

772 Winston Churchill Boulevard, Oakville, Ontario

Phase Two Environmental Site Assessment

Client:

772 Winston Churchill Limited Partnership, by its general partner 772 Winston Churchill GP Inc

Type of Document:

DRAFT

Project Number:

MRK-00258896-A0

EXP Services Inc.
220 Commerce Valley Drive West, Suite 110
Markham, ON, L3T 0A8
t: 905.695.3217
f: 905.695.0169

Date Submitted:

November 24, 2021

1

Table of Contents

1.	Execu	tive Summary 4	
2	Introd	luction	
	2.1	Introduction	6
	2.2	First Developed Use Determination	6
	2.3	Legal Description and Property Ownership	6
	2.4	Current and Proposed future Uses	7
	2.5	Applicable Site Condition Standards	7
3	Backg	round Information9	
	3.1	Physical Setting	9
	3.1.1	Topography, Geology and Hydrology	9
	3.1.2 F	Fill Materials	9
	3.1.3 \	Nater Bodies and Areas of Natural Significance	9
	3.2	Previous Environmental Investigations	11
4	Scope	of Investigation	
	4.1	Overview of Site Investigation	16
	4.1.1	Scope of Work	16
	4.2	Media Investigated	16
	4.3	Phase One Conceptual Site Model	16
	4.4	Deviations from Sampling and Analysis Plan	17
	4.5	Impediments	17
5.	Invest	igation Method	
	5.1	General	18
	5.2	Underground Utilities	18
	5.3	Borehole Drilling	18
	5.4	Soil: Sampling	18
	5.5	Soil: Field Screening Measurements	19
	5.6	Groundwater: Monitoring Well Installation	19
	5.7	Groundwater: Monitoring Well Development	19

	5.8	Groundwater: Purging and Field Measurements of Water Quality Parameters	20
	5.9	Groundwater: Sampling	20
	5.10	Sediment Sampling	20
	5.11	Analytical Testing	20
	5.12	Residue Management Procedures	21
	5.13	Elevation Survey	21
	5.14	Quality Assurance and Quality Control Measures	21
6.	Revie	v and Evaluation	
	6.1	Geology	22
	6.1.1	Surface Material	22
	6.1.2.	Fill Material	22
	6.1.3.	Native Material	22
	6.1.4	Bedrock	22
	6.2	Groundwater: Elevations and Flow Direction	22
	6.2.2	Groundwater: Horizontal Hydraulic Gradients	22
	6.3	Soil Texture	23
	6.4	Soil: Field Screening	23
	6.5	Soil Quality	23
	6.5.1	Metals & Inorganics	23
	6.5.2	Polycyclic Aromatic Hydrocarbon	24
	6.5.3	Petroleum Hydrocarbons including BTEX	24
	6.5.4	Volatile Organic Compounds	24
	6.5.5	Organochlorine Pesticides	24
	6.5.6	Soil pH	24
	6.5.7	Chemical Transformation and Soil Contaminant Source	25
	6.5.8	Evidence of Non-Aqueous Phase Liquid	25
	6.6	Groundwater Quality	25
	6.6.1	Metals	25
	6.6.2	Volatile Organic Compounds	25
	6.6.3	Petroleum Hydrocarbons Including BTEX	25

November 24, 2021

	6.6.4	Organochlorine Pesticides	25
	6.6.5	Chemical Transformation and Groundwater Contaminant Source	26
	6.6.6	Evidence of Non-Aqueous Phase Liquid (NAPL)	26
	6.7	Sediment Quality	26
	6.7.1	Polycyclic Aromatic Hydrocarbons	
	6.7.2	Metals and Inorganics	26
	6.7.2	Organochlorine Pesticides	27
	6.8	Quality Assurance and Quality Control Measures	27
	6.9	Limited Risk Evaluation	28
	6.9.1	Soil	28
	6.9.2	Groundwater	29
	6.9.3	Sediment	30
	6.10	Phase Two Conceptual Site Model	31
7.	Conclu	usions	. 32
8.	Gener	al Limitations	. 33
9	Closur	~e	. 34
10	Refere	ences	. 35

Appendices

Figures

Tables

Appendix A – Limitations

Appendix B – Survey Plan

Appendix C – Qualifications of Assessors

Appendix D - Sampling and Analysis Plan

Appendix E – Borehole Logs

Appendix F – Quality Assurance Quality Control (QAQC)

Appendix G – Certificates of Analysis

Appendix H - Phase Two Conceptual Site Model

1. Executive Summary

EXP Services Inc. (EXP) was retained by 772 Winston Churchill Limited Partnership, by its general partner 772 Winston Churchill GP Inc. ("Client") to complete a Phase Two Environmental Site Assessment (ESA) of the property municipally addressed 772 Winston Churchill Boulevard, Oakville, Ontario (the "Site"). The objective of the Phase Two ESA was to assess the areas of potential environmental concern (APECs) identified in the Phase I ESA completed by EXP, dated April 22, 2020.

The Site is located on the west side of Winston Churchill Boulevard in Oakville, Ontario, as shown on Figure 1. The subject property measures approximately 15.7 hectares (38.8 acres) in area. The Site was first developed prior to 1939 for agricultural purposes. A farmstead residence was located in the northeast corner from the 1970s until the 2000s. Earthwork activities were undertaken at the Site in 2012, including the removal of surficial topsoil and weathered subgrade soil and construction of a storm water management pond (SWMP). Clearview Creek, which flowed centrally through the Site, was realigned to run along the west and south boundaries of the subject property. At the time of the Phase Two ESA, the Site was a vacant lot undergoing earthworks.

It is EXP's understanding that the Client intends to redevelop the Site for industrial warehousing and logistics use.

This Phase Two ESA was conducted in accordance with the Phase Two ESA standard defined by Ontario Regulation 153/04, as amended (O.Reg.153/04); and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

The scope of the Phase Two ESA was designed to assess soil and groundwater quality associated with the identified environmental concerns (EXP, 2020). The results and findings of the Phase Two ESA conducted at the Site are summarized as follows:

- 1. From March 16 to 18, 2021 eight (8) boreholes (BH1 to BH8) were advanced at the Site, along with two stockpile samples, and two sediment samples. None of the boreholes were completed as monitoring wells. The maximum depth of the boreholes advanced during the course of the investigation was approximately 4.3 metres below ground surface (m bgs). On October 19, 2021 three (3) hand auger pits and three sediment samples were obtained from the Site. The maximum depth of the hand auger pits was approximately 0.6 mbgs.
- 2. The general stratigraphy at the Site, as observed in the boreholes, consisted of topsoil overlying clayey silt to silty clay to a maximum depth of 0.86 mbgs, underlain by sand to sandy silt. Bedrock was encountered at approximately 3.8 mbgs across the Site.
- 3. The monitoring well network advanced as part of this Phase Two ESA consisted of four (4) pre-existing monitoring wells (MW110, MW101, MW102 and MW103), installed in 2016. Screen depths ranged from approximately 0.89 to 3.89 mbgs at MW110, 1.48 to 4.48 mbgs at MW101, 1.44 to 4.44 mbgs at MW102, and 0.99 to 3.99 mbgs at BH103. Groundwater levels were measured between 0.25 (MW102) to 1.22 (MW101) mbgs on March 18, 2020.
- 4. The local groundwater flow direction was calculated to the south to southeast, towards Clearview Creek which is present at the western and southern Site boundaries. Clearview Creek flows southeast towards Lake Ontario.
- 5. Soil samples were submitted for the analysis of petroleum hydrocarbons (PHCs), benzene, toluene, ethylbenzene and xylenes (BTEX), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCs), metals, hydride forming metals, electrical conductivity (EC), pH, and/or sodium adsorption ratio (SAR).
- 6. Seven (7) soil samples PHCs, VOCs and PAHs. PHCs, VOCs, and PAHs were either not detected or detected below the applicable Table 8 SCS.
- Seven (7) soil samples were analyzed for metals and inorganics. Metals and inorganics were either not detected or detected below the applicable Table 8 SCS with the exception of EC at BH3-SS1.

- 8. Ten (10) soil samples and one (1) duplicate were analyzed for OCs. OCs were either not detected or detected below the applicable Table 8 SCS with the exception of DDD and DDE at SP2-3-0.5-0.7m, obtained from a stockpile at the northern Site boundary and DDE at GS-1 and it's duplicate GS1-0, obtained from 0.4 metres.
- 9. Groundwater samples were submitted for the analysis of PHCs and VOCs.
- 10. Four (4) groundwater samples were analyzed for PHCs and VOCs. PHCs and VOC were either not detected below the applicable Table 8 SCS.
- 11. One (1) groundwater sample and one (1) QA/QC duplicate were analyzed for metals and OCs. Metals and OCs were either not detected or detected below the applicable Table 8 SCS.
- 12. Sediment samples were submitted for analysis of PAHs, metals and inorganics, and OCs.
- 13. Two (2) sediment samples were analyzed for PAHs and OCs. PAHs and OCs were either not detected or detected below the applicable Table 8 SCS.
- 14. Five (5) sediment samples and one (1) QA/QC duplicate were analyzed for metals and/or inorganics. Metals and/or inorganics were either not detected or detected below the applicable Table 8 SCS with the exception of copper and nickel at SED1, SED2, SED101, and SED103 and arsenic, copper and lead at SED 102.
- 15. No evidence of free product (i.e. visible film or sheen), or odour was observed during soil sampling, groundwater purging, or groundwater sampling activities.

Based on the limited risk assessment conducted for the soil, groundwater, and sediment analytical results, <u>no unacceptable</u> <u>risks are anticipated to human and ecological receptors that may be present on-Site as a result of</u> the elevated levels of select metals in sediment and OCs in soil on-Site <u>are not anticipated to pose a concern to human and ecological receptors that may be present on-Site</u>. No further environmental work is required, at this time.

2 Introduction

2.1 Introduction

EXP Services Inc. (EXP) was retained by 772 Winston Churchill Limited Partnership, by its general partner 772 Winston Churchill GP Inc. (the "Client") to conduct a Phase Two Environmental Site Assessment (ESA) for the property at 772 Winston Churchill Boulevard, Oakville, Ontario. For the purpose of this report, the terms "Site" and "subject property" refer to the property with the current municipal address of 72 Winston Churchill Boulevard, Oakville. The objective of the Phase Two ESA was to assess the areas of potential environmental concern (APECs) identified in the Phase I ESA completed by EXP, dated April 22, 2020

The Site is located on the west side of Winston Churchill Boulevard in Oakville, Ontario, as shown on Figure 1. The subject property measures approximately 15.7 hectares (38.8 acres) in area. The Site was first developed prior to 1939 for agricultural purposes. A farmstead residence was located in the northeast corner from the 1970s until the 2000s. Earthwork activities were undertaken at the Site in 2012, including the removal of surficial topsoil and weathered subgrade soil and construction of a storm water management pond (SWMP). Clearview Creek, which flowed centrally through the Site, was realigned to run along the west and south boundaries of the subject property. At the time of the Phase Two ESA, the Site was a vacant lot undergoing earthworks.

It is EXP's understanding that the Client intends to develop the Site for industrial warehousing and logistics use. It is further understood that no Record of Site Condition (RSC) is required for the site, given the change in land use from agricultural and other land use (more sensitive) to industrial/commercial/community land use (less sensitive). However, the Region of Halton has requested that the Phase Two investigation be conducted in accordance with Ontario Regulation 153/04, as amended (O.Reg.153/04).

This Phase Two ESA was conducted in accordance with the Phase Two ESA standard defined by Ontario Regulation 153/04, as amended (O.Reg.153/04); and in accordance with generally accepted professional practices. Subject to this standard of care, EXP makes no express or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third-party reliance are outlined in Section 8 of this report.

2.2 First Developed Use Determination

The Site was first developed prior to 1934 for agricultural purposes. A farmstead residence was located in the northeast corner from the 1970s until the 2000s. Earthwork activities were undertaken at the Site in 2012, including the removal of surficial topsoil and weathered subgrade soil and construction of a storm water management pond (SWMP). Clearview Creek, which flowed centrally through the Site, was realigned to run along the west and south boundaries of the subject property. Historical records used to determine the first developed use include:

- Previous Environmental Reports (Section 5.1.5); and,
- Aerial Photographs and Satellite Images (Section 5.3.1).

2.3 Legal Description and Property Ownership

Details of the Site are outlined in the tables below.

Municipal Address	772 Winston Churchill Boulevard, Ontario
Current Land Use	Agricultural and other
Proposed Land Use	Industrial
Approximate Universal Transverse Mercator (UTM) coordinates	NAD83 17-4816188N 0609868E

Accuracy Estimate of UTM	10-15 metres (m)
Measurement Method	Google Earth Global Positioning System (GPS) measurements
Site Area	15.7 hectares (38.8 acres)
Property Owners, Owner Contact and Address	772 Winston Churchill Limited Partnership, 772 Winston Churchill GP Inc

2.4 Current and Proposed future Uses

At the time of the Phase Two ESA, the property was vacant and undergoing earthworks. Reportedly, the Site is intended to be developed for industrial land uses.

2.5 Applicable Site Condition Standards

Analytical results obtained for Site soil and groundwater samples were assessed against Site Condition Standards (SCS) as established under subsection 169.4(1) of the Environmental Protection Act, and presented in the document MECP "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act", ("SGWS" Standards), (MECP, 2011a). Tabulated background SCS (Table 1) applicable to environmentally sensitive Sites and effects based generic SCS (Tables 2 to 9) applicable to non-environmentally sensitive Sites are provided in MECP (2011a). The effects based SCS (Tables 2 to 9) are protective of human health and the environment for different groundwater conditions (potable and non-potable), land use scenarios (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil texture (coarse or medium/fine) and restoration depth (full or stratified).

Tables 1 to 9 of MECP (2011a) are summarized as follows:

- Table 1 applicable to sites where background concentrations must be met (full depth), such as sensitive sites where site-specific criteria have not been derived;
- Table 2 applicable to sites with potable groundwater and full depth restoration;
- Table 3 applicable to sites with non-potable groundwater and full depth restoration;
- Table 4 applicable to sites with potable groundwater and stratified restoration;
- Table 5 applicable to sites with non-potable groundwater and stratified restoration;
- Table 6 applicable to sites with potable groundwater and shallow soils;
- Table 7 applicable to sites with non-potable groundwater and shallow soils;
- Table 8 applicable to sites with potable groundwater and that are within 30 m of a water body; and,
- Table 9 applicable to sites with non-potable groundwater and that are within 30 m of a water body.

Application of the generic or background SCS to a specific site is based on a consideration of site conditions related to soil pH (i.e. surface and subsurface soil), thickness and extent of overburden material, (i.e. shallow soil conditions), and proximity to an area of environmental sensitivity or of natural significance. For some chemical constituents, consideration is also given to soil textural classification with SCS having been derived for both coarse and medium-fine textured soil conditions.

For assessment purposes, EXP selected the MECP (2011) Table 8 Site Condition Standards (SCS) for Residential/Parkland/Institutional/Industrial/Commercial/ Community Property Use and medium and fine textured soil. The selection of this category was based on the following factors:

- More than 2/3 of the Site has an overburden thickness greater than 2 m.
- The Site has a surface water body passing through the southern portion.
- Surface soil samples were submitted for pH analysis and were measured within the acceptable range of 5 to 9. Subsurface soils were measured between the acceptable pH range of 5 and 11.
- The property is not located within an area of natural significance; does not include, nor is it adjacent to an area of natural significance, nor is it part of such an area; and, it does not include land that is within 30 m of an area of natural significance, nor is it part of such an area.
- The Site and all properties within 250 m of the Site may be serviced by potable water wells.
- The predominant soil type on the Site is considered to be medium and fine textured (as per the soil description identified in the borehole logs in Appendix E.
- The most sensitive proposed land use is commercial/industrial. However residential land use was also assumed in the risk evaluation (Section 6.9).
- There is no intention to carry out a stratified restoration at the Site.

3 Background Information

3.1 Physical Setting

3.1.1 Topography, Geology and Hydrology

The Site is located in a transition zone between the physiographic regions known as the Iroquois Plan and Shale Plains. The native surficial soils in this region are predominately composed of older glacial lake deposits, typically silty clay to silt till (Chapman and Putnam, 1984). The subject property is located in the Halton Till (Ontario-Erie lobe) quaternary region, which is an area with a silt to silty clay matrix, high in carbonate content and clast poor (Ontario Geological Survey, 2000).

According to the Geological Survey of Canada map of the area, the underlying geology comprises the Queenston Formation. Bedrock at the Site consists upper Ordovician shale, limestone, dolostone and siltstone (Ontario Geological Survey, 1991).

The topography in the vicinity of the Site is relatively flat with a gradual slope towards the south. Clearview Creek flows onto the subject property at the northwest corner of the Site. Clearview Creek was realigned to run south along the west boundary and east along the south boundary of the Site in 2012. A SWMP was also constructed at the southeast corner of the subject property, at this time.

Table 1 summarizes the environmental setting and Site characteristics. Using 1 x 10-6 cm/s for the hydraulic conductivity of silt (Freeze and Cherry, 1979), a hydraulic gradient of 0.006 m/m (estimated based on topography), and an effective porosity of 20% (McWhorter and Sunada, 1977), Darcy's Law calculations were made to determine the potential groundwater flow velocity at the Site, as shown in Table 2. The groundwater flow velocity was calculated to be approximately 9.46×10^{-3} metres per year (0.95 centimetres/year) in the native silt. The local groundwater flow direction was calculated to the south to southeast, towards Clearview Creek which is present at the western and southern Site boundaries. Clearview Creek flows southeast towards Lake Ontario.

