IL SA         | MPLI         | NG                 |                          |                 | FIELD T               | ESTING                                    | LAB TESTING                     |                                |          |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|--------------|--------------------|--------------------------|-----------------|-----------------------|-------------------------------------------|---------------------------------|--------------------------------|----------|
| Lithology Plot | DESCRIPTION                                                                                                                                                                                                                                          | Sample Type | Sample Number | Recovery (%) | SPT 'N' Value/RQD% | DЕРТН (m)                | ELEVATION (m)   | MTO Vane*<br>△ Intact | ● DCPT  Nilcon Vane*  ◇ Intact  ◆ Remould | ★ Rinse pH Values 2 4 6 8 10 12 | NSTRUMENTATION<br>INSTALLATION | COMMENTS |
|                | BEDROCK: Shale, highly weathered to excellent quality, occasional limetone layers throughout, grey, moist to damp  - Excellent Quality                                                                                                               | RC          | 6             | 100          | 93                 | 15                       | 89 -            |                       | 0                                         |                                 |                                |          |
|                | - Fair Quality sub vertical fracture from from 15.84 to 15.92 m                                                                                                                                                                                      | RC          | 7             | 100          | 74                 | 16                       | 88 <del>-</del> |                       | 0                                         |                                 |                                |          |
|                | - Excellent Quality                                                                                                                                                                                                                                  | RC          | 8             | 95           | 93                 | 17                       | 86 -            |                       | 0                                         |                                 |                                |          |
|                | - Excellent Quality                                                                                                                                                                                                                                  | RC          | 9             | 100          | 92                 | 19 <u>V</u>              | 85 —<br>84 —    |                       | 0                                         |                                 |                                |          |
|                | - Excellent Quality                                                                                                                                                                                                                                  | RC          | 10            | 98           | 90                 | 20                       | 83 -            |                       | 0                                         |                                 |                                |          |
|                | - Fair Quality                                                                                                                                                                                                                                       | RC          | 11            | 95           | 70                 | 22                       | 82 -            |                       | 0                                         |                                 |                                |          |
|                | - Excellent Quality<br>fracture zone from 23.81 to 23.91 m                                                                                                                                                                                           | RC          | 12            | 100          | 99                 | 23                       | 80 -            |                       |                                           |                                 |                                |          |
|                | - Good Quality 78.45                                                                                                                                                                                                                                 | RC          | 13            | 100          | 88                 | -<br>-<br>-<br>-<br>- 25 | 79              |                       |                                           |                                 |                                |          |
|                | End of Borehole 25.3  Notes:  1. Borehole open upon completion of drilling. 2. Groundwater level reading not measured upon completion of drilling due to introduced drilling water. 3. Groundwater level reading at 19.04 m bgs on October 18, 2021. |             |               |              |                    |                          |                 |                       |                                           |                                 |                                |          |

Appendix C – Analytical Results



| AGAT Workorder      |                            |      |     | 21T828695  | 21T828695  | 21T828695  | 21T828695  | 21T828695  |
|---------------------|----------------------------|------|-----|------------|------------|------------|------------|------------|
| Date Sampled        |                            |      |     | 10/08/21   | 10/07/21   | 10/08/21   | 10/08/21   | 10/06/21   |
| Sample Description  |                            |      |     | BH/MW1-SS2 | BH/MW2-SS1 | BH/MW3-SS1 | BH/MW4-SS1 | BH/MW5-SS1 |
| Package Name        | ackage Name Parameter Name |      | RDL | 3196779    | 3196864    | 3196865    | 3196866    | 3196867    |
| Matrix Soil: Metals | Antimony                   | μg/g | 0.8 | <0.8       | <0.8       | <0.8       | <0.8       | <0.8       |
| Matrix Soil: Metals | Arsenic                    | μg/g | 1   | 7          | 8          | 7          | 5          | 12         |
| Matrix Soil: Metals | Barium                     | μg/g | 2   | 89         | 104        | 147        | 63.6       | 56.1       |
| Matrix Soil: Metals | Beryllium                  | μg/g | 0.4 | 0.7        | 0.8        | 0.9        | 0.4        | 0.6        |
| Matrix Soil: Metals | Boron                      | μg/g | 5   | 15         | 14         | 19         | 12         | 16         |
| Matrix Soil: Metals | Cadmium                    | μg/g | 0.5 | <0.5       | <0.5       | <0.5       | <0.5       | 0.6        |
| Matrix Soil: Metals | Chromium                   | μg/g | 5   | 19         | 19         | 27         | 16         | 15         |
| Matrix Soil: Metals | Cobalt                     | μg/g | 0.5 | 9.2        | 10.4       | 13.7       | 5.3        | 8.2        |
| Matrix Soil: Metals | Copper                     | μg/g | 1   | 78.4       | 88.8       | 98.8       | 26.2       | 71.3       |
| Matrix Soil: Metals | Lead                       | μg/g | 1   | 16         | 17         | 14         | 28         | 34         |
| Matrix Soil: Metals | Molybdenum                 | μg/g | 0.5 | 1.4        | 1.4        | 1.7        | 1          | 1.2        |
| Matrix Soil: Metals | Nickel                     | μg/g | 1   | 20         | 21         | 31         | 13         | 16         |
| Matrix Soil: Metals | Selenium                   | μg/g | 0.8 | <0.8       | <0.8       | <0.8       | <0.8       | <0.8       |
| Matrix Soil: Metals | Silver                     | μg/g | 0.5 | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Matrix Soil: Metals | Thallium                   | μg/g | 0.5 | <0.5       | <0.5       | <0.5       | <0.5       | <0.5       |
| Matrix Soil: Metals | Uranium                    | μg/g | 0.5 | 0.98       | 0.89       | 0.96       | 0.68       | 0.71       |
| Matrix Soil: Metals | Vanadium                   | μg/g | 0.4 | 30.3       | 31.7       | 43.7       | 28.8       | 24.4       |
| Matrix Soil: Metals | Zinc                       | μg/g | 5   | 134        | 89         | 94         | 84         | 129        |

Guideline Legend: Exceeds Guideline
Within Guideline
Below RDL



| AGAT Workorder     |                          |      |      | 21T828695  | 21T828695  | 21T828695  | 21T828695  | 21T828695  |
|--------------------|--------------------------|------|------|------------|------------|------------|------------|------------|
| Date Sampled       |                          |      |      | 10/08/21   | 10/07/21   | 10/08/21   | 10/08/21   | 10/06/21   |
| Sample Description |                          |      |      | BH/MW1-SS2 | BH/MW2-SS1 | BH/MW3-SS1 | BH/MW4-SS1 | BH/MW5-SS1 |
| Package Name       | Parameter Name           | Unit | RDL  | 3196779    | 3196864    | 3196865    | 3196866    | 3196867    |
| Matrix Soil: PAHs  | 1 and 2 Methlynaphthalen | μg/g | 0.05 | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |
| Matrix Soil: PAHs  | Acenaphthene             | μg/g | 0.05 | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |
| Matrix Soil: PAHs  | Acenaphthylene           | μg/g | 0.05 | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |
| Matrix Soil: PAHs  | Acridine-d9              | %    | 1    | 77         | 85         | 91         | 103        | 107        |
| Matrix Soil: PAHs  | Anthracene               | μg/g | 0.05 | <0.05      | <0.05      | <0.05      | 0.08       | <0.05      |
| Matrix Soil: PAHs  | Benz(a)anthracene        | μg/g | 0.05 | <0.05      | <0.05      | <0.05      | 0.47       | 0.11       |
| Matrix Soil: PAHs  | Benzo(a)pyrene           | μg/g | 0.05 | <0.05      | <0.05      | <0.05      | 0.26       | 0.07       |
| Matrix Soil: PAHs  | Benzo(b)fluoranthene     | μg/g | 0.05 | <0.05      | <0.05      | <0.05      | 0.4        | 0.09       |
| Matrix Soil: PAHs  | Benzo(g,h,i)perylene     | μg/g | 0.05 | <0.05      | <0.05      | <0.05      | 0.16       | <0.05      |
| Matrix Soil: PAHs  | Benzo(k)fluoranthene     | μg/g | 0.05 | <0.05      | <0.05      | <0.05      | 0.15       | 0.08       |
| Matrix Soil: PAHs  | Chrysene                 | μg/g | 0.05 | <0.05      | <0.05      | <0.05      | 0.37       | 0.08       |
| Matrix Soil: PAHs  | Dibenz(a,h)anthracene    | μg/g | 0.05 | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |
| Matrix Soil: PAHs  | Fluoranthene             | μg/g | 0.05 | <0.05      | <0.05      | 0.08       | 0.93       | 0.3        |
| Matrix Soil: PAHs  | Fluorene                 | μg/g | 0.05 | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |
| Matrix Soil: PAHs  | Indeno(1,2,3-cd)pyrene   | μg/g | 0.05 | <0.05      | <0.05      | <0.05      | 0.11       | <0.05      |
| Matrix Soil: PAHs  | Moisture Content         | %    | 0.1  | 17.1       | 14.2       | 10         | 15.1       | 15.2       |
| Matrix Soil: PAHs  | Naphthalene              | μg/g | 0.05 | <0.05      | <0.05      | <0.05      | <0.05      | <0.05      |
| Matrix Soil: PAHs  | Naphthalene-d8           | %    | 1    | 105        | 78         | 124        | 112        | 106        |
| Matrix Soil: PAHs  | Phenanthrene             | μg/g | 0.05 | <0.05      | <0.05      | <0.05      | 0.25       | 0.1        |
| Matrix Soil: PAHs  | Pyrene                   | μg/g | 0.05 | <0.05      | <0.05      | 0.08       | 0.85       | 0.26       |
| Matrix Soil: PAHs  | Terphenyl-d14            | %    | 1    | 85         | 99         | 117        | 105        | 63         |

| <b>Guideline Legend:</b> | Exceeds Guideline |
|--------------------------|-------------------|
|                          | Within Guideline  |
|                          | Below RDL         |