3.1.2 Fill Materials

Fill material is typically brought to a property as a base for buildings and pavement areas. Fill can also be used to re-grade a property, and to backfill excavations.

Based on the Phase Two investigation, stockpiled fill was observed in two locations at the Site. Furthermore, previous investigations have identified fill across the majority of the Site.

3.1.3 Water Bodies and Areas of Natural Significance

Clearview Creek is present at the western and southern Site boundaries and flows southeast towards Lake Ontario. The on-Site portions of Clearview Creek were realigned circa 2012. A SWMP was also constructed at the southeast corner of the Site at this time.

Based on the Ministry of Natural Resources and Forestry's "Make a Map: Natural Heritage Areas" the Site is not located within 30 metres of any of the following:

- An area reserved or set apart as a provincial park or conservation reserve under the Provincial Parks and Conservation Reserves Act, 2006;
- An area of natural and scientific interest (life science or earth science) identified by the Ministry of Natural Resources and Forestry as having provincial significance;
- A wetland identified by the Ministry of Natural Resources and Forestry as having provincial significance;
- An area designated as an escarpment natural area or an escarpment protection area by the Niagara Escarpment Plan
 under the Niagara Escarpment Planning and Development Act;
- An area identified by the Ministry of Natural Resources and Forestry as significant habitat of a threatened or endangered species;

- An area which is habitat of a species that is classified under section 7 of the Endangered Species Act, 2007 as a threatened or endangered species;
- Property within an area designated as a natural core area or natural linkage area within the area to which the Oak Ridges Moraine Conservation Plan under the Oak Ridges Moraine Conservation Act, 2001 applies; and,
- An area set apart as a wilderness area under the Wilderness Areas Act.

According to the Ministry of Natural Resources and Forestry's "Make a Map: Natural Heritage Areas", Clearview Creek, located on-Site, is identified as a "Natural Heritage System".

November 24, 2021

3.2 Previous Environmental Investigations

Various historic environmental investigations have been completed at the Site, as follows:

Date	Report Title	Prepared For	Prepared By	Findings and Areas of Potential Environmental Concern
August 8, 2012	Site Grading Operation, Interim Report No. 1, Winston	IGRI Advisors Inc.	Forward Engineeri ng and Associate	The letter report summarizes earthworks activities at the Site during the period of June 20 and August 7, 2012.
	Churchill Site, Mississauga, Ontario		s Inc. (FEAI)	Approximately 0.3 to 0.6 metres of topsoil was stripped from the subject property. The topsoil was subsequently hauled off-Site, with the exception of some material that was used to build a berm near the west property boundary.
				"Weathered soil" was encountered below the topsoil, ranging from 0.5 metres to 0.8 metres thick. The weather soil was also removed from the Site.
				Garbage materials found at the Site, including tires, construction debris, concrete pieces and bricks, were segregated into garbage disposal boxes and removed.
				The report indicates that a house was formerly located at the northeast portion of the Site and an abandoned well at this location would be decommissioned by a certified contractor.
				The earthworks activities reportedly included the construction of two SWMPs, and swales were created to facilitate drainage within the subject property. Cut and fill grading operations were completed at the Site.
March 21, 2016	Phase II Environmental Site Assessment, 772 Churchill Boulevard, Oakville, Ontario	SorOak Development s Inc.	FEAI	The Phase II ESA was conducted for due diligence purposes in support of redeveloping the Site for commercial/industrial use. Several potentially contaminating activities were identified off-Site, including multiple manufacturing and automotive businesses, historic and current fuel storage tank usage, and a registered waste disposal site located up-gradient or in the vicinity of the Site. The on-Site PCAs identified included suspected fill material of unknown quality and the presence of three soil stockpiles.
				Twelve boreholes were advanced across the Site to a maximum depth of 5.82 metres below ground surface (mbgs), as part of a combined Phase II ESA and Geotechnical Investigation conducted between February 1 and 26, 2016.

Date	Report Title	Prepared For	Prepared By	Findings and Areas of Potential Environmental Concern
				Soil stratigraphy at the Site generally comprised of clayey silt to sandy silt fill to a depth ranging from 0.9 to 1.5 mbgs, over clayey silt till to shale till to a depth ranging from 2.3 to 5.7 mbgs, underlain by weathered shale to a depth greater than 5.8 mbgs. Four of the boreholes were completed as groundwater monitoring wells. Groundwater at the Site was measured, ranging from 1.06 to 2.10 mbgs.
				Select soil and groundwater samples were submitted to the laboratory for analysis of volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), and metals and inorganic parameters. Based on the review of the previous reports by FEAI, there were no exceedances of the O. Reg. 153/04 Table 3 Site Condition Standards for an industrial property use and coarse textured soils for any of the parameters analyzed. However, no soil or groundwater samples were reportedly submitted for laboratory analysis of petroleum hydrocarbon (PHC) fractions F1 to F4.
March 30, 2020	Geotechnical Investigation, Proposed Omega Project, 772	7602928 Canada Inc. c/o H.H. Agnus and	FEIA	A geotechnical investigation was conducted to determine design and construction requirements for a proposed commercial/industrial redevelopment.
	Winston Churchill Boulevard, Oakville, Ontario	Associates Ltd.		Twelve boreholes were advanced across the Site to a maximum depth of 5.82 mbgs, as part of a combined Phase II ESA and Geotechnical Investigation conducted between February 1 and 26, 2016.
			Select soil samples were submitted to the laboratory to determine sulphate and sulphide concentrations, in order to evaluate the degree of sulphate and sulphide attack on concrete and metals reinforcement infrastructure. The concentrations were noted to be in an acceptable range and no issues were identified.	
				No environmental concerns to soil and/or groundwater were identified, based on the review of the geotechnical report.

Data	Poport Title	Propared For	Propared	Findings and Areas of Potential Environmental	
Date	Keport Title	Frepared For	Ву	Concern	
Date April 22, 2020	Report Title Due Diligence Phase I Environmental Site Assessment, 772 Winston Churchill Boulevard, Oakville, Ontario	Prepared For 772 Winston Churchill Limited Partnership, by its general partner 772 Winston Churchill GP Inc	Prepared By EXP Services Inc.	Findings and Areas of Potential Environments Concern The Phase I ESA was conducted for due diligence purposes in support of a potential real estate transaction. Several potentially contaminating activities were identified on-Site, including soil material of unknown quality and former orchards. The offsite potentially contaminating activities identified included several industrial and commercial properties located to the north, northeast, and northwest of the Site. A Phase II ESA was conducted for the Site in 201 (FEAI, 2016). Based on EXP's review, several data gaps were identified in the report, including: Transportation businesses and storage tanks were identified at properties inferred upgradient (north) of the Site. Thus, PHC fractions F1 to F4 were identified as a potential contaminant of concern (pCOC). However, no soil or groundwater samples were collected for	
				 Orchards were identified at the Site, based on the review of the available 1965 aerial photograph, and organochlorine pesticides (OCPs) were identified as a pCOC. However, no soil sample were collected for OCPs; A large soil stockpile identified at the southwest portion of the Site and a soil berm at the north boundary of the Site were considered to be soil material of unknown quality. No analytical testing was conducted at either of these locations; and, No borehole was placed at the former building envelope to determine the fill material quality used to backfill the basement upon completion of the demolition. Furthermore, given that the previous due diligence Phase II ESA was conducted four years ago, the results and findings of the 2016 investigation were considered outdated. 	

_				November 24,
Date	Report Title	Prepared For	Prepared By	Findings and Areas of Potential Environmental Concern
April 22,	Due Diligence	772 Winston	EXP	Based on the above noted data gaps, a due diligence Phase II ESA was warranted to assess the current soil and groundwater quality at the Site. During the Phase II ESA, soil, groundwater and
2020	Phase II Environmental Site Assessment, 772 Winston Churchill Boulevard, Oakville, Ontario	Churchill Limited Partnership, by its general partner 772 Winston Churchill GP Inc	Services Inc.	sediment quality was investigated to determine the environmental condition of the Site. The analytical results of the collected soil and groundwater samples were compared to O. Reg. 153/04 Table 8 SCS for use within 30 metres of a water body in a potable groundwater condition for a residential/parkland/institutional/ commercial/industrial/community property use and medium/fine textured soils. Soil samples were analyzed for PHC fraction F1 to F4, VOCs, PAHs, metals, inorganic parameters and/or OCPs. Groundwater samples were analyzed for PHC fractions F1 to F4 and VOCs. Sediment samples were analyzed for PAHs, metals, inorganic parameters and/or OCPs. All soil samples were within the O. Reg. 153/04 Table 8 SCS for all the parameters analyzed, with the following exceptions: BH3-SS1, from grade to 0.61 metres
				below ground surface (mbgs) exceeded the Table 8 SCS for Electrical Conductivity (EC); and, • SP2-3, collected from a stockpile at a depth of 0.5 to 0.7 mbgs exceeded Table 8 for Dichlorodiphenyldichloroethane (DDD) and Dichlorodiphenyldichloroethylene (DDE). Given the proximity of BH3 to the adjacent roadway, elevated levels of EC in soil are deemed to be associated with the application of de-icing and salting substances along Winston Churchill Boulevard. As per Section 2 of Ontario Regulation 339 of the Revised Regulations of Ontario, 1990 (Classes of Contaminants – Exceptions) and section 48 (3) of Ontario Regulation 153/04, it is the QP's opinion that the applicable Table 8 Standard for EC at the Site was exceeded solely

Date	Report Title	Prepared For	Prepared By	Findings and Areas of Potential Environmental Concern
				because salt was used for the purpose of keeping adjacent roadways safe for traffic under conditions of snow or ice or both. Therefore, this parameter is not considered a contaminant of concern (COC) and is deemed to not be an exceedance of the Table 8 Standards.
				All groundwater samples were within the O. Reg. 153/04 Table 8 SCS Standards for all parameters analyzed.
				All sediment samples were within the O. Reg. 153/04 Table 8 SCS for all the parameters analyzed, with the following exceptions:
				 SED 1, exceeded the Table 8 SCS for copper and nickel; and,
				 SED 2, exceeded the Table 8 SCS for copper and nickel.

Additional delineation sampling was required to assess contaminants identified in the Phase II ESA (EXP, 2020b). Furthermore, the work completed during the Phase II ESA (EXP, 2020b), requires an update to O.Reg. 153/04 Standards to meeting the requirements of the Region of Halton.

November 24, 2021

4 Scope of Investigation

4.1 Overview of Site Investigation

The objective of the Phase Two ESA was to assess the APECs identified in the Phase I ESA completed by EXP (2020a) and to obtain additional soil, sediment, and groundwater data since the Phase II ESA (EXP, 2020b), to further characterize the Site to support the site plan application.

4.1.1 Scope of Work

The scope of work for the Phase Two ESA was as follows:

- Request local utility locating companies (e.g. cable, telephone, gas, hydro, water, sewer and storm water) to mark any
 underground utilities present at the Site;
- Retain a private utility locating company to mark any underground utilities present in the vicinity of the proposed borehole locations and to clear the individual borehole locations;
- Oversee a MECP-licensed drilling contractor to advance eights (8) boreholes, obtain five (5) sediment samples, two (2) stockpile samples and three (3) hand auger samples;
- Collect representative soil samples from the boreholes for laboratory analysis of petroleum hydrocarbons (PHCs), volatile
 organic compounds (VOCs). Organochlorine pesticides (OCs), metals and inorganics, and/or polycyclic aromatic
 hydrocarbons (PAHs);
- Develop all newly installed groundwater monitoring wells;
- Collect groundwater samples from the newly installed monitoring wells for laboratory analysis of PHCs, VOCs, OCs, and/or metals and inorganics;
- Analyze the data and prepare a report of the findings, in accordance with O.Reg.153/04.

4.2 Media Investigated

The Phase Two ESA included the investigation of the site soil, sediment and groundwater.

4.3 Phase One Conceptual Site Model

Following the review of historical records, interviews, and site reconnaissance conducted as part of the Phase One ESA, it is possible to formulate an initial CSM. The CSM is a simplification of reality, which aims to provide a description and assessment of any areas where a PCA on or potentially affecting the Phase One Property has occurred, and any contaminants of potential concern.

A CSM was developed based on the findings of the Phase One investigation, completed in accordance with O.Reg. 153/04.

At the time of site reconnaissance, the Site was vacant with ongoing earthworks activities.

Clearview Creek is present at the western and southern Site boundaries and flows southeast towards Lake Ontario. The on-Site portions of Clearview Creek were realigned circa 2012. A SWMP was also constructed at the southeast corner of the Site at this time.

Based on the findings of the Phase I ESA (EXP, 2020a), several potentially contaminating activities were identified on-Site, including soil material of unknown quality and former orchards. The off-site potentially contaminating activities identified included several industrial and commercial properties located to the north, northeast, and northwest of the Site. Transportation businesses and storage tanks were identified at properties inferred upgradient (north) of the Site. Orchards were identified at the Site.

Contaminants of concern (COCs) associated with these PCAs include PHCs, VOCS, PAHs, OCs, metals and inorganics in soil, and PHCs and VOCs in groundwater.

The Site is located in a transition zone between the physiographic regions known as the Iroquois Plan and Shale Plains. The native surficial soils in this region are predominately composed of older glacial lake deposits, typically silty clay to silt till (Chapman and Putnam, 1984). The subject property is located in the Halton Till (Ontario-Erie lobe) quaternary region, which is an area with a silt to silty clay matrix, high in carbonate content and clast poor (Ontario Geological Survey, 2000).

According to the Geological Survey of Canada map of the area, the underlying geology comprises the Queenston Formation. Bedrock at the Site consists upper Ordovician shale, limestone, dolostone and siltstone (Ontario Geological Survey, 1991).

The topography in the vicinity of the Site is relatively flat with a gradual slope towards the south. Clearview Creek flows onto the subject property at the northwest corner of the Site. Clearview Creek was realigned to run south along the west boundary and east along the south boundary of the Site in 2012. A SWMP was also constructed at the southeast corner of the subject property, at this time.

The investigation undertaken by EXP with respect to this report and any conclusions or recommendations made in this report reflect EXP's judgement based on the site conditions observed at the time of the site inspection on the date(s) set out in this report and on information available at the time of preparation of this report. EXP has confirmed neither the completeness nor the accuracy of the records that were provided by others; as such, the historical records review is identified as a potential source of uncertainty during the investigation. The CSM is developed using multiple lines of evidence, searches and source information to make every reasonable attempt to ensure that findings of environmental significance are captured.

Any uncertainty or absence of information in the records review, interviews, and site reconnaissance components of the Phase One investigation are not anticipated to materially affect the validity of the CSM or Phase One conclusions.

4.4 Deviations from Sampling and Analysis Plan

The field investigative and sampling program was carried out following the requirements of the Site Sampling and Analysis Plan (SAAP) presented in Appendix D. It should be noted that SAAP provided in Appendix D was developed in relation to the original scope of work, however all subsequent work was conducted in accordance with the protocols outlined therein.

 No significant deviations from the SAAP were reported, that could affect the sampling and data quality objectives for the Site.

4.5 Impediments

There were no significant impediments encountered at the time of the site investigation.

5. Investigation Method

5.1 General

The Site investigative activities consisted of the following:

- Borehole drilling to facilitate the collection of soil samples for geologic characterization and/or chemical analysis; and,
- Monitoring well installation for hydrogeologic characterization and the collection of groundwater samples for chemical analysis.

Boreholes were advanced in the overburden soils by a licensed drilling company under the full-time supervision of EXP staff. The equipment used to advance the boreholes is described below.

Monitoring wells were installed in the boreholes by a MECP licensed well contractor in accordance with Ontario Regulation 903/90, as amended (O.Reg. 903) using manufactured well components (i.e. riser pipes and screens) and materials (i.e. sand pack and grout) from documented sources.

The approximate locations of the boreholes and monitoring wells, stockpile samples, sediment samples, and hand auger pits are shown on Figure 2.

5.2 Underground Utilities

Prior to the commencement of drilling activities, the locations of underground utilities including but not limited to cable, telephone, natural gas, electrical lines, water, sewer and storm water conduits were marked out by public locating companies. In addition, a private utility locating service (All Clear Locates) was retained to clear individual borehole locations on March 16, 2021.

5.3 Borehole Drilling

The fieldwork for the soil investigative portion of the Phase Two ESA was carried out was carried out in two stages, from March 16 to 18, 2020, and on October 19, 2021. All boreholes were advanced by Tri-Phase Group to a maximum depth of 4.3 m bgs, under the full-time supervision of EXP staff.

EXP continuously monitored the drilling activities to record the physical characteristics of the soil, depth of soil sample collection and total depth of boreholes. Field observations are summarized on the borehole logs provided in Appendix E. Representative soil samples were recovered from the boreholes continuously using acetate liners.

5.4 Soil: Sampling

The soil sampling conducted during the completion of this Phase Two ESA was undertaken in accordance with the SAAP presented in Appendix D, to ensure that soil quality in each of the APECs identified in the Phase I ESA (EXP, 2020a) was characterized in accordance with O.Reg.153/04.

Soil samples were collected for geologic characterization and chemical analysis on a discrete basis in the overburden materials using split spoon sampling cores. The soil cores were extruded from the samplers upon retrieval by drilling personnel. Geologic details of the recovered cores were logged by EXP field staff and samples were collected from selected cores for chemical analysis. Field observations are summarized on the borehole logs which were prepared from the field logs and provided in Appendix E.

The sediment and hand auger samples were obtained with a stainless steel hand auger. The stockpile samples were obtained with a trowel or shovel.

Measures were taken in the field and during transport to preserve sample integrity prior to chemical analysis. Recommended volumes of soil samples selected for chemical analysis were collected from the recovered cores into pre-cleaned, laboratory-supplied glass sample jars/vials identified for the specified analytical test group. Samples intended for PHC fractions F1 and VOCs were collected using a laboratory-supplied soil core sampler, placed into the vials containing methanol for preservation purposes and sealed using Teflon lined lids.

Soil samples selected for laboratory analysis were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory Agat Laboratories (AGAT) of Mississauga, Ontario. The samples were transported/submitted within the acceptable holding time to AGAT following Chain of Custody protocols for chemical analysis.

Decontamination and other protocols were followed during sample collection and handling to minimize the potential for sample cross-contamination. New disposable nitrile gloves were used for the handling and sampling of each retrieved soil core. Reusable sampling equipment (e.g. split spoons) was decontaminated between borehole locations by the drilling contractor using a potable water/phosphate-free detergent solution followed by rinses with potable water and de-ionized water. Wash and rinse waters were collected in sealed, labeled containers. Drill cuttings were placed in labeled, sealed drums upon completion of sampling.

Soil samples submitted for specific chemical analysis were selected on the basis of visual inspection of the recovered cores, total organic vapour (TOV) readings, sample location and/or depth interval. The rationale for soil sample submission is presented in Table 4.

Appropriate quality assurance/quality control (QA/QC) samples were collected during soil sampling, including field duplicate samples, as presented in Appendix F.

5.5 Soil: Field Screening Measurements

Where required for the characterization of volatile parameters, a portion of each soil core was placed in a sealed plastic bag and allowed to reach ambient temperature prior to field screening, using an RKI Eagle II (RKI) device equipped with a Photoionization Detection (PID) instrument, calibrated with isobutylene and hexane gases. The measurements were made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These readings provide a real-time indication of the relative concentration of combustible vapours encountered in the subsurface during drilling and are used to aid in the assessment of the vertical and horizontal extent of volatile parameter contamination and the selection of soil samples for analysis.

The field screening measurements, in parts per million (ppm) isobutylene and hexane equivalents, are presented on the borehole logs in Appendix E. It should be noted that field measurements are for screening purposes only and the presence/absence of contamination is determined by laboratory analysis.

Each sample was additionally examined for visual, textural, and olfactory classification at the time of sampling.

5.6 Groundwater: Monitoring Well Installation

No groundwater monitors were installed as part of the Phase Two Investigation. However, pre-existing monitors MW101 to M103, and MW110, installed in 2016, were sampled.

When the monitoring wells are no longer required, they must be decommissioned in accordance with the procedure outlined in the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 - amended to O. Reg. 128/03.

5.7 Groundwater: Monitoring Well Development

No groundwater monitors were installed as part of the Phase Two Investigation

5.8 Groundwater: Purging and Field Measurements of Water Quality Parameters

The depth to groundwater and presence/absence of light non-aqueous phase liquids (LNAPL) at each monitoring well was measured utilizing an electronic oil/water interface probe. The water level measurements and LNAPL readings, if any, were recorded on log sheets or in a bound field book. The interface probe was decontaminated between monitoring well locations.

Prior to collecting groundwater samples, field measurements of water quality parameters were recorded from the monitoring wells utilizing low flow purging and sampling methodologies. Groundwater was purged from each location using a peristaltic and/or bladder pump and dedicated LDPE tubing. Field measurements of dissolved oxygen concentration, electrical conductivity, oxidation-reduction potential, pH, temperature, turbidity and water levels were recorded during the purging activities using a pre-calibrated multi probe water quality meter, a turbidity meter and an interface probe. Groundwater was considered to be chemically stable when the pH measurements of three (3) successive readings agreed to within \pm 0.1 pH units, the specific conductance within \pm 10%, and the temperature within \pm 10%. The multi-meter electrodes were calibrated prior to receipt of the meter by the supplier using in-house reference standards.

Equipment used during groundwater monitoring were thoroughly cleaned and decontaminated between wells. Well purging details were recorded on log sheets or in a bound field book.

5.9 Groundwater: Sampling

The groundwater sampling conducted during the completion of this Phase Two ESA was undertaken in accordance with the SAAP presented in Appendix D, to ensure that the APECs identified in the Phase I ESA (EXP, 2020a) were properly characterized, in accordance with O.Reg.153/04.

Upon completion of purging activities, groundwater samples were collected from monitoring wells. Recommended groundwater sample volumes were collected into pre-cleaned laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. The samples were placed in an insulated cooler pre-chilled with ice immediately upon collection. Samples for VOCs and/or PHC F1 analysis were collected in triplicate vials prepared with concentrated sodium bisulphate as a preservative. Each VOC/PHC vial was inverted and inspected for gas bubbles prior to being placed in the cooler to ensure that no headspace was present in the samples. Samples for Inductively Coupled Plasma Mass Spectrometry (ICPMS) metals were collected using disposable 0.45 micron field filters, supplied by Maxim Environmental and Safety Inc. (Maxim).

All groundwater samples were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory, AGAT. The samples were transported/submitted following appropriate holding time requirements following Chain of Custody protocols for chemical analysis.

Decontamination and other protocols were followed during sample collection and handling to minimize the potential for sample cross-contamination. New disposable nitrile gloves were used at each monitoring well location.

Appropriate QA/QC samples were collected during groundwater sampling, including field duplicate samples, where required, as presented in Appendix F.

5.10 Sediment Sampling

Sediment samples were obtained using a hand auger from five (5) locations, three (3) on-Site, and two (2) off-site.

5.11 Analytical Testing

The contractual laboratory selected to perform the chemical analyses was Agat labs (AGAT), of Mississauga, ON. AGAT is an accredited laboratory under the Standards Council of Canada/Canadian Association of Environmental Analytical Laboratories in accordance with ISO/IEC 17025:2005 – "General Requirements for the Competence of Testing and Calibration Laboratories".

5.12 Residue Management Procedures

The residue materials produced during the borehole drilling, soil sampling, monitoring well development, and monitoring well sampling programs comprised of soil cuttings, decontamination fluids from equipment cleaning, and waters from well development and purging. All soil cuttings and development and purged water was collected and stored on-Site in labeled, sealed containers for future disposal.

5.13 Elevation Survey

An elevation survey was not conducted for the purpose of the Phase Two ESA. However, elevations of monitors and boreholes were extrapolated using detailed topographic maps of the Site (Appendix B).

5.14 Quality Assurance and Quality Control Measures

Quality Control/Quality Assurance measures, as set out in the SAAP, were implemented during sample collection, storage and transport to provide accurate data representative of conditions in the surficial fill and upper overburden soils and the water table aquifer. The QA/QC measures included decontamination procedures to minimize the potential for sample cross contamination, the execution of standard operating procedures to collect representative and unbiased samples, the collection of quality control samples to evaluate sample precision and accuracy, and the implementation of measures to preserve sample integrity.

Decontamination protocols were followed during sample collection and handling to minimize the potential for cross-contamination. New disposable nitrile gloves were used for the handling and collection of samples from each soil core and for sample collection from each borehole.

Soil samples selected for chemical analyses were collected from the retrieved soil cores and/or split spoons and placed directly into pre-cleaned, laboratory-supplied glass jars or vials. Sample volumes were consistent with analytical test group requirements as specified by the receiving laboratory.

Groundwater samples were collected into pre-clean laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. Recommended analytical test group specific sample volumes were collected as specified by the contractual laboratory. Sample vials for analysis of PHC F1 (BTEX) and VOCs were inspected for the presence of gas bubbles and the presence of head space, where volatiles may partition into.

Measures were followed to preserve sample integrity between collection and receipt by the contractual laboratory. All samples, both soil and groundwater, immediately upon collection were placed in insulated coolers pre-chilled with ice for storage and transport to the contractual laboratory. Samples were received by the contractual laboratory within specific analytical test group holding time requirements.

Documentation procedures were followed to confirm sample identification and tracked sample movement. Each sample was assigned a unique identification ID number, which was recorded along with the date, time of sampling and requested analyses on labels affixed to the sampling containers, and in a bound field notebook. Chain of Custody protocols were followed to track sample handling and movement until receipt by the contractual laboratory. Field QA/QC samples were collected during the soil and groundwater sampling. Duplicate samples were collected to evaluate sampling precision to evaluate the potential for sample cross-contamination during handling and transport.

A total of one (1) duplicate soil sample (GS1-0), one (1) groundwater duplicate sample (MW1030), and one (1) sediment duplicate sample (SED102-0) were collected during the Site investigation. A list of all field duplicates are presented in Appendix F.

6. Review and Evaluation

6.1 Geology

The soil investigation conducted at the Site for the environmental assessment consisted of the advancement of eight (8) boreholes into the overburden materials to a maximum depth of 4.3 m bgs. The borehole logs describing geologic details of the soil conditions observed at the Site during the sub-surface investigation are presented in Appendix E. Boundaries of soil indicated on the log sheets are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change.

Site stratigraphy was generally observed to consist of topsoil overlying clayey silt to silty clay to a maximum depth of 0.86 mbgs, underlain by sand to sandy silt. Bedrock was encountered at approximately 3.8 mbgs across the Site. A brief description of the soil stratigraphy at the Site, in order of depth, is summarized in the following sections. Refer to the borehole logs provided in Appendix E for details of soil stratigraphy.

6.1.1 Surface Material

Approximately 3 to 10 cm of brown/clayey silt topsoil with trace to some gravel and some sand, rootlets was observed across the Site.

6.1.2. Fill Material

No fill material, with the exception of the two stockpiles located, on-Site, was identified during the investigation.

6.1.3. Native Material

Native materials consisted of heterogeneous brown to grey clayey silt to sandy silt with some gravel and sand or clay to a maximum depth of 0.86 m bgs. It was underlain by brown to grey silty sand to sandy silt, with some clay and trace gravel. Grey shale cobbled were observed from 2.29 mbgs in some boreholes.

6.1.4 Bedrock

The upper boundary of the grey weather shale bedrock was observed from 2.70 to 3.80 m bgs across the Site.

6.2 Groundwater: Elevations and Flow Direction

The monitoring well network advanced as part of this Phase Two ESA consisted of four (4) pre-exiting monitoring wells, installed in 2016. Screen depths ranged from approximately 0.89 to 3.89 mbgs at MW110, 1.48 to 4.48 mbgs at MW101, 1.44 to 4.44 mbgs at MW102, and 0.99 to 3.99 mbgs at BH103. Groundwater levels were measured between 0.25 (MW102) to 1.22 (MW101) mbgs on March 18, 2020. The groundwater levels and corresponding elevations are summarized in Table 3, and presented in the borehole logs provided in Appendix E.

Based on the groundwater elevations measured across the Site, local groundwater flow direction was calculated in the shallow aquifer in the south to southeasterly direction.

6.2.2 Groundwater: Horizontal Hydraulic Gradients

The horizontal hydraulic gradient, between each monitoring well pair, is calculated using the following equation:

 $i = \Delta h/\Delta s$

Where,

i = horizontal hydraulic gradient;

 Δh (m) = groundwater elevation difference; and,

 Δs (m) = separation distance.

The horizontal gradient in the shallow aquifer across the site was calculated to be approximately 0.006 m/m.

A vertical hydraulic gradient was not measured as part of this investigation.

6.3 Soil Texture

Based on the observed native soil type at the Site (sandy silt), the soil texture at the Site was determined to be fine textured soils.

6.4 Soil: Field Screening

TOV readings from each sample interval were measured for soil sample selected for BTEX/PHC and VOC analysis from all test pits and boreholes within the APECs where BTEX/PHCs and VOCs were identified as COCs. Vapour concentrations readings collected during subsurface drilling were measured using the RKI Eagle 2 in ppm calibrated with isobutylene and hexane or equivalent. The vapour readings, in ppm, are provided on the borehole logs in Appendix E.

Soil samples submitted for chemical analysis were selected on the basis of visual inspection of the recovered soils/cores, TOV readings, sample location and/or depth interval. The maximum hexane and isobutylene readings during the investigation were <25 ppm for hexane.

6.5 Soil Quality

In accordance with the scope of work, chemical analyses were performed on selected soil samples recovered from the boreholes. The selection of representative "worst case" soil samples was based on field screening, visual and/or olfactory evidence of impacts, and the presence of potential water bearing zones.

Copies of the laboratory Certificates of Analysis for the analyzed soil samples are provided in Appendix G. A summary of the analytical results for the soil samples, including the locations and depths of each sample, a comparison of concentrations against applicable SCS, and the identification of the potential contaminants of concern, are provided in Tables 5 to 9.

6.5.1 Metals & Inorganics

Seven (7) soil samples were analyzed for one or more of metals and/or inorganics. The results of the analysis together with the applicable Table 8 SCS are presented in Table 8.

As shown in Table 8, all metals and inorganics were either not detected or detected below the applicable Table 3 SCS with the exception of the following:

- BH3-SS1
 - o EC at 0.994 mS/cm versus the SCS of 0.7 mS/cm.

The laboratory RDLs were below the Table 8 SCS.

Given the proximity of BH3 to the adjacent roadway, elevated levels of EC in soil are deemed to be associated with the application of de-icing and salting substances along Winston Churchill Boulevard. As per Section 2 of Ontario Regulation 339 of the Revised Regulations of Ontario, 1990 (Classes of Contaminants – Exceptions) and section 48 (3) of Ontario Regulation

153/04, it is the QP's opinion that the applicable Table 8 Standard for EC at the Site was exceeded solely because salt was used for the purpose of keeping adjacent roadways safe for traffic under conditions of snow or ice or both. Therefore, this parameter is not considered a contaminant of concern (COC) and is deemed to not be an exceedance of the Table 8 Standards.

6.5.2 Polycyclic Aromatic Hydrocarbon

Seven (7) soil samples were analyzed for PAHs. The results of the analysis together with the applicable Table 8 SCS are presented in Table 7.

As shown in Table 7, PAHs were not detected or detected below the applicable Table 8 SCS.

The laboratory RDLs were below the Table 8 SCS.

6.5.3 Petroleum Hydrocarbons including BTEX

Seven (7) soil samples were analyzed for PHCs including BTEX. The results of the analysis together with the applicable Table 8 SCS are presented in Table 5.

As shown in Table 5, PHCs and BTEX were not detected or detected below the applicable Table 8 SCS.

The laboratory RDLs were below the Table 8 SCS.

6.5.4 Volatile Organic Compounds

Seven (7) soil samples were analyzed for VOCs. The results of the analysis together with the applicable Table 3 SCS are presented in Table 6.

As shown in Table 6, VOCs were either not detected or detected below the applicable Table 8 SCS. The laboratory RDLs were below the Table 8 SCS.

6.5.5 Organochlorine Pesticides

Ten (10) soil samples and (1) QA/QC field duplicate were analyzed for OCs. The results of the analysis together with the applicable Table 8 SCS are presented in Table 9.

As shown in Table 9, OCs were either not detected or detected below the applicable Table 8 SCS with the following exceptions:

- SP2-3-0.5-0.7m
 - o DDD at 0.056 ug/g versus the SCS of 0.5 ug/g and DDE at 0.28 ug/g versus the SCS of 0.05 ug/g.
- GS1
 - DDE at 0.145 ug/g versus the SCS of 0.05 ug/g.
- GS1-0
 - DDE at 0.193 ug/g versus the SCS of 0.05 ug/g.

The laboratory RDLs were below the Table 8 SCS.

6.5.6 Soil pH

Seven (7) were analyzed for pH. The Table 3 SCS criteria are applicable if soil pH is in the range of 5 to 9 for surface soil (less than 1.5 m below soil surface) and 5 to 11 for subsurface soil (greater than 1.5 m below soil surface). The reported pH values ranged from 7.23 and 7.94.

All boreholes were within the Table 8 SCS range of 5 to 9 for pH. Refer to Table 8 for a summary of the soil samples analyzed for pH.

6.5.7 Chemical Transformation and Soil Contaminant Source

With the exception of OCs, there are no concentrations of the chemical constituents of soil present on the property that are above the applicable Table 8 SCS. The OC impacts localized within the stockpile at the northern portion of the Site are not expected to undergo chemical transformation and do not act as a contaminant source for the rest of the property.

6.5.8 Evidence of Non-Aqueous Phase Liquid

Inspection of the soil cores retrieved from the boreholes did not indicate the presence of non-aqueous phase liquid (NAPL), staining, or sheen at the time of the Phase Two ESA.

6.6 Groundwater Quality

In accordance with the scope of work, chemical analyses were performed on groundwater samples recovered from the monitoring wells. The selection of groundwater samples was based on location and/or screen depth.

Copies of the laboratory Certificates of Analysis for the analyzed groundwater samples are provided in Appendix G.

6.6.1 Metals

One (1) groundwater sample and one (1) QA/QC field duplicate were analyzed for metals. The results of the analysis together with the applicable Table 8 SCS are presented in Table 12.

As shown in Table 12, metals and inorganics were either not detected or detected below the applicable Table 8 SCS. The laboratory RDLs were below the Table 8 SCS.

6.6.2 Volatile Organic Compounds

Four (4) groundwater samples were analyzed for VOCs. The results of the analysis together with the applicable Table 8 SCS are presented in Table 11.

As shown in Table 11, VOCs were either not detected or detected below the applicable Table 8 SCS. The laboratory RDLs were below the Table 8 SCS.

6.6.3 Petroleum Hydrocarbons Including BTEX

Four (4) groundwater samples were analyzed for PHCs and BTEX. The results of the analysis together with the applicable Table 8 SCS are presented in Table 10.