Oakville Argus Cross LP Phase II Environmental Site Assessment 581-581 Argus Road, Oakville, Ontario BIGC-ENV-490E March 2022

| AGAT Workorder                         |                           |          | 21T828695  | 21T828695  | 21T828695  | 21T828695  | 21T828695  |
|----------------------------------------|---------------------------|----------|------------|------------|------------|------------|------------|
| Date Sampled                           |                           | 10/08/21 | 10/07/21   | 10/08/21   | 10/08/21   | 10/06/21   |            |
| Sample Description                     |                           |          | BH/MW1-SS2 | BH/MW2-SS1 | BH/MW3-SS1 | BH/MW4-SS1 | BH/MW5-SS1 |
| Package Name                           | Parameter Name            | 3196779  | 3196864    | 3196865    | 3196866    | 3196867    |            |
| Matrix Soil: Physical parameters/Other | Boron (Hot Water Soluble) | 0.19     | 0.39       | 0.31       | 0.43       | 0.62       |            |

| Guideline Legend: | Exceeds Guideline |
|-------------------|-------------------|
|                   | Within Guideline  |
|                   | Below RDL         |



| AGAT Workorder     | 22T872058                  | 22T872058 |         |      |       |       |
|--------------------|----------------------------|-----------|---------|------|-------|-------|
| Date Sampled       | 03/10/22                   | 03/10/22  |         |      |       |       |
| Sample Description | BH/MW4                     | Dup40     |         |      |       |       |
| Package Name       | Parameter Name             | 3607380   | 3607381 |      |       |       |
| Matrix Water: PAHs | 2-and 1-methyl Naphthalene | μg/L      | 0.2     | 3.2  | <0.20 | <0.20 |
| Matrix Water: PAHs | Acenaphthene               | μg/L      | 0.2     | 4.1  | <0.20 | <0.20 |
| Matrix Water: PAHs | Acenaphthylene             | μg/L      | 0.2     | 1    | <0.20 | <0.20 |
| Matrix Water: PAHs | Acridine-d9                | %         | 1       |      | 90    | 117   |
| Matrix Water: PAHs | Anthracene                 | μg/L      | 0.1     | 2.4  | <0.10 | <0.10 |
| Matrix Water: PAHs | Benzo(a)anthracene         | μg/L      | 0.2     | 1    | <0.20 | <0.20 |
| Matrix Water: PAHs | Benzo(a)pyrene             | μg/L      | 0.01    | 0.01 | <0.01 | <0.01 |
| Matrix Water: PAHs | Benzo(b)fluoranthene       | μg/L      | 0.1     | 0.1  | <0.10 | <0.10 |
| Matrix Water: PAHs | Benzo(g,h,i)perylene       | μg/L      | 0.2     | 0.2  | <0.20 | <0.20 |
| Matrix Water: PAHs | Benzo(k)fluoranthene       | μg/L      | 0.1     | 0.1  | <0.10 | <0.10 |
| Matrix Water: PAHs | Chrysene                   | μg/L      | 0.1     | 0.1  | <0.10 | <0.10 |
| Matrix Water: PAHs | Dibenz(a,h)anthracene      | μg/L      | 0.2     | 0.2  | <0.20 | <0.20 |
| Matrix Water: PAHs | Fluoranthene               | μg/L      | 0.2     | 0.41 | <0.20 | <0.20 |
| Matrix Water: PAHs | Fluorene                   | μg/L      | 0.2     | 120  | <0.20 | <0.20 |
| Matrix Water: PAHs | Indeno(1,2,3-cd)pyrene     | μg/L      | 0.2     | 0.2  | <0.20 | <0.20 |
| Matrix Water: PAHs | Naphthalene                | μg/L      | 0.2     | 11   | <0.20 | <0.20 |
| Matrix Water: PAHs | Naphthalene-d8             | %         | 1       |      | 66    | 69    |
| Matrix Water: PAHs | Phenanthrene               | μg/L      | 0.1     | 1    | <0.10 | <0.10 |
| Matrix Water: PAHs | Pyrene                     | μg/L      | 0.2     | 4.1  | <0.20 | <0.20 |
| Matrix Water: PAHs | Sediment                   |           |         |      | NO    | NO    |
| Matrix Water: PAHs | Terphenyl-d14              | %         | 1       |      | 89    | 87    |

| <b>Guideline Legend:</b> | Exceeds Guideline |
|--------------------------|-------------------|
|                          | Within Guideline  |
|                          | Below RDL         |



**Appendix D - Laboratory Certificates of Analysis** 





CLIENT NAME: B.I.G. CONSULTING INC. 12-5500 TOMKEN ROAD MISSISSAUGA, ON L4W 2Z4 416-214-4880

ATTENTION TO: Rebecca Morrison PROJECT: BIGC-ENV-490C

AGAT WORK ORDER: 21T828695

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Nov 18, 2021

PAGES (INCLUDING COVER): 10 VERSION\*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

| *Notes |  |
|--------|--|
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |

#### Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
  incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
  be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
  third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
  services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
  merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
  contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 10

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.



CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:581-587 Argus Road, Oakville

## **Certificate of Analysis**

**AGAT WORK ORDER: 21T828695** 

PROJECT: BIGC-ENV-490C

**SAMPLED BY:MV** 

**ATTENTION TO: Rebecca Morrison** 

#### O. Reg. 153(511) - Metals (Including Hydrides) (Soil)

| DATE RECEIVED: 2021-11-10 |      |       |                       |                             |                                           |                                           |                                           |                                           | DATE REPORTED: 2021-11-18 |
|---------------------------|------|-------|-----------------------|-----------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------|---------------------------|
|                           |      | DATES | PLE TYPE:<br>SAMPLED: | Soil<br>2021-10-08<br>09:00 | BH/MW2-SS1<br>Soil<br>2021-10-07<br>08:20 | BH/MW3-SS1<br>Soil<br>2021-10-08<br>11:30 | BH/MW4-SS1<br>Soil<br>2021-10-08<br>14:50 | BH/MW5-SS1<br>Soil<br>2021-10-06<br>08:30 |                           |
| Parameter                 | Unit | G/S   | RDL                   | 3196779                     | 3196864                                   | 3196865                                   | 3196866                                   | 3196867                                   |                           |
| Antimony                  | μg/g | 7.5   | 0.8                   | <0.8                        | <0.8                                      | <0.8                                      | <0.8                                      | <0.8                                      |                           |
| Arsenic                   | µg/g | 18    | 1                     | 7                           | 8                                         | 7                                         | 5                                         | 12                                        |                           |
| Barium                    | μg/g | 390   | 2.0                   | 89.0                        | 104                                       | 147                                       | 63.6                                      | 56.1                                      |                           |
| Beryllium                 | μg/g | 4     | 0.4                   | 0.7                         | 8.0                                       | 0.9                                       | 0.4                                       | 0.6                                       |                           |
| Boron                     | μg/g | 120   | 5                     | 15                          | 14                                        | 19                                        | 12                                        | 16                                        |                           |
| Cadmium                   | μg/g | 1.2   | 0.5                   | <0.5                        | <0.5                                      | <0.5                                      | <0.5                                      | 0.6                                       |                           |
| Chromium                  | μg/g | 160   | 5                     | 19                          | 19                                        | 27                                        | 16                                        | 15                                        |                           |
| Cobalt                    | μg/g | 22    | 0.5                   | 9.2                         | 10.4                                      | 13.7                                      | 5.3                                       | 8.2                                       |                           |
| Copper                    | μg/g | 140   | 1.0                   | 78.4                        | 88.8                                      | 98.8                                      | 26.2                                      | 71.3                                      |                           |
| Lead                      | μg/g | 120   | 1                     | 16                          | 17                                        | 14                                        | 28                                        | 34                                        |                           |
| Molybdenum                | μg/g | 6.9   | 0.5                   | 1.4                         | 1.4                                       | 1.7                                       | 1.0                                       | 1.2                                       |                           |
| Nickel                    | μg/g | 100   | 1                     | 20                          | 21                                        | 31                                        | 13                                        | 16                                        |                           |
| Selenium                  | μg/g | 2.4   | 8.0                   | <0.8                        | <0.8                                      | <0.8                                      | <0.8                                      | <0.8                                      |                           |
| Silver                    | μg/g | 20    | 0.5                   | <0.5                        | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                      |                           |
| Thallium                  | μg/g | 1     | 0.5                   | <0.5                        | <0.5                                      | <0.5                                      | <0.5                                      | <0.5                                      |                           |
| Uranium                   | μg/g | 23    | 0.50                  | 0.98                        | 0.89                                      | 0.96                                      | 0.68                                      | 0.71                                      |                           |
| Vanadium                  | μg/g | 86    | 0.4                   | 30.3                        | 31.7                                      | 43.7                                      | 28.8                                      | 24.4                                      |                           |
| Zinc                      | μg/g | 340   | 5                     | 134                         | 89                                        | 94                                        | 84                                        | 129                                       |                           |

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -Residential/Parkland/Institutional Property Use - Coarse Textured Soils \*\*pH range listed applies to surface soil only\*\*

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by \*)

Certified By:



5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122



## **Certificate of Analysis**

**AGAT WORK ORDER: 21T828695** 

PROJECT: BIGC-ENV-490C

**SAMPLED BY:MV** 

**ATTENTION TO: Rebecca Morrison** 

O Pag 153/511) - OPPs (Sail)

|                           |      |            |           | O. Re               | g. 153(511)         | - URPS (50          | 11)                 |                     |                           |
|---------------------------|------|------------|-----------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------------|
| DATE RECEIVED: 2021-11-10 |      |            |           |                     |                     |                     |                     | [                   | DATE REPORTED: 2021-11-18 |
|                           |      | SAMPLE DES | CRIPTION: | BH/MW1-SS2          | BH/MW2-SS1          | BH/MW3-SS1          | BH/MW4-SS1          | BH/MW5-SS1          |                           |
|                           |      | SAM        | PLE TYPE: | Soil                | Soil                | Soil                | Soil                | Soil                |                           |
|                           |      | DATE       | SAMPLED:  | 2021-10-08<br>09:00 | 2021-10-07<br>08:20 | 2021-10-08<br>11:30 | 2021-10-08<br>14:50 | 2021-10-06<br>08:30 |                           |
| Parameter                 | Unit | G/S        | RDL       | 3196779             | 3196864             | 3196865             | 3196866             | 3196867             |                           |
| Boron (Hot Water Soluble) | μg/g | 1.5        | 0.10      | 0.19                | 0.39                | 0.31                | 0.43                | 0.62                |                           |