As shown in Table 10, PHCs including BTEX were either not detected or detected below the applicable Table 8 SCS. The laboratory RDLs were below the Table 3 SCS.

6.6.4 Organochlorine Pesticides

One (1) groundwater sample and one (1) duplicate sample were analyzed for OCs. The results of the analysis together with the applicable Table 8 SCS are presented in Table 13.

As shown in Table 13, OCs were either not detected or detected below the applicable Table 8 SCS. The laboratory RDLs were below the Table 8 SCS.

6.6.5 Chemical Transformation and Groundwater Contaminant Source

Given that no groundwater contaminants were identified during the Phase Two ESA, chemical and biological transformations is not expected in quantities of regulatory relevance.

6.6.6 Evidence of Non-Aqueous Phase Liquid (NAPL)

Inspection of the purged groundwater retrieved from the monitoring wells did not indicate the presence of NAPL, staining, sheen, or odour.

6.7 Sediment Quality

In accordance with the scope of work, chemical analyses were performed on sediment samples recovered from the creek running through the site. The selection of sediment samples was based on location and to assess potential off-site impacts.

Copies of the laboratory Certificates of Analysis for the analyzed groundwater samples are provided in Appendix G.

6.7.1 Polycyclic Aromatic Hydrocarbons

Two (2) sediment were analyzed for PAHs. The results of the analysis together with the applicable Table 8 SCS are presented in Table 14.

As shown in Table 14, PAHs were not detected or detected below the applicable Table 8 SCS.

The laboratory RDLs were below the Table 8 SCS.

6.7.2 Metals and Inorganics

Two (2) sediment were analyzed for Metals and Inorganics. The results of the analysis together with the applicable Table 8 SCS are presented in Table 15.

As shown in Table 15, Metals were not detected or detected below the applicable Table 8 SCS with the following exception:

- SED1
 - Copper at 29 ug/g versus the SCS of 16 ug/g and Nickel at 28 ug/g versus the SCS 16 ug/g;
- SED 2
 - Copper at 31 ug/g versus the SCS of 16 ug/g and Nickel at 30 ug/g versus the SCS 16 ug/g.
- SED101
 - o Copper at 33.2 ug/g versus the SCS of 16 ug/g and Nickel at 28 ug/g versus the SCS 16 ug/g.
- SED102
 - Arsenic at Copper at 18 ug/g versus the SCS of 6 ug/g, Copper at 22.2 ug/g versus the SCS of 16 ug/g, and Lead at 79 ug/g versus the SCS 31 ug/g.
- SED102-0 (duplicate of SED102)

- Arsenic at Copper at 19 ug/g versus the SCS of 6 ug/g, Copper at 22.1 ug/g versus the SCS of 16 ug/g, and Lead at 72 ug/g versus the SCS 31 ug/g.
- SED103
 - Copper at 29.2 ug/g versus the SCS of 16 ug/g and Nickel at 26 ug/g versus the SCS 16 ug/g.

The laboratory RDLs were below the Table 8 SCS.

6.7.2 Organochlorine Pesticides

Two (2) sediment were analyzed for OCs. The results of the analysis together with the applicable Table 8 SCS are presented in Table 16.

As shown in Table 1, OCs ere not detected or detected below the applicable Table 8 SCS. The laboratory RDLs were below the Table 8 SCS.

6.8 Quality Assurance and Quality Control Measures

Quality assurance and quality control measures were taken during the field activities to meet the objectives of the sampling and quality assurance plan to collect unbiased and representative samples to characterize existing conditions in the overburden and bedrock materials, and water table units at the Site.

Review of field activity documentation indicated that recommended sample volumes were collected from soil and groundwater for each analytical test group into appropriate containers and preserved with proper chemical reagents in accordance with the protocols set out in the "Protocol for Analytical Methods used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act" (MECP, 2004). Samples were preserved at the required temperatures in prechilled insulated coolers and met applicable holding time requirements, when relinquished to the receiving laboratory.

Field QA/QC samples were collected during soil and groundwater sampling. A total of one (1) OCs soil duplicate samples, as well as one (1) metal and one (1) OCs groundwater duplicate samples were collected to evaluate sampling precision. Refer to Table F-1A for a summary of the QA/QC samples collected and submitted for chemical analysis.

The field duplicate sample results were quantitatively evaluated by calculating the relative percent difference (RPD). Assessment of the duplicate soil and groundwater sample showed that the results generally met analytical test group specific acceptance criteria.

The contractual laboratory selected to perform the chemical analyses was Agat Laboratories (AGAT) of Mississauga, ON. AGAT is an accredited laboratory under the Standards Council of Canada/Canadian Association of Laboratory Accreditation in accordance with ISO/IEC 17025:2005 – "General Requirements for the Competence of Testing and Calibration Laboratories". Certificates of Analysis were received from AGAT, reporting the results of all the chemical analyses performed on the submitted soil and groundwater samples. Copies of the Certificates of Analysis are provided in Appendix G. Review of the Certificates of Analysis, prepared by AGAT, indicates that they were in compliance with the requirements set out under subsection 47(3) of O. Reg. 153/04.

The analytical program conducted by AGAT included analytical test group specific QA/QC measures to evaluate the accuracy and precision of the analytical results and the efficiency of analyte recovery during solute extraction procedures. The laboratory QA/QC program consisted of the preparation and analysis of laboratory duplicate samples to assess precision and sample homogeneity, method blanks to assess analytical bias, spiked blanks and QC standards to evaluate analyte recovery, matrix spikes to evaluate matrix interferences and surrogate compound recoveries (VOCs only) to evaluate extraction efficiency. The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificate of Analysis prepared by AGAT. The QA/QC results are reported as percent recoveries for matrix spikes, spike blanks and QC standards,

relative percent difference for laboratory duplicates and analyte concentrations for method blanks. The QA/QC results were assessed against test group control limits in the case of spiked blanks, matrix spikes and surrogate recoveries and alert criteria in the case of method blanks and laboratory duplicates. Review of the laboratory QA/QC results reported by AGAT indicated that they were within acceptable control limits or below applicable alert criteria for the sampled media and analytical test groups.

6.9 Limited Risk Evaluation

As a result of the identification of several exceedances of the Table 8 SCS in soil and sediment, a limited risk evaluation was completed to determine potential human health and ecological risks associated with leaving these impacts on-Site. Screening of the maximum concentrations of the COCs against the applicable MECP component values was completed. By way of background and context, as part of the derivation of the generic MECP SGWS Standards, the MECP has developed risk-based values deemed protective of the various human and ecological Site receptor/exposure pathway scenarios, which are referred to as component values. The various human receptors included in these scenarios include residential or commercial human receptors (e.g., property resident, indoor workers, construction workers etc.). The various ecological receptors include plants, soil invertebrates, representative mammals and birds and various aquatic species. Some of the exposure pathways included in the scenarios comprise the dermal contact, ingestion, vapour inhalation, and the groundwater migration to surface water. Each of these scenarios is evaluated separately by the MECP for each contaminant regulated under O. Reg. 153/04.

Given the intended future residential mixed commercial/industrial land use, the relevant human receptors include indoor workers, outdoor maintenance workers Site residents and property visitors. Construction workers are also anticipated to be on-Site during redevelopment. Ecological receptors include various terrestrial vegetation, soil invertebrates, small mammals and birds. In addition, given the presence of Clearview Creek on-Site, aquatic receptors (various species of fish, invertebrates, amphibians, aquatic plant species and aquatic and semi aquatic mammals and birds) may also be present.

Further discussion on the relevant exposure pathways applicable to the above-noted receptors and a limited risk evaluation are provided for each media in the sections below.

6.9.1 Soil

The soil COCs identified for the Site are DDD and DDE. Based on the identified soil impacts, the relevant exposure pathways (i.e., component values) applicable to these receptors based on the use of the site include:

- S1 human health soil dermal contact and incidental ingestion at a high frequency and high intensity in a residential/parkland/institutional setting.
- S2 human health soil dermal contact and incidental ingestion at a lower frequency and intensity in a commercial/industrial setting, applicable to outdoor maintenance workers.
- S3 human health soil dermal contact, incidental ingestion and soil particulate inhalation protective of workers undertaking excavation works.
- S-GW1 human health exposure pathway due to movement of a substance from the soil to groundwater then to a human receptor via drinking water.
- Plants & Soil Organisms ecological exposure pathway due to direct contact of terrestrial plants and soil invertebrates.
- Mammals & Birds ecological exposure pathway due to direct contact of terrestrial mammals and birds.
- S-GW3 ecological exposure pathway due to movement of a substance from soil to groundwater then to aquatic receptors in a surface water body.
- Sediment Quality Sediment quality guidelines for protection of sediment dwelling organisms, considered applicable to assess soil erosion/run-off pathway.

Screening of the maximum concentrations against the applicable component values noted above is summarized in the Table, below:

	Maximum		Component Values¹ (μg/g)					
Parameter	Concentration (µg/g)	\$1 <u>\$2</u>	S3	S-GW1	Plants and Soil Organisms	Mammals and Birds	S-GW3	Sediment Quality
OCPs								
DDD	0.056	3.3 4.6	110	1,800	8.5 <u>17</u>	NV	38,000,000	0.008
DDE	0.28	3.2 <mark>2.3</mark>	110	1,800	0. 33 <u>65</u>	NV	350,000,000	0.005

¹ Component values obtained from MECP Table 8 component values (MECP, 2016), where available. Table 8 component values defer to Table 2 component values in some cases. Table 2 component values for commercial/industrial residential land use, with medium to fine textured soils in a potable groundwater condition were applied, where applicable. The S3 component value was obtained from the Table 2 component values for an industrial/commercial/community use.

Bold = concentration is exceeded by maximum on-Site concentration.

NV = No Value

The maximum concentrations of DDD and DDE are within all applicable human health and ecological component values with the exception of sediment quality. However, based on the sediment samples collected, sediment concentrations of DDD and DDE are below sediment SCS, therefore soil erosion/run-off is not considered to be significant.

No MECP component values are available for mammal and bird exposure to DDD and DDE. However, given that only two (2) of ten (10) sampling locations exceeded the Table 8 SCS for either DDD or DDE, and exceedances were limited to a portion of one of the stockpiles present on-<u>S</u>eite, it is considered unlikely that these elevated concentrations of DDD and DDE will pose a significant concern to the overall populations of mammals and birds that may frequent the Site.

While DDE is considered volatile based on MECP's definition of volatility (Henry's Law constant greater than 1x10-5 atm-m³/mol and/or the vapour pressure is greater than 1.0 Torr at the average groundwater temperature of 15 °C), no MECP component value is available for inhalation pathways. Vapour inhalation of DDE is likely to be insignificant given the following:

- DDE may be volatile in moist soils based on the Henry's Law constant (1.14E-05 atm-m³/mol), but it is not expected to volatilize from dry soils based on its low vapor pressure (6.00E-06 Tor) (US EPA, 2008a);
- DDE volatilization is expected to be attenuated by adsorption to carbon sources. Due to a high adsorption coefficient,
 DDE is expected to strongly sorb onto soil particles (US EPA, 2008a); and,
- The estimated half-life of DDE is only 17 hours to 2-days as it reacts with photochemically-produced hydroxy radicals (US EPA, 2008b).

Overall, <u>based on the above evaluation</u>, <u>no unacceptable risks are anticipated as a result of DDD and DDE in soil are not anticipated to pose a concern to human and ecological receptors that may be present on-Site.</u>

6.9.2 Groundwater

Given that the minimum depth to groundwater was reported to be 0.25 mbgs, the depth to groundwater on the Site is not consistent with the assumptions applied by the MECP in the evaluation of the indoor air vapour intrusion pathway under the Table 8 SCS. The depth to groundwater reflects the distance and opportunity for potential contaminant biodegradation and natural attenuation to occur, which are considered in the modelling of the groundwater to indoor air exposure pathway. As such, as part of the risk evaluation volatile groundwater parameters were also compared to the Table 6 SCS for all types of property use (herein referred to as the Table 6 SCS). The Table 6 SCS is representative of a shallow groundwater scenario as it was derived as a conservative scenario where biodegradation cannot be assured and where soil may not be present to provide attenuation. In keeping with the MECP, a groundwater parameter was considered sufficiently volatile if the parameter has a Henry's Law constant greater than 1x10⁻⁵ atm-m³/mol and/or the vapour pressure is greater than 1.0 Torr at the average

groundwater temperature of 15 °C. Based on the comparison of chemical concentrations in groundwater to the Table 6 SCS, no exceedances were identified. As such, groundwater is not considered further in the risk evaluation.

6.9.3 Sediment

Exceedances of the MECP Table 1 SCS for sediment was identified for arsenic, copper, lead and nickel.

Where a sediment SCS was not available, the data were compared to the MECP Table 1 background Standards for soil. The Table 1 soil Standards are considered applicable as sediment concentrations would be influenced by erosion of adjacent soil by wind/run-off and are based on Ontario background concentrations. All parameters without sediment SCS were within the Table 1 soil SCS. Therefore, no further consideration was given to these parameters.

As per Health Canada (2017), in the absence of applicable human health-based sediment guidelines, sediment concentrations may be screened against available human health-based residential/parkland soil quality guidelines (or criteria) for scenarios where only direct contact of contaminants from sediment is expected. Based on the above, and also taking into consideration ecological receptors, the relevant exposure pathways (i.e., component values) applicable to human and ecological receptors based on the intended residential commercial/industrial use of the site include:

- S2 human health soil dermal contact and incidental ingestion at a lower frequency and intensity in a commercial/industrial setting, applicable to outdoor maintenance workers.
- S1 human health soil dermal contact and incidental ingestion at a high frequency and high intensity in a residential/parkland/institutional setting.
- S3 human health soil dermal contact, incidental ingestion and soil particulate inhalation protective of workers undertaking excavation works.
- Sediment Quality Sediment quality guidelines for protection of sediment dwelling organisms, considered applicable to assess soil erosion/run-off pathway.

Consideration was also given to background sediment concentrations and sediment Severe Effect Levels (SELs) as provided by MECP (2008). The SEL indicates a level of contamination that is expected to be detrimental to the majority of sediment dwelling organisms. It is noted that the MECP Lowest Effect Level (LEL), that is, the level of contamination that can be tolerated by the majority of sediment-dwelling organisms are equivalent to the Sediment Quality values provided by MECP (2016).

Screening of the maximum concentrations against the applicable <u>generic</u> component values noted above is summarized in the Table, below:

		Соі	mponent Values ¹	MECP (2008)	MECP (2008)	
Parameter	Maximum Concentration (μg/g)	\$1 <u>\$2</u>	S3	Sediment Quality	Background Sediment Concentrations (μg/g)	Severe Effect Level (SEL) (μg/g)
Metals						
Arsenic	19	0. 15 2	7.4	6	4	33
Copper	33.2	200 1,900	1,900	16	25	110
Lead	79	120 1,000	1,000	31	23	250
Nickel	30	46 310	310	16	31	75

¹ Component values obtained from MECP Table 8 component values (MECP, 2016). Table 8 component values defer to Table 2 component values with the exception of sediment quality component values. Table 2 component values for commercial/industrial residential land use, with medium to fine textured soils in a potable groundwater condition were applied, where applicable. The S3 component value was obtained from the Table 2 component values for an industrial/commercial/community use.

Bold = concentration is exceeded by maximum on-Site concentration.

NV = No Value.

The maximum concentration of arsenic exceeds the relevant generic component values applicable to human and ecological health. However, \mp the elevated levels of arsenic were identified at only one (1) location in sediment (SED 102). The concentration of arsenic identified in sediment is almost equivalent to the background concentration in soil (18 μ g/g). It is noted that the field duplicate sample collected from the location of the maximum concentration returned a concentration of 18 μ g/g. As such, concentrations of arsenic in sediment are attributed to background levels in soil and is considered unlikely to pose a concern to users of the Site. From an ecological perspective, it is further noted that the maximum concentration is within the SEL, which would indicate heavy contamination.

The maximum concentrations of copper, lead and nickel in sediment are within the relevant human health component criteria (i.e. S1 and S2) and therefore are not anticipated to pose a concern to human health. However, these parameters, however exceed the sediment quality component value, considered protective of aquatic life. Further evaluation of aquatic life exposure to copper, lead and nickel is provided below.

It is noted that the maximum concentration of nickel is below typical Ontario background sediment concentrations, as such unacceptable risk to sediment-dwelling organisms as a result of the nickel identified on-Site is considered low. It is further noted that similar concentrations of nickel were identified in the upgradient sediment sample (SED 101), indicating the sources other than on-Site are responsible for the elevated concentrations or are typical of background concentrations for the area.

While concentrations of copper and lead exceed typical <u>background</u> sediment concentrations, the maximum concentrations are well below the SELs. Furthermore, the concentrations identified in sediment are well below soil background concentrations of 92 μ g/g and 120 μ g/g for copper and lead, respectively. For copper, it is additionally noted that similar concentrations were identified in upgradient sediment sample (SED 101). Therefore, concentrations are attributed to background levels in soil and is unlikely to significantly affect aquatic life.

Overall, <u>based on the above evaluation</u>, <u>no unacceptable risks are anticipated as a result of</u> the elevated levels of select metals in sediment on-Site-are not anticipated to pose a concern to human and ecological receptors that may be present on-Site.

6.10 Phase Two Conceptual Site Model

This section presents a Phase Two Conceptual Site Model (CSM) providing a narrative, graphical and tabulated description integrating information related to the Site geologic and hydrogeologic conditions, areas of potential environmental concern/potential contaminating activities, the presence and distribution of potential contaminants of concern, contaminant fate and transport, and potential exposure pathways. The Phase Two CSM was completed in accordance with O. Reg.153/04 as defined by the MECP and is presented in Appendix H.

7. Conclusions

The results and findings of the Phase Two ESA conducted at the Site are summarized as follows:

- 1. From March 16 to 18, 2021 eight (8) boreholes (BH1 to BH8), two stockpile samples, and two sediment samples were advanced at the Site. None of the boreholes were completed as monitoring wells. The maximum depth of the boreholes advanced during the course of the investigation was approximately 4.3 mbgs. On October 19, 2021 three (3) hand auger pits and three sediment samples were obtained from the Site. The maximum depth of this portion of the investigation was approximately 0.6 mbgs.
- 2. The general stratigraphy at the Site, as observed in the boreholes, consisted of topsoil overlying clayey silt to silty clay to a maximum depth of 0.86 mbgs, underlain by sand to sandy silt. Bedrock was encountered at approximately 3.8 mbgs across the Site.
- 3. The monitoring well network advanced as part of this Phase Two ESA consisted of four (4) pre-existing monitoring wells (MW110, MW101, MW102 and MW103), installed in 2016. Screen depths ranged from approximately 0.89 to 3.89 mbgs at MW110, 1.48 to 4.48 mbgs at MW101, 1.44 to 4.44 mbgs at MW102, and 0.99 to 3.99 mbgs at BH103. Groundwater levels were measured between 0.25 (MW102) to 1.22 (MW101) mbgs on March 18, 2020.
- 4. The local groundwater flow direction was calculated to the south to southeast, towards Clearview Creek which is present at the western and southern Site boundaries. Clearview Creek flows southeast towards Lake Ontario.
- 5. Soil samples were submitted for the analysis of PHCs, BTEX, VOCs, PAHs, OCs, metals, hydride forming metals, EC, pH, and/or SAR.
- 6. Seven (7) soil samples PHCs, VOCs and PAHs. PHCs, VOCs, and PAHs were either not detected or detected below the applicable Table 8 SCS.
- 7. Seven (7) soil samples were analyzed for metals and inorganics. Metals and inorganics were either not detected or detected below the applicable Table 8 SCS with the exception of EC at BH3-SS1.
- 8. Ten (10) soil samples and one (1) duplicate were analyzed for OCs. OCs were either not detected or detected below the applicable Table 8 SCS with the exception of DDD and DDE at SP2-3-0.5-0.7m, obtained from a stockpile at the northern Site boundary and DDE at GS-1 and it's duplicate GS1-0, obtained from 0.4 metres.
- 9. Groundwater samples were submitted for the analysis of PHCs and VOCs.
- 10. Four (4) groundwater samples were analyzed for PHCs and VOCs. PHCs and VOC were either not detected or detected below the applicable Table 8 SCS.
- 11. One (1) groundwater sample and one (1) QA/QC duplicate were analyzed for metals and OCs. Metals and OCs were either not detected or detected below the applicable Table 8 SCS.
- 12. Sediment samples were submitted for analysis of PAHs, metals and inorganics, and OCs.
- 13. Two (2) sediment samples were analyzed for PAHs and OCs. PAHs and OCs were either not detected or detected below the applicable Table 8 SCS.
- 14. Five (5) sediment samples and one (1) QA/QC duplicate were analyzed for metals and/or inorganics. Metals and/or inorganics were either not detected or detected below the applicable Table 8 SCS with the exception of copper and nickel at SED1, SED2, SED101, and SED103 and arsenic, copper and lead at SED 102.
- 15. No evidence of free product (i.e. visible film or sheen), or odour was observed during soil sampling, groundwater purging, or groundwater sampling activities.

Based on the limited risk assessment conducted for the soil, groundwater, and sediment analytical results, <u>no unacceptable</u> <u>risks are anticipated to human and ecological receptors that may be present on-Site as a result of</u> the elevated levels of select metals in sediment and OCs in soil on-Site <u>are not anticipated to pose a concern to human and ecological receptors that may be present on-Site</u>. No further environmental work is required, at this time.

8. General Limitations

The information presented in this report is based on a limited investigation designed to provide information to support an assessment of the current environmental conditions within the subject property. The conclusions and recommendations presented in this report reflect Site conditions existing at the time of the investigation.

More specific information with respect to the conditions between samples, or the lateral and vertical extent of materials may become apparent during excavation operations. The interpretation of the borehole information must, therefore, be validated during any such excavation operations. Consequently, during the future development of the property, conditions not observed during this investigation may become apparent. Should this occur, EXP Services Inc. should be contacted to assess the situation, and the need for additional testing and reporting. EXP has qualified personnel to provide assistance in regard to any future geotechnical and environmental issues related to this property.

The environmental investigation was carried out to address the intent of applicable provincial Regulations, Guidelines, Policies, Standards, Protocols and Objectives administered by the MECP. It should also be noted that current environmental Regulations, Guidelines, Policies, Standards, Protocols and Objectives are subject to change, and such changes, when put into effect, could alter the conclusions and recommendations noted throughout this report. Achieving the study objectives stated in this report has required us to arrive at conclusions based upon the best information presently known to us. No investigative method can completely eliminate the possibility of obtaining partially imprecise or incomplete information; it can only reduce the possibility to an acceptable level. Professional judgment was exercised in gathering and analyzing information obtained and in the formulation of the conclusions. Like all professional persons rendering advice, we do not act as absolute insurers of the conclusions we reach, but we commit ourselves to care and competence in reaching those conclusions.

Our undertaking at EXP, therefore, is to perform our work within limits prescribed by our clients, with the usual thoroughness and competence of the engineering profession. It is intended that the outcome of this investigation assist in reducing the client's risk associated with environmental impairment. Our work should not be considered 'risk mitigation'. No other warranty or representation, either expressed or implied, is included or intended in this report.

This report was prepared for the exclusive use of **772 Winston Churchill Limited Partnership**, by its general partner **772 Winston Churchill GP Inc.** and may not be reproduced in whole or in part, without the prior written consent of EXP, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. EXP Services Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

9 Closure

We trust this report is satisfactory for your purposes. Should you have any questions, please do not hesitate to contact this office.

Yours truly,

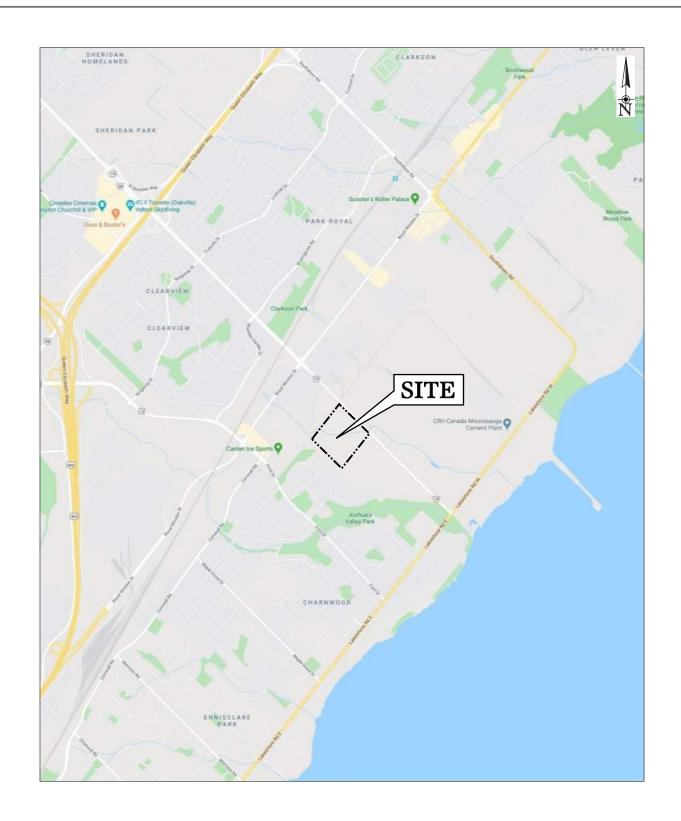
EXP Services Inc.

Sarah DiBattista, B.Sc., M.Env.Sc. Environmental Scientist Environmental Services Amanda Catenaro, M.Env.Sc, P.Geo. Project Manager Environmental Services

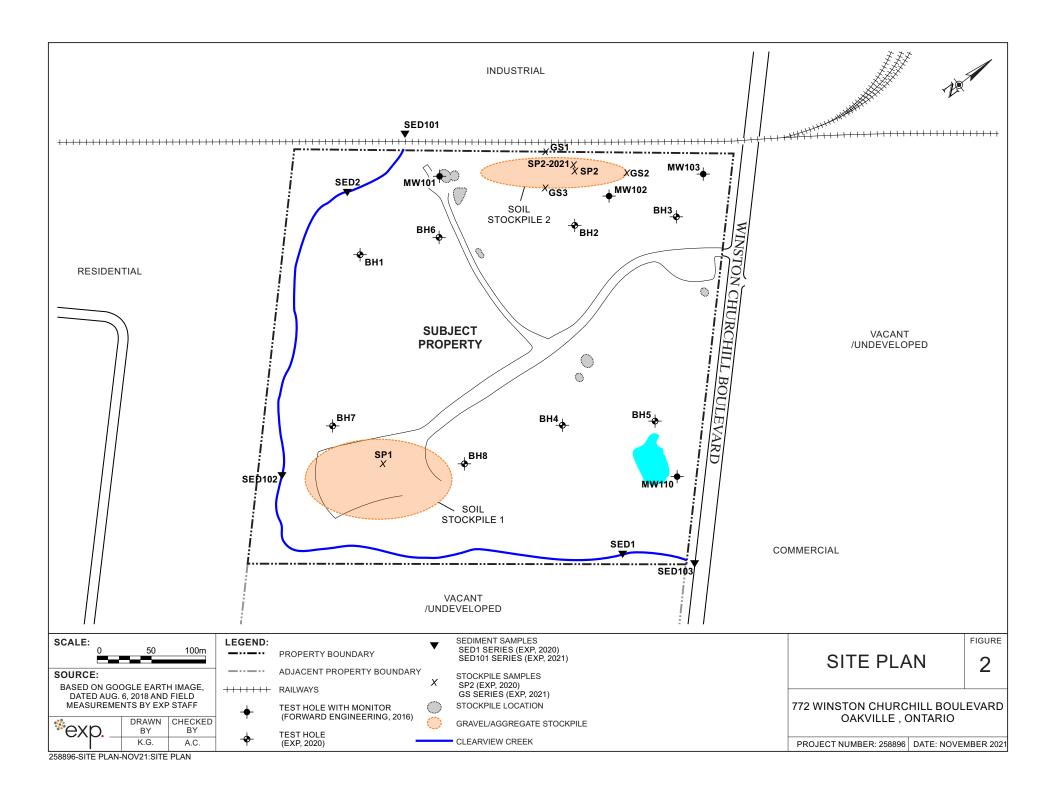
10 References

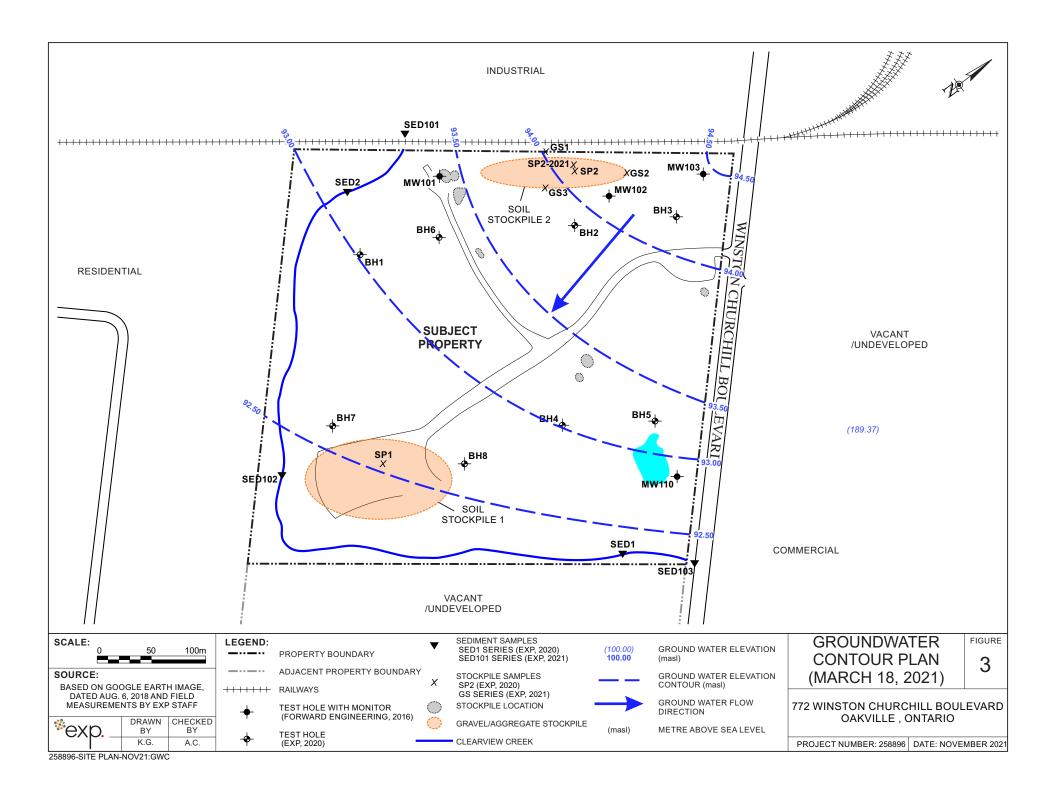
This study was conducted in general accordance with the applicable Regulations, Guidelines, Policies, Standards, Protocols and Objectives administered by the Ministry of the Environment, Conservation and Parks. Specific reference is made to the following:

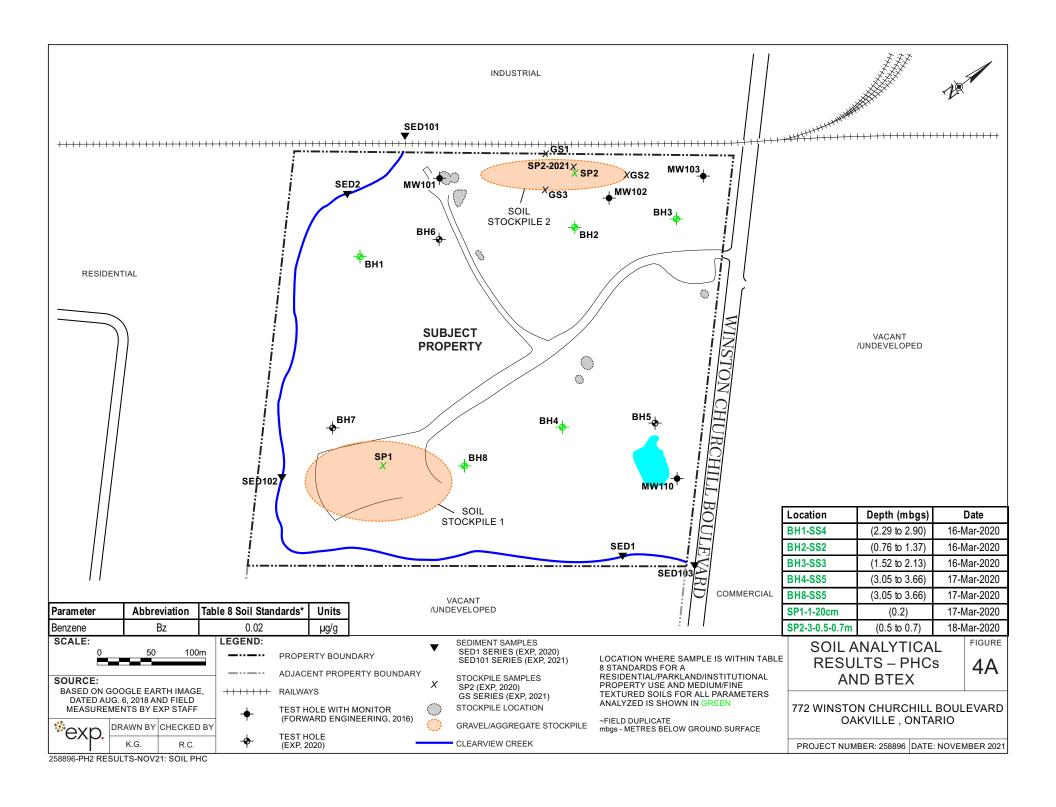
- Bedrock Geology of Ontario geology_II.shp [computer file],Ontario: Ontario Geological Survey, 2000.
- Environmental Protection Act, R.S.O. 1990, Chapter E.19, as amended, September 2004.
- Exp Services Inc., Due Diligence Phase I Environmental Assessment, 772 Winston Churchill Boulevard, Oakville, Ontario, April 22, 2020.
- Exp Services Inc., Due Diligence Phase II Environmental Assessment, 772 Winston Churchill Boulevard, Oakville, Ontario, April 22, 2020.
- Ministry of the Environment [MECP] (1996) Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario. Ontario Ministry of the Environment, December 1996.
- MECP (2008). Guidelines for Identifying, Assessing and Managing Contaminated Sediments in Ontario: An Integrated Approach. Ontario Ministry of the Environment, May 2008.
- MECP (2011a) Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act. Ontario Ministry of the Environment, March 2004, amended as of July 1, 2011.
- MECP (2011) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. Ontario Ministry of the Environment, April 15, 20101.
- MECP (2016). Modified Generic Risk Assessment "Approved Model". Ontario Ministry of the Environment and Climate Change, November 1, 2016.
- Occupational Health and Safety Act Ministry of Labour (MOL).
- Ontario Regulation 153/04, made under the Environmental Protection Act, May 2004, amended.
- Ontario Water Resources Act R.R.O. 1990, Regulation 903, amended.
- Ontario Base Mapping (OBM) Data, provided by ERIS. Scale 1:22,000.
- Quaternary Geology of Ontario geology_II.shp [computer file],Ontario: Ontario Geological Survey, 2000.
- US EPA (2008a). Health Effects Support Document for 1,1,-Dichloro-2,2,-bis(p-chlorophenyl)ethylene (DDE). EPA Doc EPA-822-R-08-003, January 2008. Office of Water (4304T), Health and Ecological Criteria Division, Washington, DC
- US EPA (2008b). Regulatory Determinations Support Document for Selected Contaminants from the Second Drinking Water Contaminant Candidate List (CCL 2) Chapter 5: DDE. EPA Repot 815-R-08-012.