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils \*\*PH range listed applies to surface soil only\*\*

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by \*)

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:581-587 Argus Road, Oakville

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122



CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:581-587 Argus Road, Oakville

## **Certificate of Analysis**

AGAT WORK ORDER: 21T828695

PROJECT: BIGC-ENV-490C

SAMPLED BY:MV

**ATTENTION TO: Rebecca Morrison** 

O. Reg. 153(511) - PAHs (Soil)

**DATE REPORTED: 2021-11-18** DATE RECEIVED: 2021-11-10

|                           |      | SAMPLE DESC | CRIPTION: | BH/MW1-SS2          | BH/MW2-SS1          | BH/MW3-SS1          | BH/MW4-SS1          | BH/MW5-SS1          |  |
|---------------------------|------|-------------|-----------|---------------------|---------------------|---------------------|---------------------|---------------------|--|
|                           |      | SAME        | PLE TYPE: | Soil                | Soil                | Soil                | Soil                | Soil                |  |
|                           |      | DATE S      | SAMPLED:  | 2021-10-08<br>09:00 | 2021-10-07<br>08:20 | 2021-10-08<br>11:30 | 2021-10-08<br>14:50 | 2021-10-06<br>08:30 |  |
| Parameter                 | Unit | G/S         | RDL       | 3196779             | 3196864             | 3196865             | 3196866             | 3196867             |  |
| Naphthalene               | μg/g | 0.6         | 0.05      | < 0.05              | < 0.05              | < 0.05              | <0.05               | < 0.05              |  |
| Acenaphthylene            | μg/g | 0.15        | 0.05      | < 0.05              | < 0.05              | < 0.05              | < 0.05              | < 0.05              |  |
| Acenaphthene              | μg/g | 7.9         | 0.05      | < 0.05              | <0.05               | < 0.05              | < 0.05              | < 0.05              |  |
| Fluorene                  | μg/g | 62          | 0.05      | < 0.05              | <0.05               | < 0.05              | <0.05               | <0.05               |  |
| Phenanthrene              | μg/g | 6.2         | 0.05      | < 0.05              | < 0.05              | < 0.05              | 0.25                | 0.10                |  |
| Anthracene                | μg/g | 0.67        | 0.05      | < 0.05              | < 0.05              | < 0.05              | 0.08                | < 0.05              |  |
| Fluoranthene              | μg/g | 0.69        | 0.05      | < 0.05              | < 0.05              | 0.08                | 0.93                | 0.30                |  |
| Pyrene                    | μg/g | 78          | 0.05      | < 0.05              | <0.05               | 0.08                | 0.85                | 0.26                |  |
| Benz(a)anthracene         | μg/g | 0.5         | 0.05      | < 0.05              | < 0.05              | < 0.05              | 0.47                | 0.11                |  |
| Chrysene                  | μg/g | 7           | 0.05      | < 0.05              | < 0.05              | < 0.05              | 0.37                | 0.08                |  |
| Benzo(b)fluoranthene      | μg/g | 0.78        | 0.05      | < 0.05              | < 0.05              | < 0.05              | 0.40                | 0.09                |  |
| Benzo(k)fluoranthene      | μg/g | 0.78        | 0.05      | < 0.05              | < 0.05              | < 0.05              | 0.15                | 0.08                |  |
| Benzo(a)pyrene            | μg/g | 0.3         | 0.05      | < 0.05              | <0.05               | < 0.05              | 0.26                | 0.07                |  |
| Indeno(1,2,3-cd)pyrene    | μg/g | 0.38        | 0.05      | < 0.05              | <0.05               | < 0.05              | 0.11                | <0.05               |  |
| Dibenz(a,h)anthracene     | μg/g | 0.1         | 0.05      | < 0.05              | < 0.05              | < 0.05              | < 0.05              | < 0.05              |  |
| Benzo(g,h,i)perylene      | μg/g | 6.6         | 0.05      | < 0.05              | < 0.05              | < 0.05              | 0.16                | < 0.05              |  |
| 1 and 2 Methlynaphthalene | μg/g | 0.99        | 0.05      | < 0.05              | < 0.05              | < 0.05              | < 0.05              | < 0.05              |  |
| Moisture Content          | %    |             | 0.1       | 17.1                | 14.2                | 10.0                | 15.1                | 15.2                |  |
| Surrogate                 | Unit | Acceptab    | le Limits |                     |                     |                     |                     |                     |  |
| Naphthalene-d8            | %    | 50-1        | 40        | 105                 | 78                  | 124                 | 112                 | 106                 |  |
| Acridine-d9               | %    | 50-1        | 40        | 77                  | 85                  | 91                  | 103                 | 107                 |  |
| Terphenyl-d14             | %    | 50-1        | 40        | 85                  | 99                  | 117                 | 105                 | 63                  |  |

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils \*\*pH range listed applies to surface soil only\*\*

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3196779-3196867 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&i)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by \*)

Certified By:

NPoprikolof

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122



#### **Exceedance Summary**

AGAT WORK ORDER: 21T828695

PROJECT: BIGC-ENV-490C

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

**CLIENT NAME: B.I.G. CONSULTING INC.** 

**ATTENTION TO: Rebecca Morrison** 

| SAMPLEID | SAMPLE TITLE | GUIDELINE      | ANALYSIS PACKAGE               | PARAMETER    | UNIT | GUIDEVALUE | RESULT |
|----------|--------------|----------------|--------------------------------|--------------|------|------------|--------|
| 3196866  | BH/MW4-SS1   | ON T2 S RPI CT | O. Reg. 153(511) - PAHs (Soil) | Fluoranthene | μg/g | 0.69       | 0.93   |



#### **Quality Assurance**

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-490C

AGAT WORK ORDER: 21T828695
ATTENTION TO: Rebecca Morrison

SAMPLING SITE:581-587 Argus Road, Oakville SAMPLED BY:MV

| OAMI EINO OITE.301-307 A                                               | igus itouu,   | <u> </u>     |            |          |       |                 |                 | J/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |        | 1                 |       |                |          |              |       |          |  |                |
|------------------------------------------------------------------------|---------------|--------------|------------|----------|-------|-----------------|-----------------|----------------------------------------|--------|-------------------|-------|----------------|----------|--------------|-------|----------|--|----------------|
|                                                                        |               |              |            | Soi      | I Ana | alysis          | 3               |                                        |        |                   |       |                |          |              |       |          |  |                |
| RPT Date: Nov 18, 2021                                                 |               |              |            | UPLICATI | E     |                 | REFERE          | NCE MA                                 | TERIAL | METHOD            | BLANK | SPIKE          | MAT      | MATRIX SPIKE |       |          |  |                |
| PARAMETER                                                              | Batch         | Sample<br>Id | Dup #1     | Dup #2   | RPD   | Method<br>Blank | Method<br>Blank |                                        |        | Measured<br>Value |       | ptable<br>nits | Recovery | Acce<br>Lin  |       | Recovery |  | ptable<br>nits |
|                                                                        |               | l la         | •          |          |       |                 | value           | Lower                                  | Upper  |                   | Lower | Upper          | _        | Lower        | Upper |          |  |                |
| O. Reg. 153(511) - Metals (Inclu                                       | ıding Hydride | s) (Soil)    |            |          |       | ,               |                 |                                        |        |                   |       |                |          |              |       |          |  |                |
| Antimony                                                               | 3196874       |              | <0.8       | <0.8     | NA    | < 0.8           | 118%            | 70%                                    | 130%   | 108%              | 80%   | 120%           | 106%     | 70%          | 130%  |          |  |                |
| Arsenic                                                                | 3196874       |              | 5          | 5        | 0.0%  | < 1             | 113%            | 70%                                    | 130%   | 108%              | 80%   | 120%           | 105%     | 70%          | 130%  |          |  |                |
| Barium                                                                 | 3196874       |              | 119        | 111      | 7.0%  | < 2.0           | 108%            | 70%                                    | 130%   | 105%              | 80%   | 120%           | 100%     | 70%          | 130%  |          |  |                |
| Beryllium                                                              | 3196874       |              | 1.2        | 1.2      | NA    | < 0.4           | 108%            | 70%                                    | 130%   | 110%              | 80%   | 120%           | 114%     | 70%          | 130%  |          |  |                |
| Boron                                                                  | 3196874       |              | 8          | 6        | NA    | < 5             | 77%             | 70%                                    | 130%   | 110%              | 80%   | 120%           | 108%     | 70%          | 130%  |          |  |                |
| Cadmium                                                                | 3196874       |              | <0.5       | <0.5     | NA    | < 0.5           | 95%             | 70%                                    | 130%   | 103%              | 80%   | 120%           | 105%     | 70%          | 130%  |          |  |                |
| Chromium                                                               | 3196874       |              | 35         | 33       | 5.9%  | < 5             | 103%            | 70%                                    | 130%   | 104%              | 80%   | 120%           | 102%     | 70%          | 130%  |          |  |                |
| Cobalt                                                                 | 3196874       |              | 14.1       | 14.1     | 0.0%  | < 0.5           | 97%             | 70%                                    | 130%   | 105%              | 80%   | 120%           | 101%     | 70%          | 130%  |          |  |                |
| Copper                                                                 | 3196874       |              | 23.0       | 23.0     | 0.0%  | < 1.0           | 92%             | 70%                                    | 130%   | 107%              | 80%   | 120%           | 99%      | 70%          | 130%  |          |  |                |
| Lead                                                                   | 3196874       |              | 24         | 22       | 8.7%  | < 1             | 104%            | 70%                                    | 130%   | 107%              | 80%   | 120%           | 100%     | 70%          | 130%  |          |  |                |
| Molybdenum                                                             | 3196874       |              | 0.7        | 0.6      | NA    | < 0.5           | 107%            | 70%                                    | 130%   | 117%              | 80%   | 120%           | 113%     | 70%          | 130%  |          |  |                |
| Nickel                                                                 | 3196874       |              | 27         | 27       | 0.0%  | < 1             | 98%             | 70%                                    | 130%   | 105%              | 80%   | 120%           | 99%      | 70%          | 130%  |          |  |                |
| Selenium                                                               | 3196874       |              | <0.8       | <0.8     | NA    | < 0.8           | 104%            | 70%                                    | 130%   | 106%              | 80%   | 120%           | 105%     | 70%          | 130%  |          |  |                |
| Silver                                                                 | 3196874       |              | < 0.5      | <0.5     | NA    | < 0.5           | 104%            | 70%                                    | 130%   | 104%              | 80%   | 120%           | 101%     | 70%          | 130%  |          |  |                |
| Thallium                                                               | 3196874       |              | <0.5       | <0.5     | NA    | < 0.5           | 117%            | 70%                                    | 130%   | 111%              | 80%   | 120%           | 104%     | 70%          | 130%  |          |  |                |
| Uranium                                                                | 3196874       |              | 1.35       | 1.22     | NA    | < 0.50          | 117%            | 70%                                    | 130%   | 111%              | 80%   | 120%           | 107%     | 70%          | 130%  |          |  |                |
| Vanadium                                                               | 3196874       |              | 48.2       | 45.9     | 4.9%  | < 0.4           | 112%            | 70%                                    | 130%   | 104%              | 80%   | 120%           | 100%     | 70%          | 130%  |          |  |                |
| Zinc                                                                   | 3196874       |              | 94         | 92       | 2.2%  | < 5             | 100%            | 70%                                    | 130%   | 107%              | 80%   | 120%           | 97%      | 70%          | 130%  |          |  |                |
| Comments: NA Signifies Not Appli<br>Duplicate NA: results are under 5) |               | will not be  | calculated | l.       |       |                 |                 |                                        |        |                   |       |                |          |              |       |          |  |                |
| O. Reg. 153(511) - ORPs (Soil)                                         |               |              |            |          |       |                 |                 |                                        |        |                   |       |                |          |              |       |          |  |                |
| Boron (Hot Water Soluble)                                              | 3196874       |              | 0.41       | 0.40     | NA    | < 0.10          | 88%             | 60%                                    | 140%   | 103%              | 70%   | 130%           | 113%     | 60%          | 140%  |          |  |                |

Comments: NA signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

CHEMIST OF CHEMIST OF

Certified By:



## **Quality Assurance**

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-490C SAMPLING SITE:581-587 Argus Road, Oakville AGAT WORK ORDER: 21T828695
ATTENTION TO: Rebecca Morrison

SAMPLED BY:MV

| Trace Organics Analysis        |         |        |        |          |     |                 |                    |                      |       |          |             |                      |              |       |                |
|--------------------------------|---------|--------|--------|----------|-----|-----------------|--------------------|----------------------|-------|----------|-------------|----------------------|--------------|-------|----------------|
| RPT Date: Nov 18, 2021         |         |        |        | UPLICATI | E   |                 | REFERENCE MATERIAL |                      |       | METHOD   | BLANK       | SPIKE                | MATRIX SPIKE |       |                |
| PARAMETER                      | Batch   | Sample | Dup #1 | Dup #2   | RPD | Method<br>Blank | Measured           | Acceptable<br>Limits |       | Recovery | 1 1 1 1 1   | Acceptable<br>Limits | Recovery     | 1 :-  | ptable<br>nits |
|                                |         | ld     |        |          |     |                 | Value              | Lower                | Upper | _        | Lower Upper |                      |              | Lower | Upper          |
| O. Reg. 153(511) - PAHs (Soil) | •       | •      |        |          |     |                 |                    | •                    |       |          |             |                      |              | •     |                |
| Naphthalene                    | 3188273 |        | < 0.05 | < 0.05   | NA  | < 0.05          | 105%               | 50%                  | 140%  | 70%      | 50%         | 140%                 | 114%         | 50%   | 140%           |
| Acenaphthylene                 | 3188273 |        | < 0.05 | < 0.05   | NA  | < 0.05          | 78%                | 50%                  | 140%  | 75%      | 50%         | 140%                 | 75%          | 50%   | 140%           |
| Acenaphthene                   | 3188273 |        | < 0.05 | < 0.05   | NA  | < 0.05          | 85%                | 50%                  | 140%  | 94%      | 50%         | 140%                 | 96%          | 50%   | 140%           |
| Fluorene                       | 3188273 |        | < 0.05 | < 0.05   | NA  | < 0.05          | 78%                | 50%                  | 140%  | 85%      | 50%         | 140%                 | 93%          | 50%   | 140%           |
| Phenanthrene                   | 3188273 |        | < 0.05 | < 0.05   | NA  | < 0.05          | 90%                | 50%                  | 140%  | 78%      | 50%         | 140%                 | 92%          | 50%   | 140%           |
| Anthracene                     | 3188273 |        | < 0.05 | < 0.05   | NA  | < 0.05          | 85%                | 50%                  | 140%  | 74%      | 50%         | 140%                 | 104%         | 50%   | 140%           |
| Fluoranthene                   | 3188273 |        | < 0.05 | < 0.05   | NA  | < 0.05          | 96%                | 50%                  | 140%  | 109%     | 50%         | 140%                 | 78%          | 50%   | 140%           |
| Pyrene                         | 3188273 |        | < 0.05 | < 0.05   | NA  | < 0.05          | 105%               | 50%                  | 140%  | 86%      | 50%         | 140%                 | 85%          | 50%   | 140%           |
| Benz(a)anthracene              | 3188273 |        | < 0.05 | < 0.05   | NA  | < 0.05          | 78%                | 50%                  | 140%  | 95%      | 50%         | 140%                 | 93%          | 50%   | 140%           |
| Chrysene                       | 3188273 |        | < 0.05 | < 0.05   | NA  | < 0.05          | 88%                | 50%                  | 140%  | 77%      | 50%         | 140%                 | 92%          | 50%   | 140%           |
| Benzo(b)fluoranthene           | 3188273 |        | < 0.05 | < 0.05   | NA  | < 0.05          | 74%                | 50%                  | 140%  | 71%      | 50%         | 140%                 | 91%          | 50%   | 140%           |
| Benzo(k)fluoranthene           | 3188273 |        | < 0.05 | < 0.05   | NA  | < 0.05          | 85%                | 50%                  | 140%  | 85%      | 50%         | 140%                 | 114%         | 50%   | 140%           |
| Benzo(a)pyrene                 | 3188273 |        | < 0.05 | < 0.05   | NA  | < 0.05          | 93%                | 50%                  | 140%  | 93%      | 50%         | 140%                 | 78%          | 50%   | 140%           |
| Indeno(1,2,3-cd)pyrene         | 3188273 |        | < 0.05 | < 0.05   | NA  | < 0.05          | 92%                | 50%                  | 140%  | 92%      | 50%         | 140%                 | 95%          | 50%   | 140%           |
| Dibenz(a,h)anthracene          | 3188273 |        | < 0.05 | < 0.05   | NA  | < 0.05          | 91%                | 50%                  | 140%  | 104%     | 50%         | 140%                 | 93%          | 50%   | 140%           |
| Benzo(g,h,i)perylene           | 3188273 |        | < 0.05 | < 0.05   | NA  | < 0.05          | 97%                | 50%                  | 140%  | 77%      | 50%         | 140%                 | 92%          | 50%   | 140%           |

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:



# **Method Summary**

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-490C

AGAT WORK ORDER: 21T828695
ATTENTION TO: Rebecca Morrison

**SAMPLED BY:MV** 

SAMPLING SITE:581-587 Argus Road, Oakville

| OAMI EINO OITE.301-307 Argus K | oud, outtino | 0/ 225 5 1 V                                       |                      |  |  |  |  |  |  |  |
|--------------------------------|--------------|----------------------------------------------------|----------------------|--|--|--|--|--|--|--|
| PARAMETER                      | AGAT S.O.P   | LITERATURE REFERENCE                               | ANALYTICAL TECHNIQUE |  |  |  |  |  |  |  |
| Soil Analysis                  |              |                                                    |                      |  |  |  |  |  |  |  |
| Antimony                       | MET-93-6103  | modified from EPA 3050B and EPA 6020B and ON MOECC | ICP-MS               |  |  |  |  |  |  |  |
| Arsenic                        | MET-93-6103  | modified from EPA 3050B and EPA 6020B and ON MOECC | ICP-MS               |  |  |  |  |  |  |  |
| Barium                         | MET-93-6103  | modified from EPA 3050B and EPA 6020B and ON MOECC | ICP-MS               |  |  |  |  |  |  |  |
| Beryllium                      | MET-93-6103  | modified from EPA 3050B and EPA 6020B and ON MOECC | ICP-MS               |  |  |  |  |  |  |  |
| Boron                          | MET-93-6103  | modified from EPA 3050B and EPA 6020B and ON MOECC | ICP-MS               |  |  |  |  |  |  |  |
| Cadmium                        | MET-93-6103  | modified from EPA 3050B and EPA 6020B and ON MOECC | ICP-MS               |  |  |  |  |  |  |  |
| Chromium                       | MET-93-6103  | modified from EPA 3050B and EPA 6020B and ON MOECC | ICP-MS               |  |  |  |  |  |  |  |
| Cobalt                         | MET-93-6103  | modified from EPA 3050B and EPA 6020B and ON MOECC | ICP-MS               |  |  |  |  |  |  |  |
| Copper                         | MET-93-6103  | modified from EPA 3050B and EPA 6020B and ON MOECC | ICP-MS               |  |  |  |  |  |  |  |
| Lead                           | MET-93-6103  | modified from EPA 3050B and EPA 6020B and ON MOECC | ICP-MS               |  |  |  |  |  |  |  |
| Molybdenum                     | MET-93-6103  | modified from EPA 3050B and EPA 6020B and ON MOECC | ICP-MS               |  |  |  |  |  |  |  |
| Nickel                         | MET-93-6103  | modified from EPA 3050B and EPA 6020B and ON MOECC | ICP-MS               |  |  |  |  |  |  |  |
| Selenium                       | MET-93-6103  | modified from EPA 3050B and EPA 6020B and ON MOECC | ICP-MS               |  |  |  |  |  |  |  |
| Silver                         | MET-93-6103  | modified from EPA 3050B and EPA 6020B and ON MOECC | ICP-MS               |  |  |  |  |  |  |  |
| Thallium                       | MET-93-6103  | modified from EPA 3050B and EPA 6020B and ON MOECC | ICP-MS               |  |  |  |  |  |  |  |
| Uranium                        | MET-93-6103  | modified from EPA 3050B and EPA 6020B and ON MOECC | ICP-MS               |  |  |  |  |  |  |  |
| Vanadium                       | MET-93-6103  | modified from EPA 3050B and EPA 6020B and ON MOECC | ICP-MS               |  |  |  |  |  |  |  |
| Zinc                           | MET 93 -6103 | modified from EPA 3050B and EPA 6020B and ON MOECC | ICP-MS               |  |  |  |  |  |  |  |
| Boron (Hot Water Soluble)      | MET-93-6104  | modified from EPA 6010D and MSA PART 3, CH 21      | ICP/OES              |  |  |  |  |  |  |  |