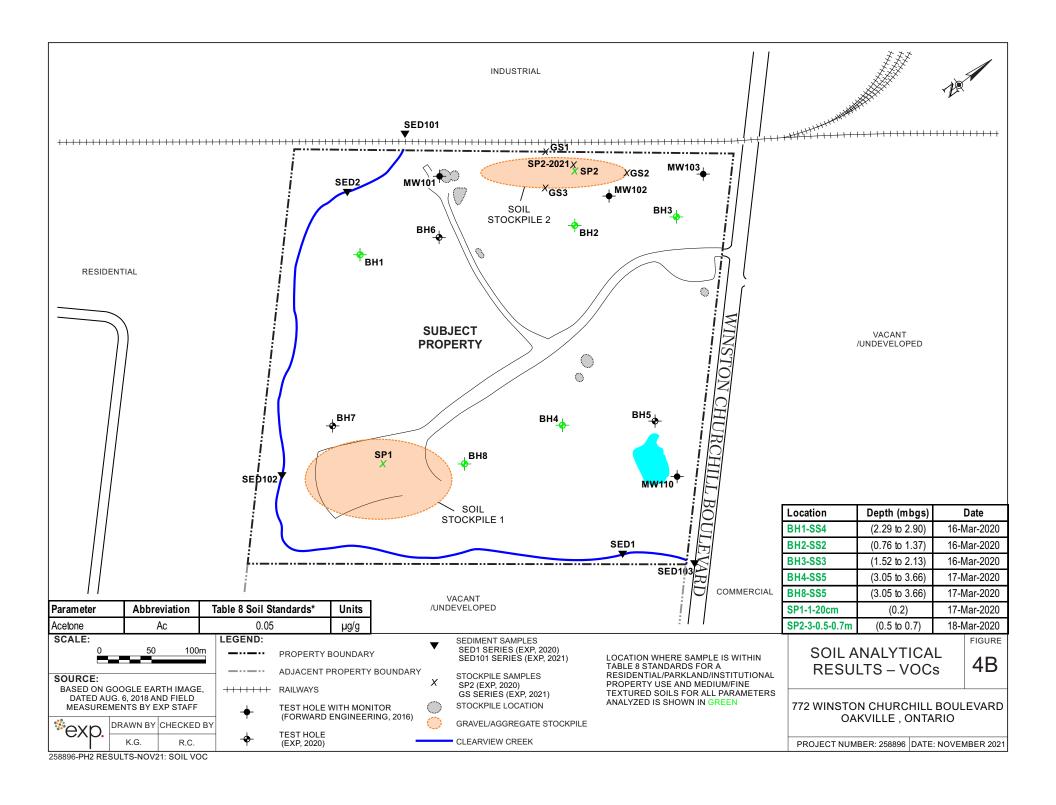


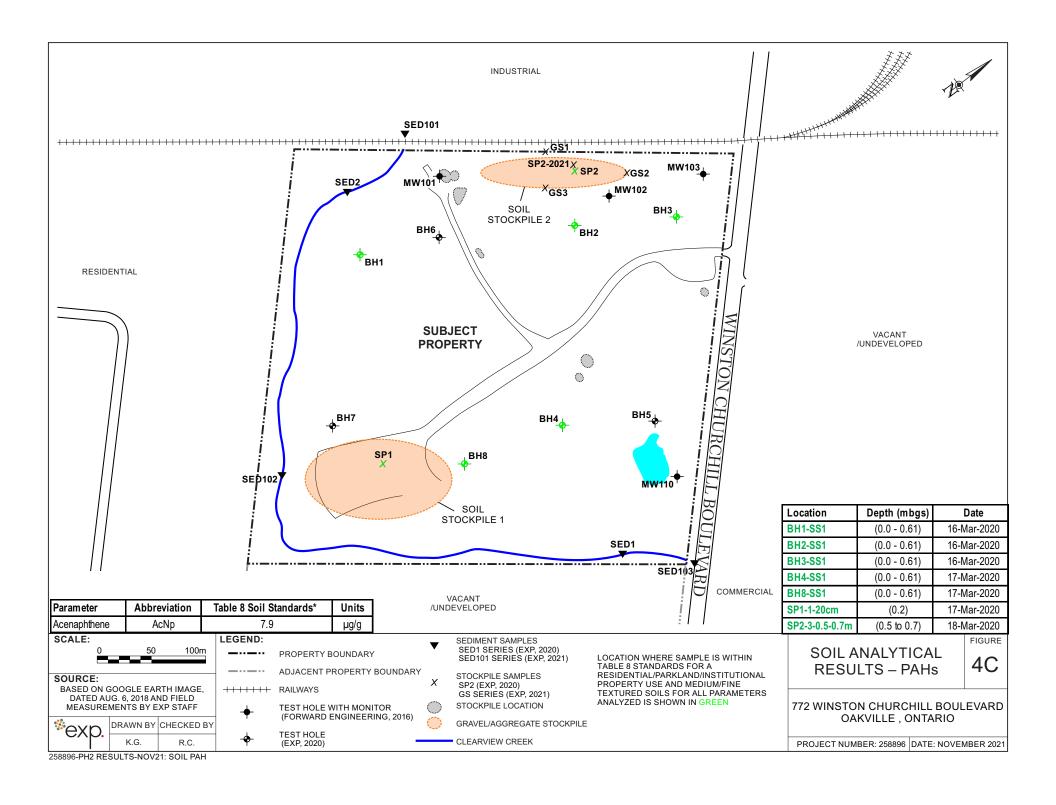
EXP Services Inc. Phase Two Environmental Site Assessment 772 Winston Churchill Boulevard, Oakville, Ontario MRK-00258896-A0 November 24, 2021