# **Method Summary**

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-490C

AGAT WORK ORDER: 21T828695 ATTENTION TO: Rebecca Morrison

**SAMPLED BY:MV** 

SAMPLING SITE:581-587 Argus Road, Oakville

| SAMPLING SITE:381-387 Argus Ro | Dad, Oakville                                    | SAMPLED BY:N                               | I V                  |  |  |  |
|--------------------------------|--------------------------------------------------|--------------------------------------------|----------------------|--|--|--|
| PARAMETER                      | AGAT S.O.P                                       | LITERATURE REFERENCE                       | ANALYTICAL TECHNIQUE |  |  |  |
| Trace Organics Analysis        |                                                  |                                            |                      |  |  |  |
| Naphthalene                    | ORG-91-5106                                      | modified from EPA 3570 and EPA 8270E       | GC/MS                |  |  |  |
| Acenaphthylene                 | ORG-91-5106                                      | modified from EPA 3570 and EPA 8270E       | GC/MS                |  |  |  |
| Acenaphthene                   | ORG-91-5106                                      | modified from EPA 3570 and EPA 8270E       | GC/MS                |  |  |  |
| Fluorene                       | ORG-91-5106                                      | modified from EPA 3570 and EPA 8270E       | GC/MS                |  |  |  |
| Phenanthrene                   | ORG-91-5106                                      | modified from EPA 3570 and EPA 8270E       | GC/MS                |  |  |  |
| Anthracene                     | ORG-91-5106                                      | modified from EPA 3570 and EPA 8270E       | GC/MS                |  |  |  |
| Fluoranthene                   | ORG-91-5106                                      | modified from EPA 3570 and EPA 8270E       | GC/MS                |  |  |  |
| Pyrene                         | ORG-91-5106                                      | modified from EPA 3570 and EPA 8270E       | GC/MS                |  |  |  |
| Benz(a)anthracene              | ORG-91-5106                                      | modified from EPA 3570 and EPA 8270E       | GC/MS                |  |  |  |
| Chrysene                       | ORG-91-5106                                      | modified from EPA 3570 and EPA 8270E       | GC/MS                |  |  |  |
| Benzo(b)fluoranthene           | ORG-91-5106                                      | modified from EPA 3570 and EPA 8270E       | GC/MS                |  |  |  |
| Benzo(k)fluoranthene           | ORG-91-5106                                      | modified from EPA 3570 and EPA 8270E       | GC/MS                |  |  |  |
| Benzo(a)pyrene                 | ORG-91-5106                                      | modified from EPA 3570 and EPA 8270E       | GC/MS                |  |  |  |
| Indeno(1,2,3-cd)pyrene         | ORG-91-5106                                      | modified from EPA 3570 and EPA 8270E       | GC/MS                |  |  |  |
| Dibenz(a,h)anthracene          | ORG-91-5106                                      | modified from EPA 3570 and EPA 8270E       | GC/MS                |  |  |  |
| Benzo(g,h,i)perylene           | ORG-91-5106                                      | modified from EPA 3570 and EPA 8270E       | GC/MS                |  |  |  |
| 1 and 2 Methlynaphthalene      | ORG-91-5106                                      | modified from EPA 3570 and EPA 8270E       | GC/MS                |  |  |  |
| Naphthalene-d8                 | ORG-91-5106 modified from EPA 3570 and EPA 8270E |                                            | GC/MS                |  |  |  |
| Acridine-d9                    | ORG-91-5106                                      | modified from EPA 3570 and EPA GC/MS 8270E |                      |  |  |  |
| Terphenyl-d14                  | ORG-91-5106                                      | modified from EPA 3570 and EPA 8270E       | GC/MS                |  |  |  |
| Moisture Content               | VOL-91-5009                                      | CCME Tier 1 Method                         | BALANCE              |  |  |  |



5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905 712 5100 Fax: 905,712 5122 webearth.agattabs.com

| Laboratory Use Only   |      |      |      |  |  |  |  |  |
|-----------------------|------|------|------|--|--|--|--|--|
| Work Order #: 2       | T829 | 3695 |      |  |  |  |  |  |
| Cooler Quantity:      | Elen | -gr  |      |  |  |  |  |  |
| Arrival Temperatures: | 3.7  | 4-2  | 4.6  |  |  |  |  |  |
| Custody Seal Intact:  | □Yes | □No  | □N/A |  |  |  |  |  |

| Chain of Custous McColu | Cha | in of | Cus | tody | Record |  |
|-------------------------|-----|-------|-----|------|--------|--|
|-------------------------|-----|-------|-----|------|--------|--|