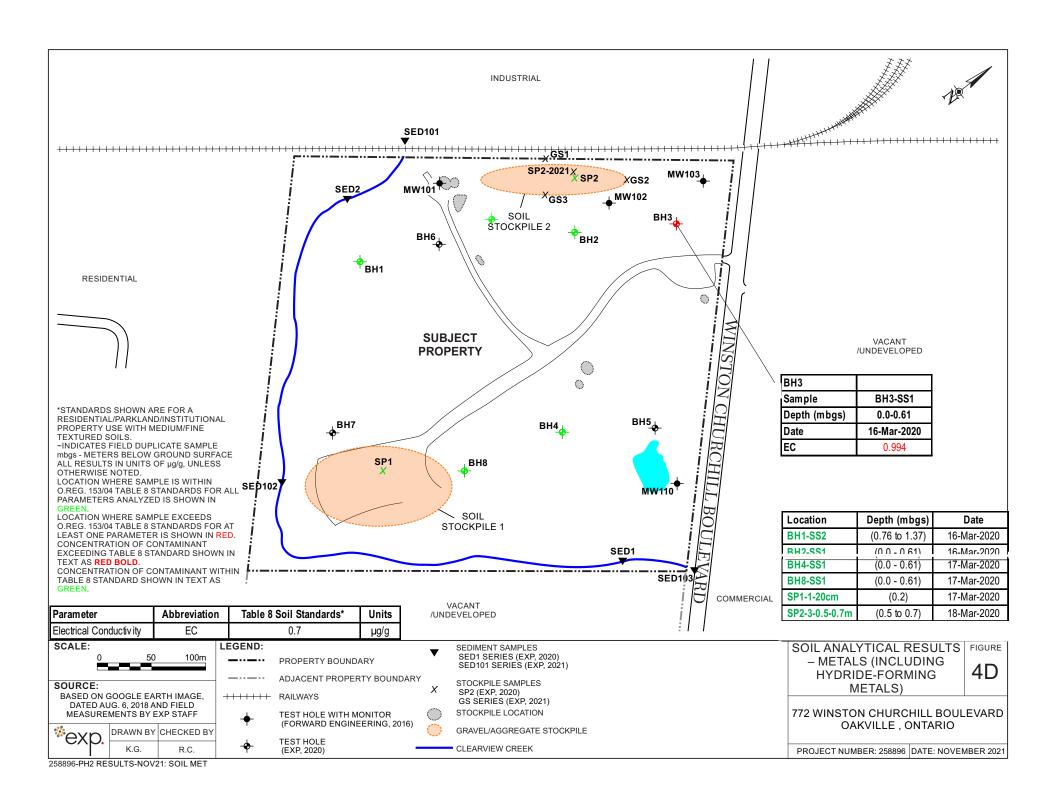

Figures

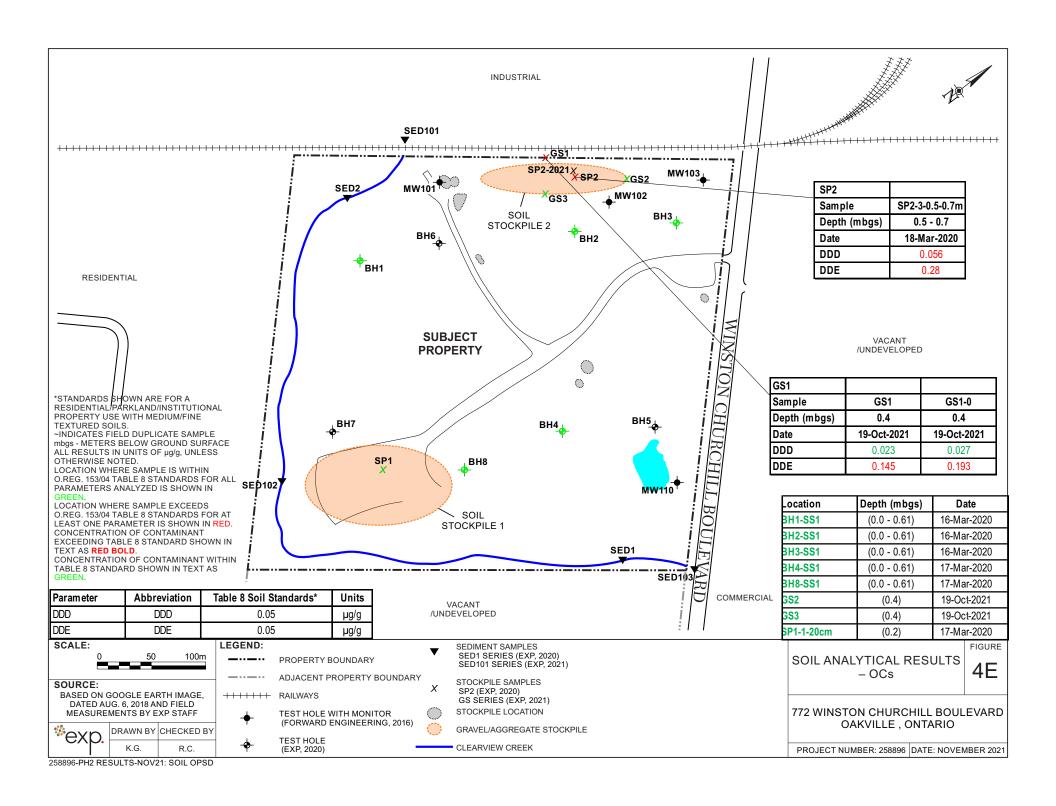


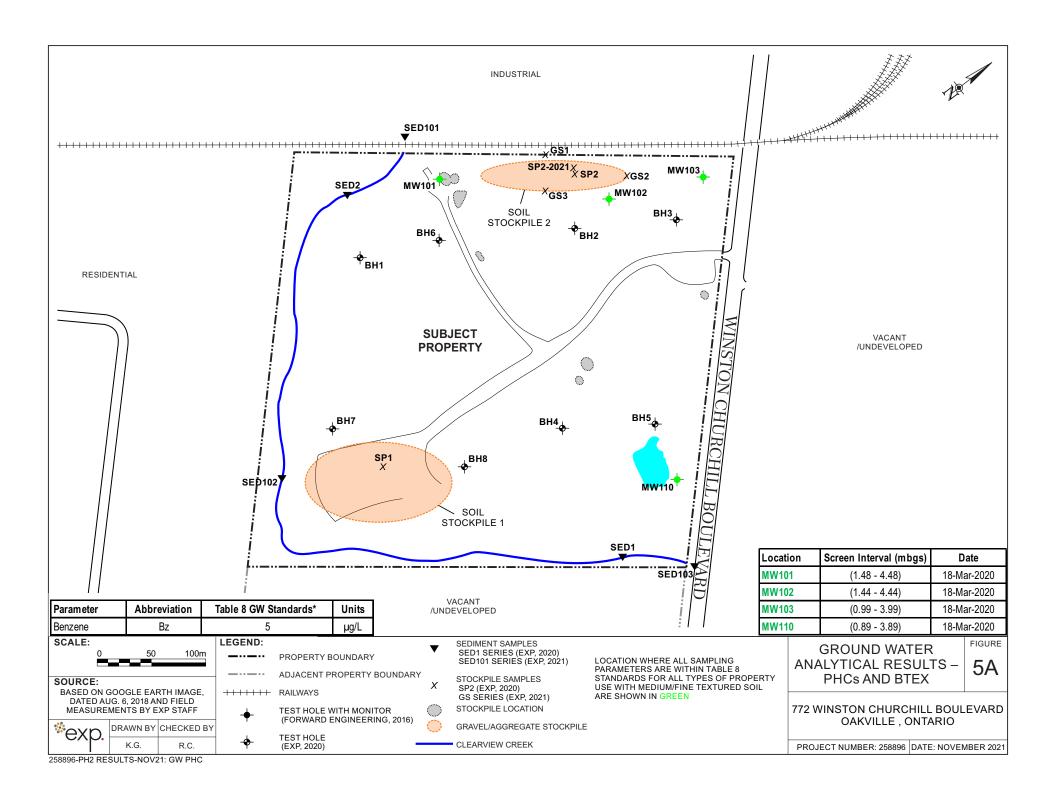


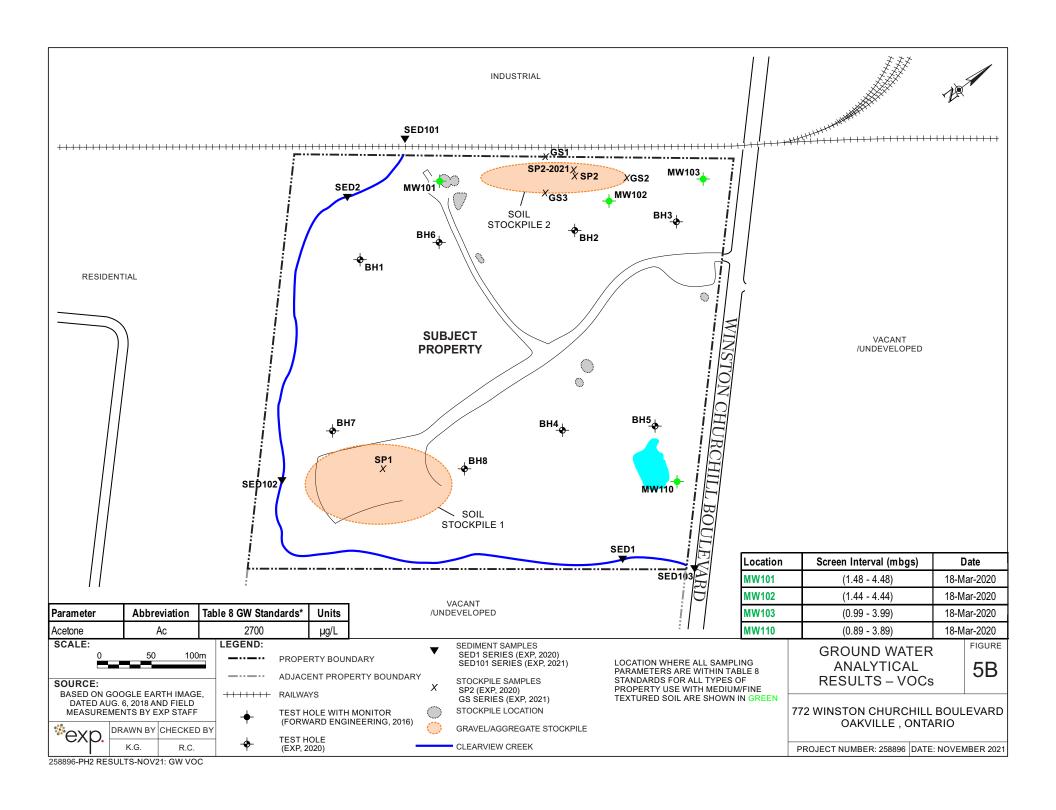


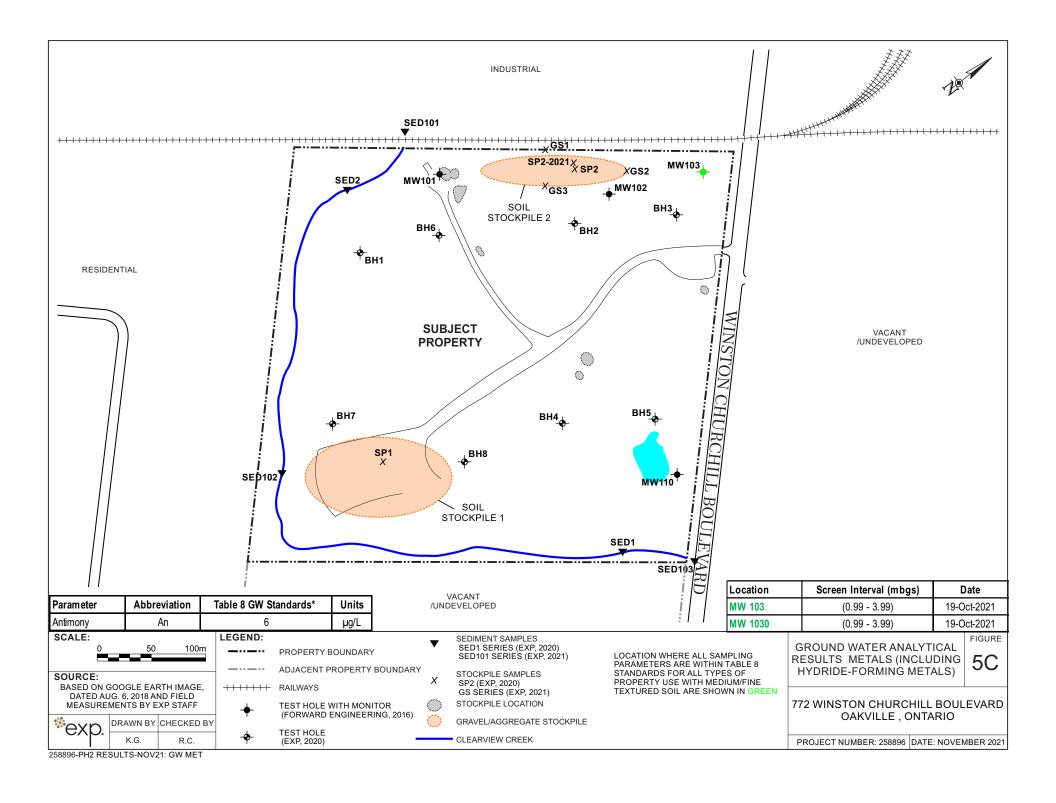

SCALE: 0 500 1000m	SOURCE:	MAPS	LOCALITY PLAN 1				
			772 WINSTON CHURCHILL BOULEVARD				
*exp	DRAWN BY	CHECKED BY	OAKVILLE , ONTARIO				
OXP.	J.D.H. C.F.		PROJECT NUMBER: 258896	DATE: MARCH 2020			

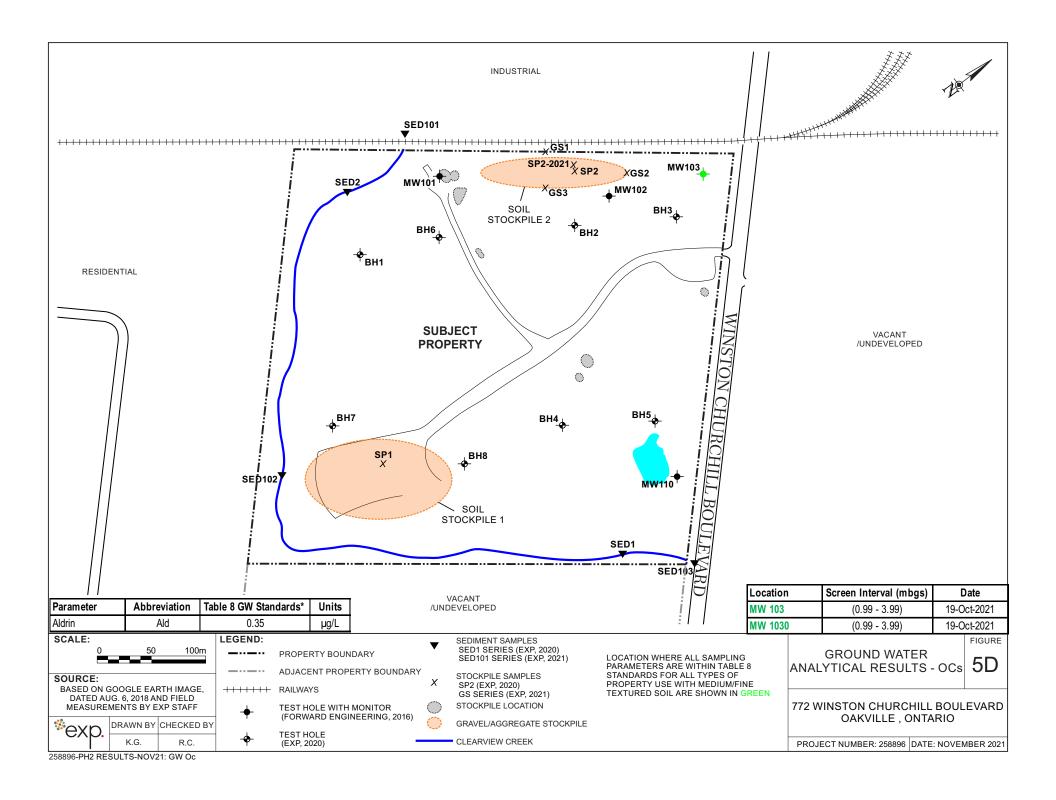


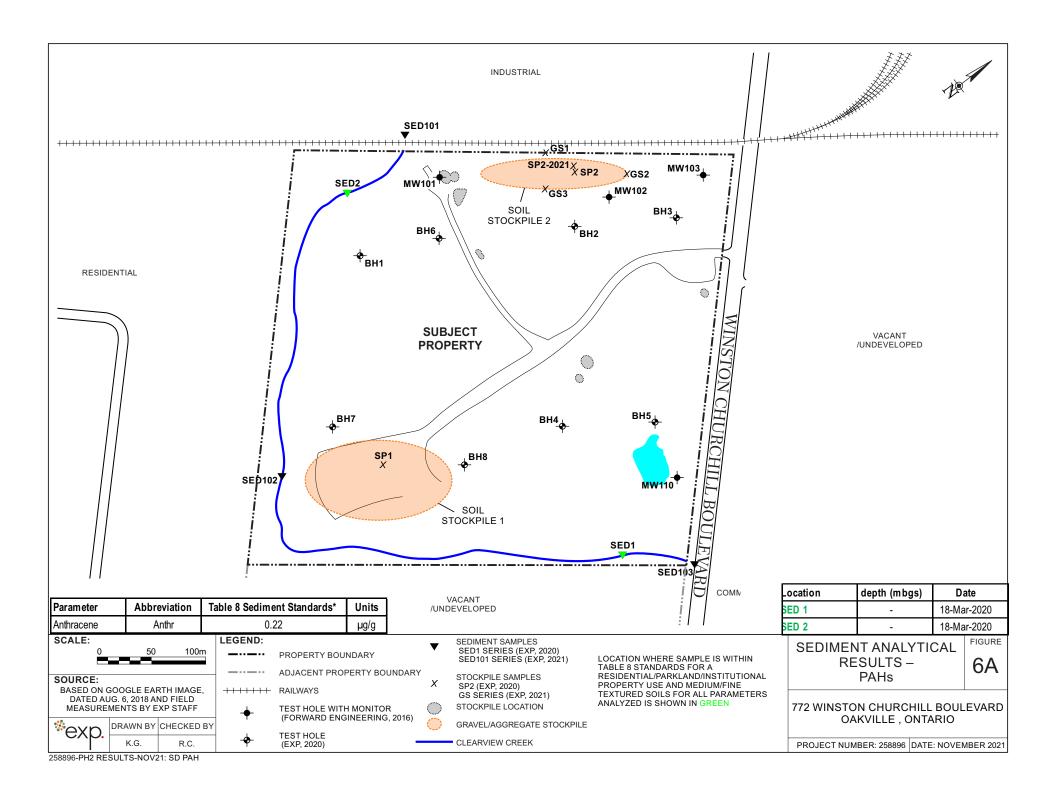


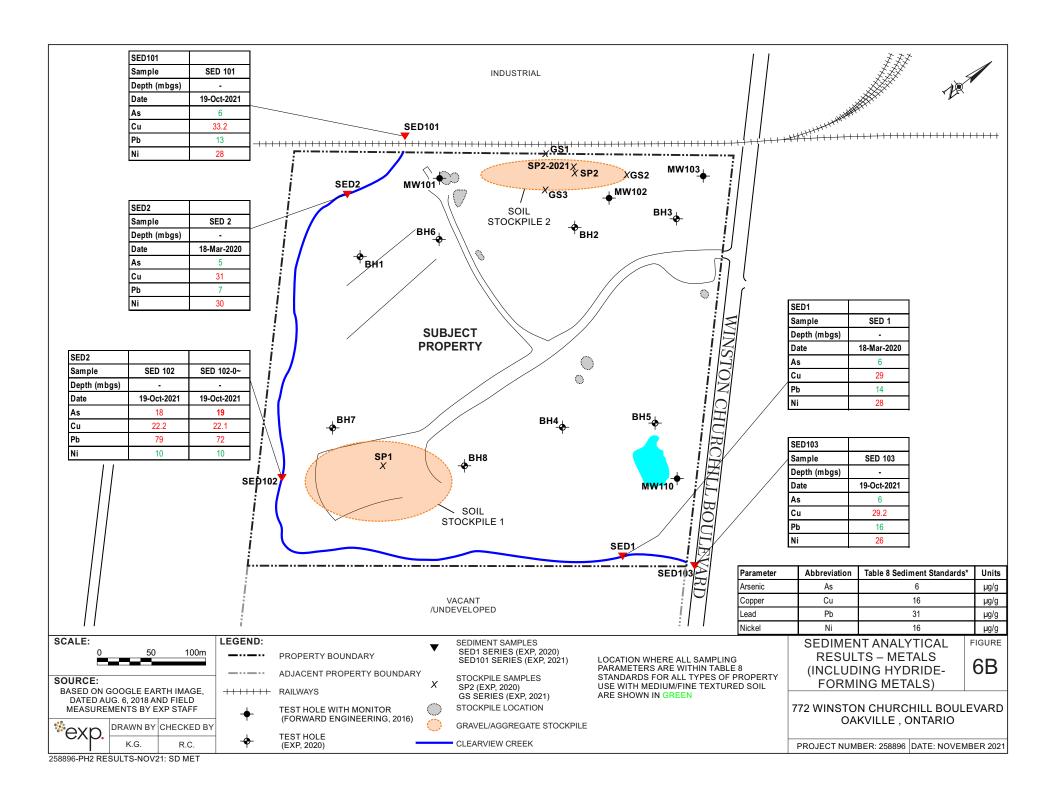


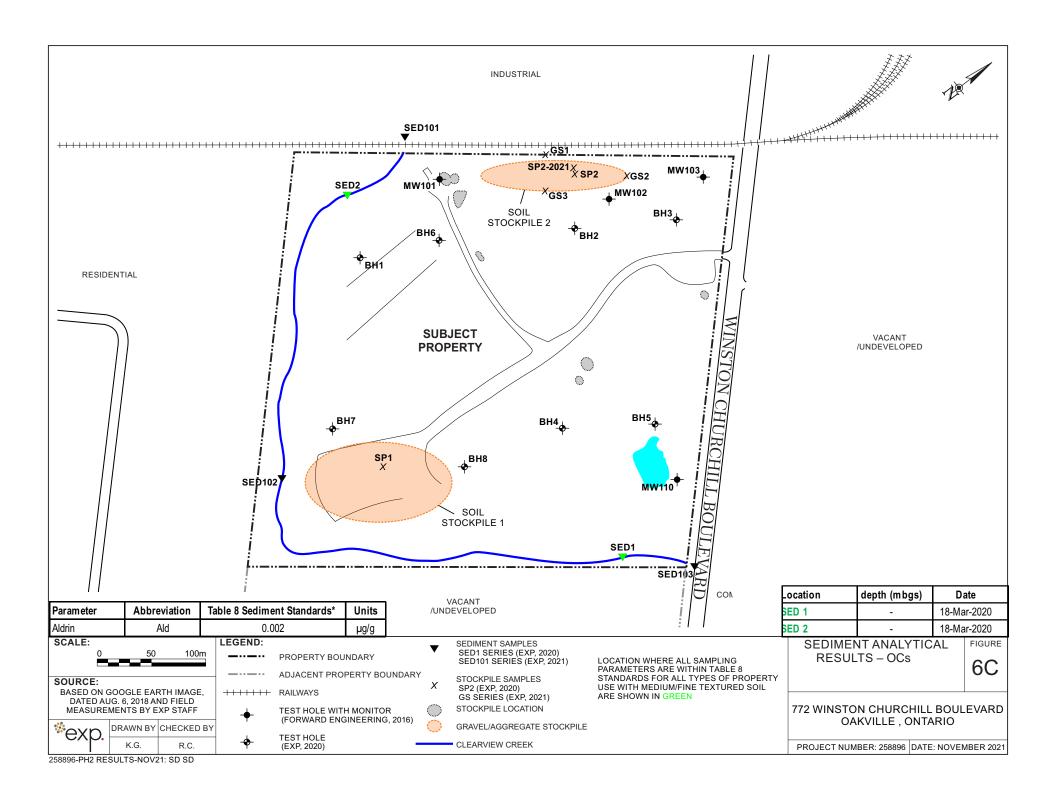


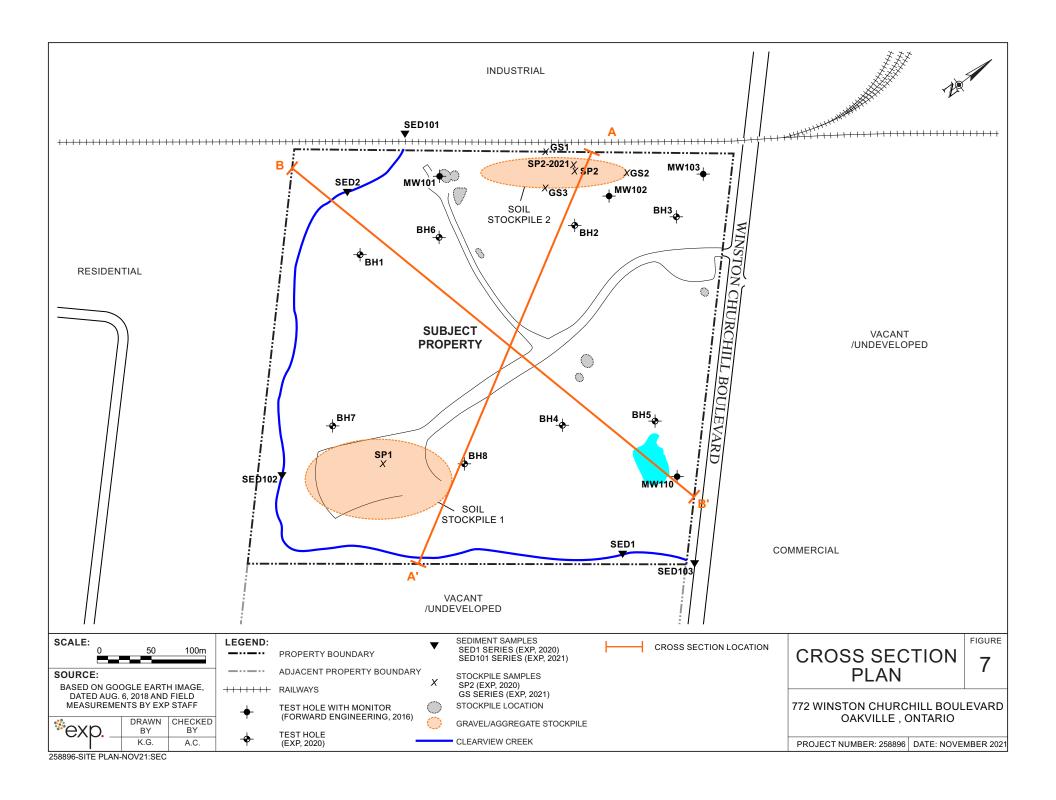


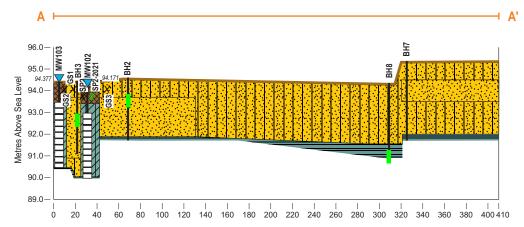


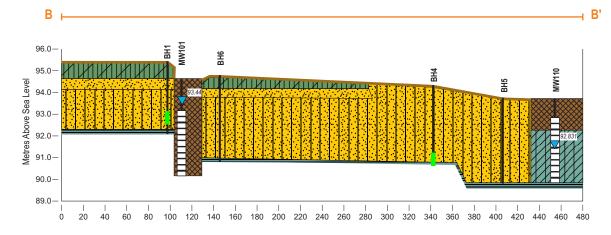


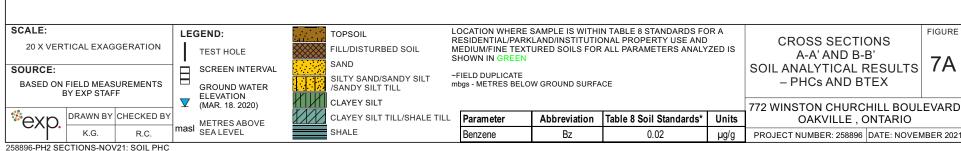


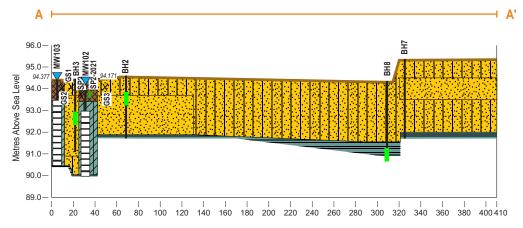




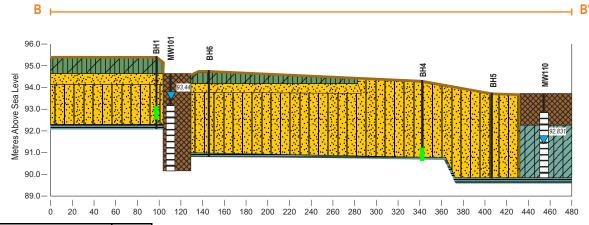


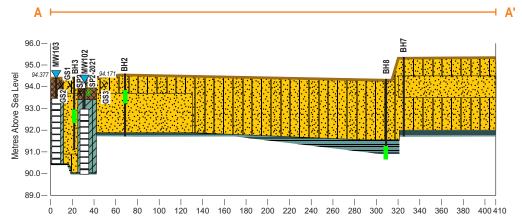




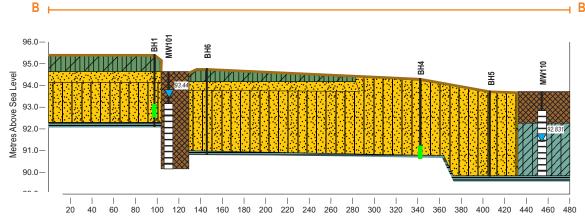


Location	Depth (mbgs)	Date
BH1-SS4	(2.29 to 2.90)	16-Mar-2020
BH2-SS2	(0.76 to 1.37)	16-Mar-2020
BH3-SS3	(1.52 to 2.13)	16-Mar-2020
BH4-SS5	(3.05 to 3.66)	17-Mar-2020
BH8-SS5	(3.05 to 3.66)	17-Mar-2020
SP1-1-20cm	(0.2)	17-Mar-2020
SP2-3-0.5-0.7m	(0.5 to 0.7)	18-Mar-2020