| Chain of C                   | ustody Record                          | If this is a    | Drinking Water s           | sample, pleas      | se use Drink     | ing Water Chain o         | f Custody Form (po      | otable water o                         | consum              | ed by                  | humans)                      |          |        |                                                 | Arriva     | al Tem                      | peratu               | ıres:         | 4         | 81        | 50       | 21 0                  | 5.5       |                                                   |
|------------------------------|----------------------------------------|-----------------|----------------------------|--------------------|------------------|---------------------------|-------------------------|----------------------------------------|---------------------|------------------------|------------------------------|----------|--------|-------------------------------------------------|------------|-----------------------------|----------------------|---------------|-----------|-----------|----------|-----------------------|-----------|---------------------------------------------------|
| Report Inform                | ation:<br>BIG Consulting Inc           |                 |                            |                    | Reg              | ulatory Requ              | uirements:              |                                        |                     |                        |                              |          |        |                                                 | Cust       |                             | eal Inta             | oct:          | □Yes      |           | □N       | 0                     | □N/       | /A                                                |
| Contact:                     | Rebecca Morrison                       |                 |                            |                    |                  | gulation 153/04           | Excess Soils            | R406                                   | Sev                 |                        |                              |          |        | 1                                               | _          | Ξ                           |                      |               | (         |           | ===      |                       |           | =                                                 |
| Address:                     | 12-5500 Tonken Road, Miss              | issauga, Onta   | rio, L4W2Z4                |                    | Tat              | ole Indicate One          | Table                   |                                        | ∐5                  | anitai                 | y 🗆 S                        | torm     |        | 11                                              |            |                             |                      | lime          | (TAT)     | ) Req     | uirea    | :                     |           |                                                   |
|                              |                                        |                 |                            |                    | -                | Ind/Com                   | Indicate                | One                                    |                     | Reg                    | lon                          | -        |        | F                                               | Regu       | ılar 1                      | AT                   |               | √ 5 !     | lo 7 Bus  | siness C | lays                  |           |                                                   |
| Phone:                       | 6476748087                             | Fax:            |                            |                    |                  | Res/Park<br>Agriculture   | Regulation 5            | 558 [                                  |                     |                        | iter Qual                    |          |        | F                                               | Rush       | TAT                         | (Rush Si             | ırcharge      | н Арріу)  |           |          |                       |           |                                                   |
| Reports to be sent to:       | rmorrison@brownfieldigi.co             | m               |                            |                    | Soil Te          | exture (Check One)        |                         |                                        |                     |                        | es (PWÇ                      | (0)      |        |                                                 | _          | , 3B                        | usines               | s             | _ 2       | Busines   | 58       | Nex                   | t Busine  | ess                                               |
| 1. Email:                    | mvaughan@brownfieldigi.co              | nm              |                            |                    |                  | Coarse                    | CCME                    | 1                                      | Oth                 | er                     |                              |          |        |                                                 | L          | Day                         |                      |               | □ Da      | ays       | l        | □ <sub>Day</sub>      |           |                                                   |
| 2. Email:                    | myadgitare browniesassas               |                 |                            |                    |                  | ☐ Fine Indicate One       |                         |                                        |                     |                        |                              |          |        | OR                                              | Date I     | Requir                      | ed (Rus              | h Surch       | arges N   | May Apply | y):      |                       |           |                                                   |
| Project Inform               | nation:                                |                 |                            |                    |                  | this submission           |                         |                                        |                     |                        | deline                       |          |        |                                                 |            |                             |                      |               |           |           |          |                       | _         |                                                   |
| Project:                     | BIGC-ENV-490A                          |                 |                            |                    | Rec              | ord of Site Co            |                         | Cei                                    | rtifica             | rte (                  | of Ana                       |          |        |                                                 |            |                             |                      |               |           |           |          | rush TAT<br>utory hol |           |                                                   |
| Site Location:               | 581-587 Argus Road, Oakvil             | lle             |                            |                    |                  | Yes [                     | No                      | <b>V</b>                               | Yes                 | 3                      |                              | No       |        |                                                 | Fo         |                             |                      |               |           |           |          | our AGAT              |           |                                                   |
| Sampled By:                  | MV                                     |                 |                            |                    | -                |                           |                         | -1                                     | 0                   | . Reg                  | 153                          |          |        | 0                                               | Reg<br>558 |                             | g 406                |               |           |           |          |                       |           | _                                                 |
| AGAT Quote #:                | Please note: If quotation number is no | PO:             | I he hilled full pelos for | analistic.         | Sam              | ple Matrix Le             | gend                    | 200                                    |                     |                        |                              |          |        |                                                 | 83         |                             | -                    | 1             |           |           | 4 1      |                       |           | (Y/N                                              |
| Invoice Inform               |                                        |                 | Bill To Same: Ye           |                    | B<br>GW          | Biota<br>Ground Water     |                         | Field Filtered - Metals, Hg, CrVI, DOC |                     | m                      | 8                            |          |        | 4                                               | B(a)P   PC | Rainwater Leach ocs □ svocs | Package<br>4         |               |           |           |          |                       | E         | intration                                         |
|                              | iation.                                |                 | om to Jame. Te             | :5 LI 140 LI       | 0                | Oil                       |                         | i i                                    |                     | ☐ HWSB                 | □ Yes                        |          |        | cites                                           |            | ater Le<br>Svocs            | Characterization Par |               |           | 3.7       |          |                       |           | Conce                                             |
| Company:<br>Contact:         |                                        |                 |                            |                    | P                | Paint                     |                         | Meta                                   |                     | į,                     | 8                            |          |        | i di                                            | ABNS       | sinwi                       | cterizal             |               |           |           | 1 1      |                       |           | High (                                            |
| Address:                     |                                        |                 |                            |                    | S                | Soil                      |                         | - gg                                   | Sics                | 뿝                      | S jin                        |          |        | E S                                             | _<br>8     | J. P. R.                    | In British           |               |           |           | 1 1      |                       | J.        | us or                                             |
| Email:                       |                                        |                 |                            |                    | SD               | Sediment<br>Surface Water |                         | File                                   | orga                | ξ                      | 1-F4 PHCs<br>F4G if required |          | 30     | lea                                             | Š          | s SPI<br>tals [             | ess Soils Chara      | Œ.            |           |           | A 1      |                       |           | zardo                                             |
|                              |                                        |                 |                            |                    |                  |                           |                         | Field                                  | 공                   | ļ                      | F1-F4                        |          | To a   | 2                                               | ₩<br>□     | s Soils SP                  | Soils                | 75/2          | i ii      |           | 1 1      |                       |           | lly Ha                                            |
| Sampl                        | e Identification                       | Date<br>Sampled | Time<br>Sampled            | # of<br>Containers | Sample<br>Matrix |                           | nments/<br>Instructions | Y/N                                    | Metals & Inorganics | Metals - □ CrVI, □ Hg, | BTEX, F1                     | PAHs     | PCBs   | VOC  I souffill Decoceal Characted antion ITY P | 10.P.      | Excess SPLP:                | Excess<br>of 1CP     | Salt - EC/SAR |           |           |          |                       |           | Potentially Hazardous or High Concentration (Y/N) |
| BH/MW1-SS2                   |                                        | 21-10-8         |                            | 2                  | S                |                           |                         |                                        |                     | V                      |                              | ✓        |        |                                                 |            |                             |                      |               |           |           |          |                       | 111       |                                                   |
| BH/MW2-SS1                   |                                        | 21-10-7         | 8:20 AN                    | 2                  | S                |                           |                         | Holly                                  |                     | V                      |                              |          |        |                                                 |            |                             |                      |               |           |           |          |                       |           |                                                   |
| BH/MW3-SS1                   |                                        | 21-10-8         | 11:30 AN                   | 2                  | S                |                           |                         |                                        |                     | V                      |                              | <b>7</b> |        |                                                 |            |                             |                      |               |           |           |          |                       | H. H      |                                                   |
| BH/MW4-SS1                   |                                        | 21-10-8         | 14:50 AN                   | 2                  | S                |                           |                         |                                        |                     | V                      |                              | V        |        |                                                 |            |                             |                      |               |           |           |          |                       |           |                                                   |
| BH/MW5-SS1                   |                                        | 21-10-6         | 8:30 AN                    | 2                  | S                |                           |                         |                                        |                     | Ø                      |                              | Ø        |        |                                                 |            |                             | Ш                    |               |           | H         |          |                       |           |                                                   |
|                              |                                        |                 | AA<br>PN                   | 1                  |                  |                           |                         |                                        |                     |                        |                              |          |        |                                                 |            |                             | 223                  |               |           |           |          |                       |           |                                                   |
|                              |                                        |                 | AN<br>PN                   | 4                  |                  |                           |                         |                                        | HJ.                 |                        |                              |          |        | 1                                               |            |                             | Elly                 |               | m         | ŊĒ,       |          |                       | 71        |                                                   |
|                              |                                        |                 | AN<br>PN                   |                    |                  |                           |                         |                                        |                     |                        |                              |          | 0      |                                                 |            |                             |                      |               |           | 100       |          | Ш                     | n in      |                                                   |
|                              |                                        |                 | AN<br>PN                   |                    |                  |                           |                         |                                        |                     |                        |                              |          | 80     |                                                 | 5          |                             |                      |               |           |           |          |                       | =1111     |                                                   |
|                              |                                        |                 | AA<br>PA                   |                    |                  |                           |                         |                                        | 1                   |                        |                              |          |        | 8                                               |            |                             |                      |               |           |           |          |                       |           |                                                   |
|                              |                                        | -               | AN                         |                    |                  |                           |                         |                                        |                     |                        |                              |          |        |                                                 |            |                             |                      |               |           |           |          |                       | Tal       |                                                   |
| Samples Relinquished By (Pri | nt Namie and Sign):                    |                 | Date                       | 17mm               | ('               | Gampis Receiped By        | Pint Name and Sphi      | 1                                      | )_                  |                        |                              |          | 2      | Lhe                                             | 1          | Time                        | 11                   | <u> </u>      |           |           | -        |                       |           |                                                   |
| Matt Vaughan                 | nt Napo and Suni                       | -/              | 21-T1-10<br>Data           | Time               | 5:50             | Samples Received By (     | Print Name And Sign)    | -                                      |                     | -                      |                              | -        | Date   | live                                            | / / 11     | Time                        | 1.2                  | 2             | -         | Page      |          | of                    |           | _                                                 |
| Samples Relinquished by (Per | TA Name and Sign)                      |                 | Evalue                     | Time               |                  | Samples Received By (     | Print Name and Sign)    |                                        |                     | _                      |                              |          | Date   |                                                 |            | Time                        |                      |               | N:        |           |          |                       |           | -                                                 |
|                              |                                        |                 |                            |                    |                  |                           |                         |                                        |                     | _                      | Pink Ci                      | nnv -    | Client | ı Yeli                                          | ow Cr      | nnv - Al                    | GAT I                | White         | e Copy- A | AGAT      | Dat      | e stuci st            | Tarch 8 2 | 011                                               |



CLIENT NAME: B.I.G. CONSULTING INC. 12-5500 TOMKEN ROAD MISSISSAUGA, ON L4W 2Z4

416-214-4880

ATTENTION TO: Rebecca Morrison PROJECT: BIGC-ENV-490D

AGAT WORK ORDER: 22T872058

TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer

DATE REPORTED: Mar 15, 2022

PAGES (INCLUDING COVER): 5 VERSION\*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

| Notes |  |
|-------|--|
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |
|       |  |

#### Disclaimer:

\*\*\*\*\*\*

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
  incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
  be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
  third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
  services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
  merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
  contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 5

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)



## Certificate of Analysis

AGAT WORK ORDER: 22T872058

PROJECT: BIGC-ENV-490D

ATTENTION TO: Rebecca Morrison

SAMPLED BY:TD

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC. SAMPLING SITE:581 Argus Road, Oakville, ON

|                            |      |            |           | O. Reg              | . 153(511) - PA     | AHs (Water)               |
|----------------------------|------|------------|-----------|---------------------|---------------------|---------------------------|
| DATE RECEIVED: 2022-03-10  |      |            |           |                     |                     | DATE REPORTED: 2022-03-15 |
|                            |      | SAMPLE DES | CRIPTION: | BH/MW4              | Dup40               |                           |
|                            |      | SAMI       | PLE TYPE: | Water               | Water               |                           |
|                            |      | DATES      | SAMPLED:  | 2022-03-10<br>09:00 | 2022-03-10<br>09:00 |                           |
| Parameter                  | Unit | G/S        | RDL       | 3607380             | 3607381             |                           |
| Naphthalene                | μg/L | 1400       | 0.20      | <0.20               | <0.20               |                           |
| Acenaphthylene             | μg/L | 1.8        | 0.20      | <0.20               | <0.20               |                           |
| Acenaphthene               | μg/L | 600        | 0.20      | <0.20               | <0.20               |                           |
| Fluorene                   | μg/L | 400        | 0.20      | <0.20               | <0.20               |                           |
| Phenanthrene               | μg/L | 580        | 0.10      | <0.10               | <0.10               |                           |
| Anthracene                 | μg/L | 2.4        | 0.10      | <0.10               | <0.10               |                           |
| Fluoranthene               | μg/L | 130        | 0.20      | <0.20               | <0.20               |                           |
| Pyrene                     | μg/L | 68         | 0.20      | <0.20               | <0.20               |                           |
| Benzo(a)anthracene         | μg/L | 4.7        | 0.20      | <0.20               | <0.20               |                           |
| Chrysene                   | μg/L | 1          | 0.10      | <0.10               | <0.10               |                           |
| Benzo(b)fluoranthene       | μg/L | 0.75       | 0.10      | <0.10               | <0.10               |                           |
| Benzo(k)fluoranthene       | μg/L | 0.4        | 0.10      | <0.10               | <0.10               |                           |
| Benzo(a)pyrene             | μg/L | 0.81       | 0.01      | <0.01               | <0.01               |                           |
| Indeno(1,2,3-cd)pyrene     | μg/L | 0.2        | 0.20      | <0.20               | <0.20               |                           |
| Dibenz(a,h)anthracene      | μg/L | 0.52       | 0.20      | <0.20               | <0.20               |                           |
| Benzo(g,h,i)perylene       | μg/L | 0.2        | 0.20      | <0.20               | <0.20               |                           |
| 2-and 1-methyl Naphthalene | μg/L | 1800       | 0.20      | <0.20               | <0.20               |                           |
| Sediment                   |      |            |           | NO                  | NO                  |                           |
| Surrogate                  | Unit | Acceptab   | le Limits |                     |                     |                           |
| Naphthalene-d8             | %    | 50-1       | 40        | 66                  | 69                  |                           |
| Acridine-d9                | %    | 50-1       | 40        | 90                  | 117                 |                           |
| Terphenyl-d14              | %    | 50-1       | 40        | 89                  | 87                  |                           |

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 3: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition - Non-Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3607380-3607381 Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Toronto (unless marked by \*)

|              | ymi |
|--------------|-----|
| ertified By: | U   |



#### **Quality Assurance**

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-490D

AGAT WORK ORDER: 22T872058 ATTENTION TO: Rebecca Morrison

| SAMPLING SITE:581 Argus Road, Oakville, ON |         |         |        |             | SAMPLED BY:TD |                 |          |                      |        |          |       |                |              |     |                 |  |  |
|--------------------------------------------|---------|---------|--------|-------------|---------------|-----------------|----------|----------------------|--------|----------|-------|----------------|--------------|-----|-----------------|--|--|
| Trace Organics Analysis                    |         |         |        |             |               |                 |          |                      |        |          |       |                |              |     |                 |  |  |
| RPT Date: Mar 15, 2022                     |         |         | D      | UPLICAT     | E             |                 | REFERE   | NCE MA               | TERIAL | METHOD   | BLANK | SPIKE          | MATRIX SPIKE |     |                 |  |  |
| PARAMETER                                  | Sample  |         | Dup #1 | Dup #2      | RPD           | Method<br>Blank | Measured | Acceptable<br>Limits |        | Recovery | منا ا | ptable<br>nits | Recovery     | 1 : | eptable<br>mits |  |  |
|                                            |         |         | Value  | Lower Upper |               | ,               | Lower    | Upper                |        | Lower    | Upper |                |              |     |                 |  |  |
| O. Reg. 153(511) - PAHs (Water)            |         | ,       |        |             |               |                 |          |                      |        |          |       |                |              |     |                 |  |  |
| Naphthalene                                | 3607380 | 3607380 | < 0.20 | < 0.20      | NA            | < 0.20          | 112%     | 50%                  | 140%   | 106%     | 50%   | 140%           | 71%          | 50% | 140%            |  |  |
| Acenaphthylene                             | 3607380 | 3607380 | <0.20  | <0.20       | NA            | < 0.20          | 110%     | 50%                  | 140%   | 106%     | 50%   | 140%           | 102%         | 50% | 140%            |  |  |
| Acenaphthene                               | 3607380 | 3607380 | <0.20  | <0.20       | NA            | < 0.20          | 113%     | 50%                  | 140%   | 105%     | 50%   | 140%           | 114%         | 50% | 140%            |  |  |
| Fluorene                                   | 3607380 | 3607380 | <0.20  | < 0.20      | NA            | < 0.20          | 110%     | 50%                  | 140%   | 108%     | 50%   | 140%           | 112%         | 50% | 140%            |  |  |
| Phenanthrene                               | 3607380 | 3607380 | <0.10  | <0.10       | NA            | < 0.10          | 104%     | 50%                  | 140%   | 107%     | 50%   | 140%           | 110%         | 50% | 140%            |  |  |
| Anthracene                                 | 3607380 | 3607380 | <0.10  | <0.10       | NA            | < 0.10          | 114%     | 50%                  | 140%   | 99%      | 50%   | 140%           | 110%         | 50% | 140%            |  |  |
| Fluoranthene                               | 3607380 | 3607380 | <0.20  | <0.20       | NA            | < 0.20          | 112%     | 50%                  | 140%   | 105%     | 50%   | 140%           | 115%         | 50% | 140%            |  |  |
| Pyrene                                     | 3607380 | 3607380 | <0.20  | < 0.20      | NA            | < 0.20          | 107%     | 50%                  | 140%   | 108%     | 50%   | 140%           | 113%         | 50% | 140%            |  |  |
| Benzo(a)anthracene                         | 3607380 | 3607380 | <0.20  | < 0.20      | NA            | < 0.20          | 95%      | 50%                  | 140%   | 107%     | 50%   | 140%           | 95%          | 50% | 140%            |  |  |
| Chrysene                                   | 3607380 | 3607380 | <0.10  | <0.10       | NA            | < 0.10          | 116%     | 50%                  | 140%   | 91%      | 50%   | 140%           | 105%         | 50% | 140%            |  |  |
| Benzo(b)fluoranthene                       | 3607380 | 3607380 | <0.10  | <0.10       | NA            | < 0.10          | 62%      | 50%                  | 140%   | 96%      | 50%   | 140%           | 90%          | 50% | 140%            |  |  |
| Benzo(k)fluoranthene                       | 3607380 | 3607380 | <0.10  | < 0.10      | NA            | < 0.10          | 68%      | 50%                  | 140%   | 101%     | 50%   | 140%           | 107%         | 50% | 140%            |  |  |
| Benzo(a)pyrene                             | 3607380 | 3607380 | <0.01  | < 0.01      | NA            | < 0.01          | 66%      | 50%                  | 140%   | 100%     | 50%   | 140%           | 96%          | 50% | 140%            |  |  |
| Indeno(1,2,3-cd)pyrene                     | 3607380 | 3607380 | <0.20  | <0.20       | NA            | < 0.20          | 66%      | 50%                  | 140%   | 94%      | 50%   | 140%           | 85%          | 50% | 140%            |  |  |
| Dibenz(a,h)anthracene                      | 3607380 | 3607380 | <0.20  | <0.20       | NA            | < 0.20          | 64%      | 50%                  | 140%   | 92%      | 50%   | 140%           | 83%          | 50% | 140%            |  |  |
| Benzo(g,h,i)perylene                       | 3607380 | 3607380 | <0.20  | <0.20       | NA            | < 0.20          | 66%      | 50%                  | 140%   | 94%      | 50%   | 140%           | 86%          | 50% | 140%            |  |  |

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

# Method Summary

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-490D

AGAT WORK ORDER: 22T872058 ATTENTION TO: Rebecca Morrison

SAMPLED BY:TD

SAMPLING SITE:581 Argus Road, Oakville, ON

| PARAMETER                  | AGAT S.O.P  | LITERATURE REFERENCE                  | ANALYTICAL TECHNIQUE |  |  |  |  |  |  |
|----------------------------|-------------|---------------------------------------|----------------------|--|--|--|--|--|--|
| Trace Organics Analysis    |             |                                       |                      |  |  |  |  |  |  |
| Naphthalene                | ORG-91-5105 | modified from EPA 3510C and EPA 8270E | GC/MS                |  |  |  |  |  |  |
| Acenaphthylene             | ORG-91-5105 | modified from EPA 3510C and EPA 8270E | GC/MS                |  |  |  |  |  |  |
| Acenaphthene               | ORG-91-5105 | modified from EPA 3510C and EPA 8270E | GC/MS                |  |  |  |  |  |  |
| Fluorene                   | ORG-91-5105 | modified from EPA 3510C and EPA 8270E | GC/MS                |  |  |  |  |  |  |
| Phenanthrene               | ORG-91-5105 | modified from EPA 3510C and EPA 8270E | GC/MS                |  |  |  |  |  |  |
| Anthracene                 | ORG-91-5105 | modified from EPA 3510C and EPA 8270E | GC/MS                |  |  |  |  |  |  |
| Fluoranthene               | ORG-91-5105 | modified from EPA 3510C and EPA 8270E | GC/MS                |  |  |  |  |  |  |
| Pyrene                     | ORG-91-5105 | modified from EPA 3510C and EPA 8270E | GC/MS                |  |  |  |  |  |  |
| Benzo(a)anthracene         | ORG-91-5105 | modified from EPA 3510C and EPA 8270E | GC/MS                |  |  |  |  |  |  |
| Chrysene                   | ORG-91-5105 | modified from EPA 3510C and EPA 8270E | GC/MS                |  |  |  |  |  |  |
| Benzo(b)fluoranthene       | ORG-91-5105 | modified from EPA 3510C and EPA 8270E | GC/MS                |  |  |  |  |  |  |
| Benzo(k)fluoranthene       | ORG-91-5105 | modified from EPA 3510C and EPA 8270E | GC/MS                |  |  |  |  |  |  |
| Benzo(a)pyrene             | ORG-91-5105 | modified from EPA 3510C and EPA 8270E | GC/MS                |  |  |  |  |  |  |
| Indeno(1,2,3-cd)pyrene     | ORG-91-5105 | modified from EPA 3510C and EPA 8270E | GC/MS                |  |  |  |  |  |  |
| Dibenz(a,h)anthracene      | ORG-91-5105 | modified from EPA 3510C and EPA 8270E | GC/MS                |  |  |  |  |  |  |
| Benzo(g,h,i)perylene       | ORG-91-5105 | modified from EPA 3510C and EPA 8270E | GC/MS                |  |  |  |  |  |  |
| 2-and 1-methyl Naphthalene | ORG-91-5105 | modified from EPA 3510C and EPA 8270E | GC/MS                |  |  |  |  |  |  |
| Naphthalene-d8             | ORG-91-5105 | modified from EPA 3510C and EPA 8270E | GC/MS                |  |  |  |  |  |  |
| Acridine-d9                | ORG-91-5105 | modified from EPA 3510C and EPA 8270E | GC/MS                |  |  |  |  |  |  |
| Terphenyl-d14              | ORG-91-5105 | modified from EPA 3510C and EPA 8270E | GC/MS                |  |  |  |  |  |  |
| Sediment                   |             |                                       |                      |  |  |  |  |  |  |



5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Laboratory Use Only

| Regulatory Machine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Chain of Custody Rec                                                       | ord If this is a                                       | Drinking Wate             | er sample, pl | ease use D                                | rinking Water Chain of                  | Custody Form         | potable w  | ater co                 | nsume                      | d by hum                          | nans) |          |                                                      | Ari                      | ivai ie                 | mper                   | ratures:  | 6,       |                             | φ,     | 41.    |                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------|---------------------------|---------------|-------------------------------------------|-----------------------------------------|----------------------|------------|-------------------------|----------------------------|-----------------------------------|-------|----------|------------------------------------------------------|--------------------------|-------------------------|------------------------|-----------|----------|-----------------------------|--------|--------|-----------------------------------|
| Reference Montrison   Reduces   Reference Montrison   Reduces   Reference Montrison   Reduces   Regular TAY   Required   Regular TAY   Regular TAY   Required   Regular TAY   Required   Regular TAY     | DICC III                                                                   |                                                        |                           |               | R                                         | Regulatory Requirements: Regulation 558 |                      |            |                         |                            |                                   |       | Cu<br>No | stody s                                              | Seal I                   | Intact:                 | □Ye:                   | TCE       |          | No                          | □N/A   |        |                                   |
| Made season.    Address:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D 1 36 :                                                                   | Rebecca Morrison                                       |                           |               |                                           | Regulation 153/04                       | Excess Soi           | s R406     |                         |                            |                                   |       |          |                                                      |                          |                         |                        |           |          |                             |        |        |                                   |
| Phone: Negaris to be service: Le trail: Self-Recursion Self-Recurs | Address: 12-5500 Tomken Roa                                                |                                                        |                           |               |                                           | Ling/com                                |                      |            | Region                  |                            |                                   |       |          | · /                                                  |                          |                         |                        |           |          |                             |        |        |                                   |
| Sample Information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mississauga, ON L4W 2Z4                                                    |                                                        |                           |               |                                           |                                         |                      |            |                         |                            |                                   |       |          |                                                      |                          |                         |                        |           |          | Marie Di Di Colonia I-lendo |        |        |                                   |
| Soli   Epithar (Contention)   Display (Cont   | Phone: 905-782-0315                                                        |                                                        |                           |               |                                           | ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐ ☐   |                      |            | Prov. Water Quality     |                            |                                   |       |          |                                                      |                          |                         |                        |           |          |                             |        |        |                                   |
| Project Information:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rmorrison@browniie                                                         |                                                        |                           |               | So                                        |                                         |                      |            | Objectives (PWQO) Other |                            |                                   |       |          |                                                      |                          |                         |                        |           |          |                             |        |        |                                   |
| Record of Site Condition? Site Location: Site Locat | 2. Email:                                                                  |                                                        |                           |               |                                           | Fine                                    | Stockpile [          |            | -                       |                            | Indicate C                        | ne    |          |                                                      |                          | 0                       | R Da                   | ite Requi | red (Rus | h Surch                     | narges | May Ap | ply):                             |
| AGAT Quote #: PO- Name rate of epostesian number in nit groupdate distret will be block followed by the block  | Project: BIGC-ENV-490D Site Location: 581 Argus Road, Oakville, ON         |                                                        |                           |               |                                           | Record of Site Condition?               |                      |            | Certificate of Analysis |                            |                                   |       |          | *TAT is exclusive of weekends and statutory holidays |                          |                         |                        |           |          |                             |        |        |                                   |
| Contact: Con | 7                                                                          |                                                        |                           |               | -   -                                     | 810 N -1 - 2= -1                        |                      | 1 0        | 0                       | . Reg 1                    | 153                               |       | T        | al i                                                 | SBS                      |                         |                        |           |          |                             |        |        | (Z                                |
| Contact: Con |                                                                            |                                                        | rill be billed full price | for analysis, | —    s                                    | =                                       | gend                 | 00 '.      |                         | VSB                        | 9                                 |       |          | CLP:                                                 |                          | age                     |                        |           |          |                             |        |        | ion (Y/                           |
| Samples Salinguation System Nature and Sign)  Samples Relinquation System Nature and Sign)  Samples Relinquation System Nature and Sign)  Samples Relinquation System Nature and Sign)  Date  Time  Samples Relinquation System Nature and Sign)  Date  Time  Samples Relinquation System Nature and Sign)  Date  Time  Samples Relinquation System Nature and Sign)  Time  Time  Samples Relinquation System Nature and Sign)  Date  Time  Time  Samples Relinquation System Nature and Sign)  Time  Time  Time  Samples Relinquation System Nature and Sign)  Time  Ti | Company: Brownfield Investment Contact: Lane Doughe Address: Same Address: | ont Group Inc.                                         |                           |               | G 0 P S S                                 | Ground Water Oil Paint Soil Sediment    |                      | Filtered - | inc.                    | - ICPMS, □ CrVI, □ Hg, □ H | -F4 PHCs<br>F4G if required ☐ Yes |       |          | Disposal Character                                   | ocs □ABNs<br>LP Rainwate | ☐ Metals ☐ VOCs ☐ SVOCs | MS Metals, BTEX, F1-F4 | :C/SAR    |          |                             |        |        | sily Hazardous or High Concentral |
| DUPYO  AM  AM  AM  AM  AM  AM  AM  AM  AM  A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sample Identification                                                      |                                                        |                           |               |                                           |                                         |                      | Y/N        | Metals                  | Metals                     | BTEX, I                           | PAHs  | PCBs     | Landfil                                              | TCLP: [<br>Excess        | SPLP:<br>Excess         | pH, ICI                | Salt - E  |          |                             |        |        |                                   |
| Samples Relinquished By (Pint Name and Sign)    Samples Relinquished By (Pint Name and Sign)   Date   Date  | BH/NW 4                                                                    | Morlula                                                | 9:00                      | 2             | GW                                        |                                         |                      |            | 13                      |                            |                                   |       |          |                                                      |                          |                         | 3,1                    |           | 1 5      |                             |        |        |                                   |
| PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                            | 1                                                      |                           |               | Gu                                        |                                         |                      | 3.5        |                         |                            |                                   | 1     | 41/      |                                                      |                          |                         |                        |           |          |                             |        | 111    | //                                |
| AM PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |                                                        | AN<br>PN                  | 1             |                                           |                                         |                      |            |                         |                            |                                   |       |          |                                                      |                          |                         |                        |           |          |                             |        |        |                                   |
| AM PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |                                                        | Añ<br>Ph                  | 4             |                                           |                                         |                      |            |                         |                            |                                   |       |          | 1.83                                                 |                          |                         | 8                      |           |          |                             |        |        |                                   |
| AM PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |                                                        | AN<br>PN                  | A             |                                           |                                         |                      |            |                         |                            |                                   |       |          |                                                      |                          |                         | W. I                   |           |          |                             | 8      |        |                                   |
| AM PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |                                                        | AN<br>PN                  | 4             |                                           |                                         |                      |            |                         |                            |                                   |       | 20       | 10                                                   |                          |                         |                        |           |          |                             |        |        |                                   |
| Samples Relinquished By (Print Name and Sign)  Date  Max 10 122   Time  Samples Received By (Print Name and Sign)  Date  Max 10 122   Time  Samples Relinquished By (Print Name and Sign)  Date  Time  Date  Time  Page of 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |                                                        |                           |               |                                           |                                         |                      |            |                         |                            |                                   |       |          |                                                      |                          | =                       |                        |           |          |                             |        | 303    | Ta (                              |
| Samples Relinquished By (Print Name and Sign)  Date  Time  Samples Received By (Print Name and Sign)  Date  Time  Samples Received By (Print Name and Sign)  Date  Time  Date  Date  Time  Date  Date  Time  Date  Date  Date  Time  Date  |                                                                            |                                                        |                           |               |                                           |                                         |                      |            |                         |                            |                                   |       |          | 1/5                                                  | 2011                     |                         | -                      |           |          |                             | =3     |        |                                   |
| Samples Relinquished By (Print Name and Sign)  Date  McG 10 122   Time  Samples Received By (Print Name and Sign)  Date  Time  Samples Received By (Print Name and Sign)  Date  Time  Page of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                            |                                                        |                           |               |                                           |                                         |                      | 1.3        |                         |                            | 15 5                              |       | :30      |                                                      |                          | 123                     |                        |           |          |                             |        |        |                                   |
| Samples Relinquished By (Print Name and Sign)  Date  McC   D   72   12   29 m   12   29 m  |                                                                            |                                                        |                           |               |                                           |                                         |                      |            |                         |                            |                                   |       | 7.0      |                                                      |                          | 160                     |                        |           |          |                             |        | 17.00  | 118                               |
| Samples Relinquished By (Print Name and Sign)  Date    Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Date   Dat |                                                                            |                                                        |                           |               |                                           |                                         |                      |            |                         |                            |                                   |       |          |                                                      |                          |                         |                        |           |          |                             |        |        |                                   |
| Togs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                            | 1 / 11                                                 | I Cara                    | Τπ            | me                                        | Samples Received By                     | Print Name and Sign) |            |                         |                            |                                   | 닐     | ار       | Date                                                 | _                        | Tir                     | Tie                    |           |          | 1 1                         | 8112   | D 4.5  | 10,50                             |
| Togs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L. Moth. Da mod 1/9                                                        | arce                                                   | Mes                       | 0/22/         | 2:290                                     | an Repe                                 | world                | Rivi       | 25                      | 9                          | ATTA                              | 24    | Ple      |                                                      |                          |                         |                        |           |          | Z                           | SIME   | K10    | 12706                             |
| Samples Relinquished By (Print Name and Sign):  Date  Time  Samples Received By (Print Name and Sign):  Date  Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Samples Relinquished By (Print Name and Sign)                              | ples Relinquished By (Print Name and Sign)  Date  Time |                           | me (          | Samples Received By (Print Name and Sign) |                                         |                      |            | Date                    |                            |                                   |       |          | Time                                                 |                          |                         |                        | Page of   |          |                             |        |        |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Samples Relinquished By (Print Name and Sign)                              |                                                        | Date                      | Ti            | me                                        | Samples Received By                     | Print Name and Sign  |            |                         |                            |                                   |       |          | Date                                                 |                          | Tit                     | T10                    |           | N°:      |                             |        |        |                                   |