FIGURE

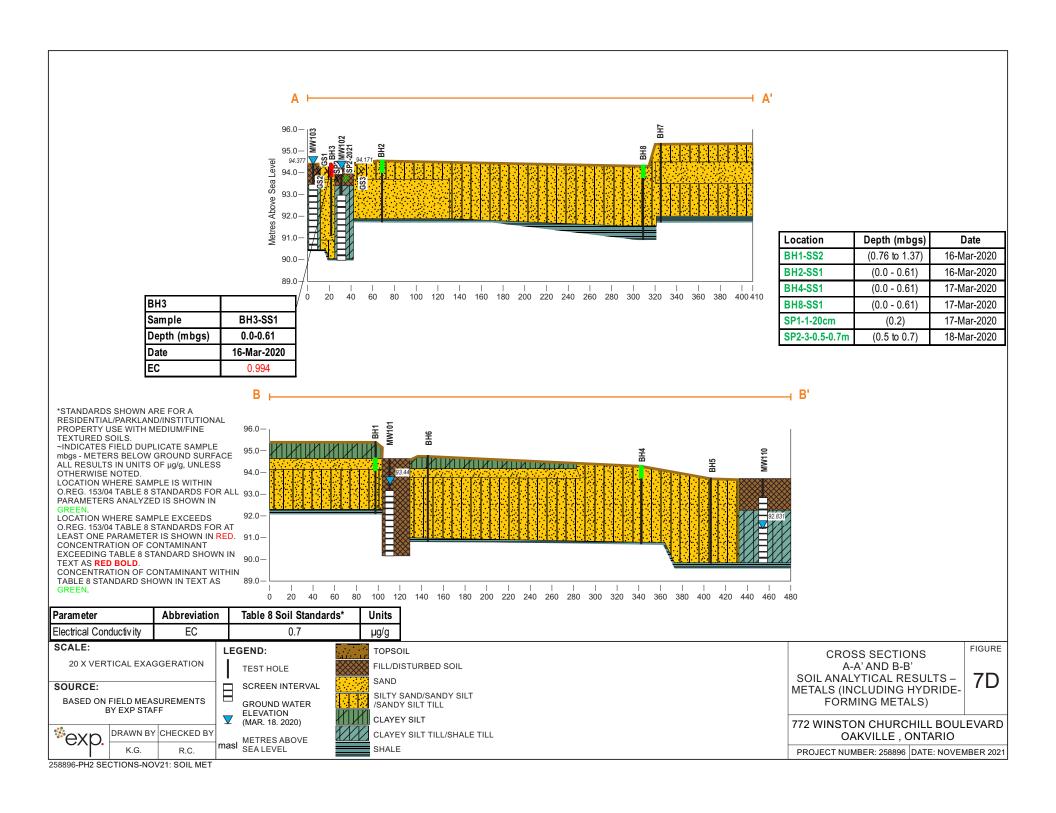


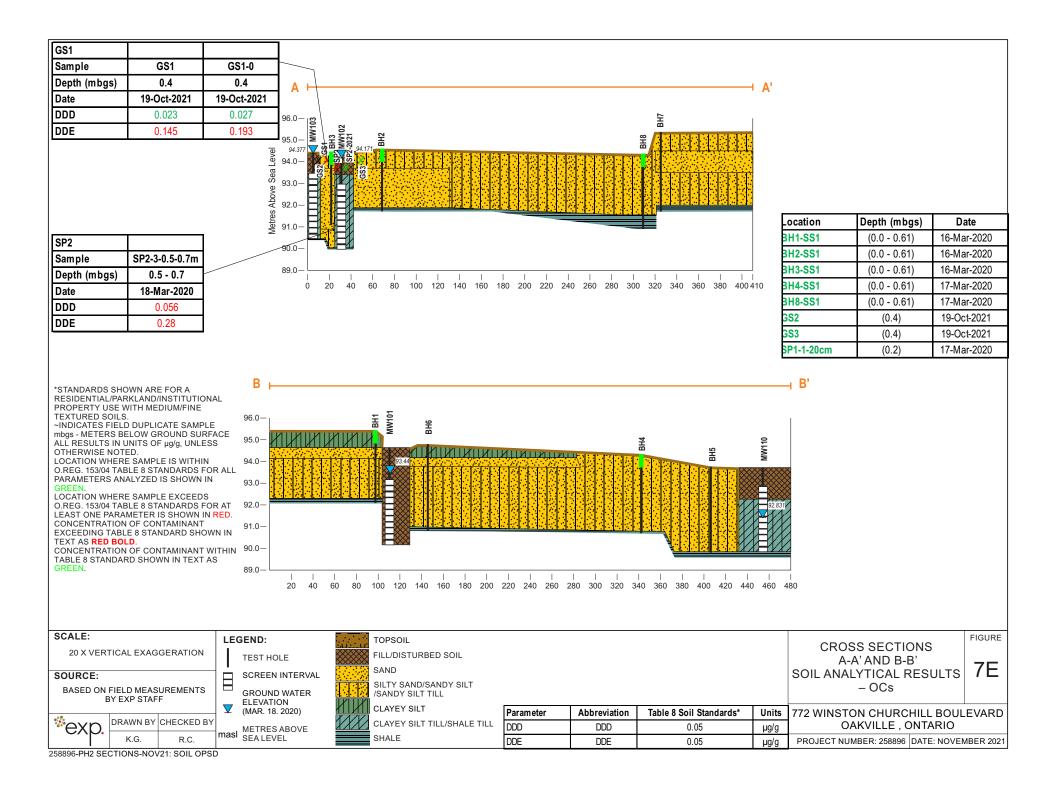
Location	Depth (mbgs)	Date
BH1-SS4	(2.29 to 2.90)	16-Mar-2020
BH2-SS2	(0.76 to 1.37)	16-Mar-2020
BH3-SS3	(1.52 to 2.13)	16-Mar-2020
BH4-SS5	(3.05 to 3.66)	17-Mar-2020
BH8-SS5	(3.05 to 3.66)	17-Mar-2020
SP1-1-20cm	(0.2)	17-Mar-2020
SP2-3-0.5-0.7m	(0.5 to 0.7)	18-Mar-2020

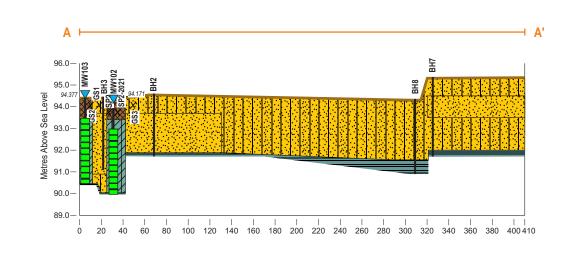


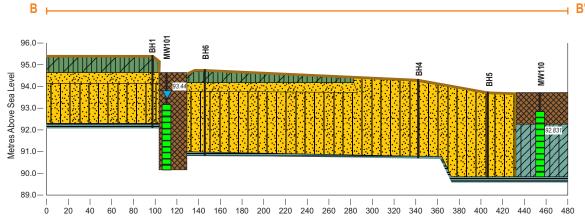
Parameter Parameter	Abbreviati	on T	able 8 Soil Standards*	Units]			
Acetone	Ac		0.05	µg/g				
SCALE: 20 X VERTI SOURCE:	CAL EXAGGER	ATION	LEGEND: TEST HOLE SCREEN INTERVAL		TOPSOIL FILL/DISTURBED SOIL SAND	LOCATION WHERE SAMPLE IS WITHIN TABLE 8 STANDARDS FOR A RESIDENTIAL/PARKLAND/INSTITUTIONAL PROPERTY USE AND MEDIUM/FINE	CROSS SECTIONS A-A' AND B-B' SOIL ANALYTICAL RESULTS	FIGURE 7B
ВУ	ELD MEASUREM EXP STAFF		GROUND WATER ELEVATION (MAR. 18. 2020)		SILTY SAND/SANDY SILT /SANDY SILT TILL CLAYEY SILT	TEXTURED SOILS FOR ALL PARAMETERS ANALYZED IS SHOWN IN GREEN	- VOCs 772 WINSTON CHURCHILL BOL	
*exp.		R.C.	masl METRES ABOVE SEA LEVEL		CLAYEY SILT TILL/SHALE TILL SHALE		OAKVILLE, ONTARIO PROJECT NUMBER: 258896 DATE: NOV	

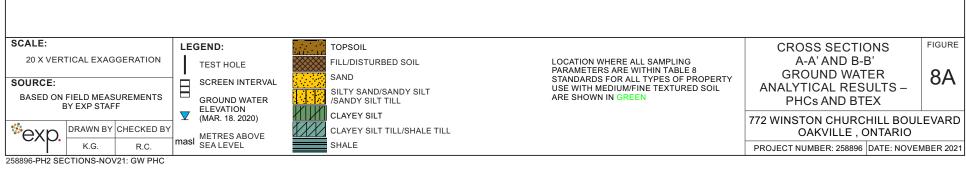
258896-PH2 SECTIONS-NOV21: SOIL VOC

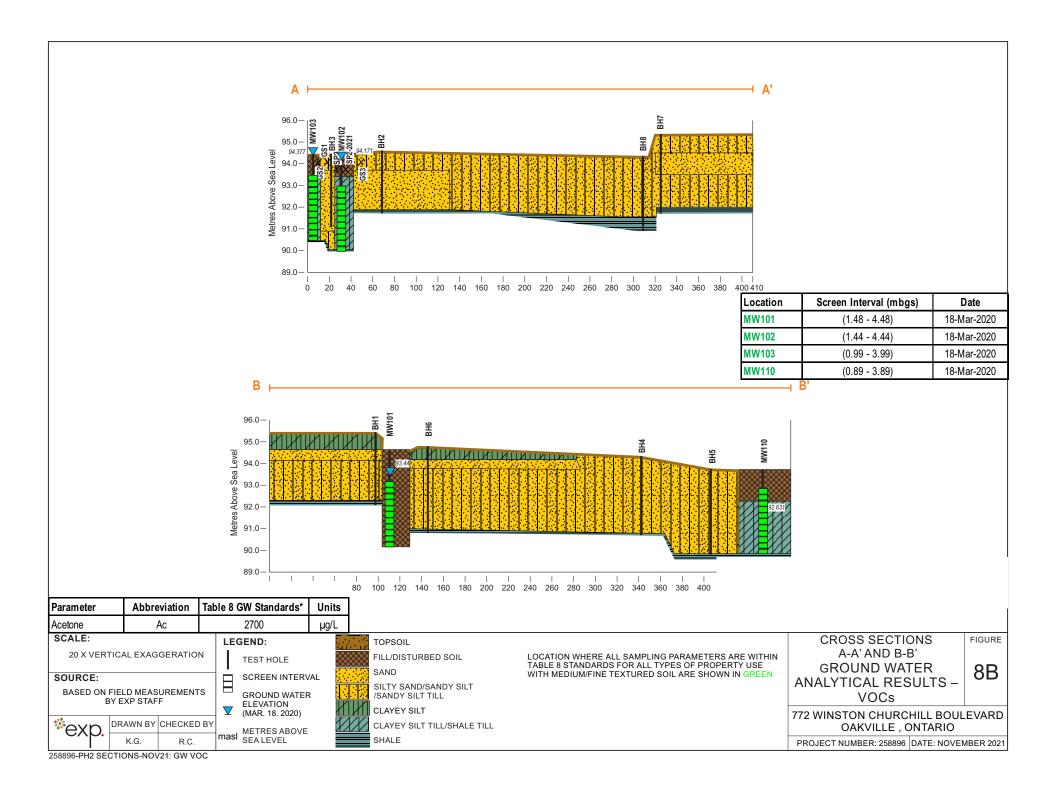


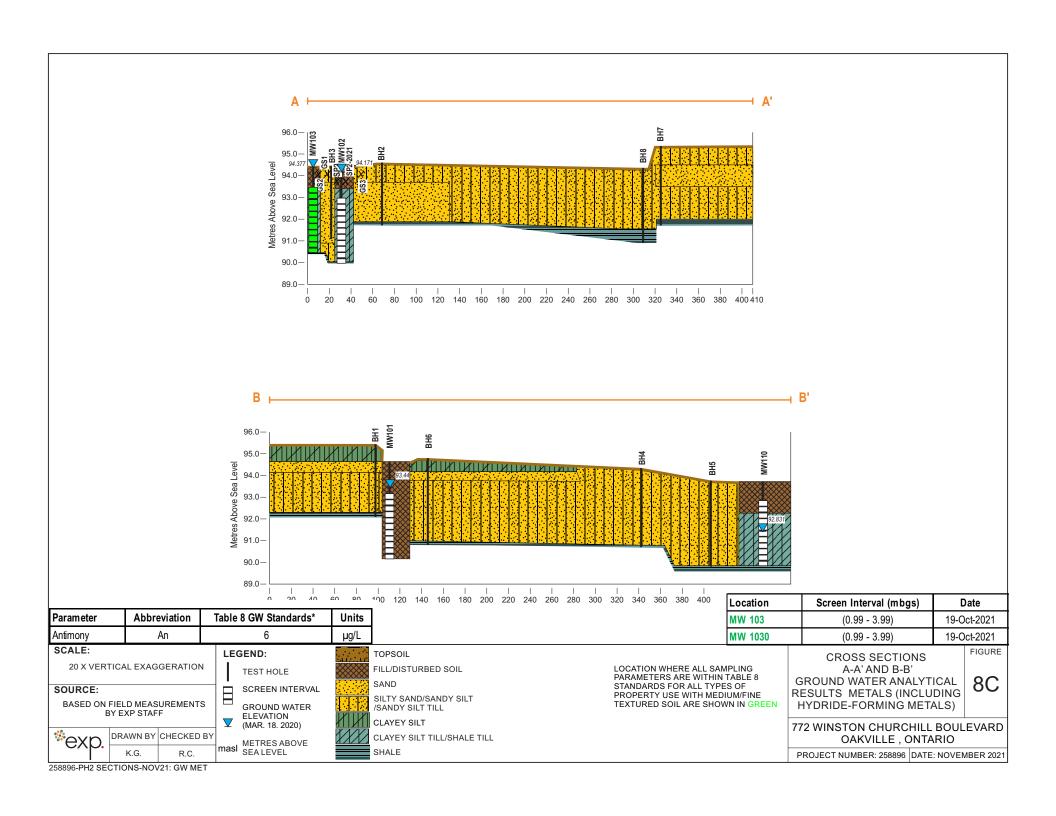

Location	Depth (mbgs)	Date
BH1-SS1	(0.0 - 0.61)	16-Mar-2020
BH2-SS1	(0.0 - 0.61)	16-Mar-2020
BH3-SS1	(0.0 - 0.61)	16-Mar-2020
BH4-SS1	(0.0 - 0.61)	17-Mar-2020
BH8-SS1	(0.0 - 0.61)	17-Mar-2020
SP1-1-20cm	(0.2)	17-Mar-2020
SP2-3-0.5-0.7m	(0.5 to 0.7)	18-Mar-2020

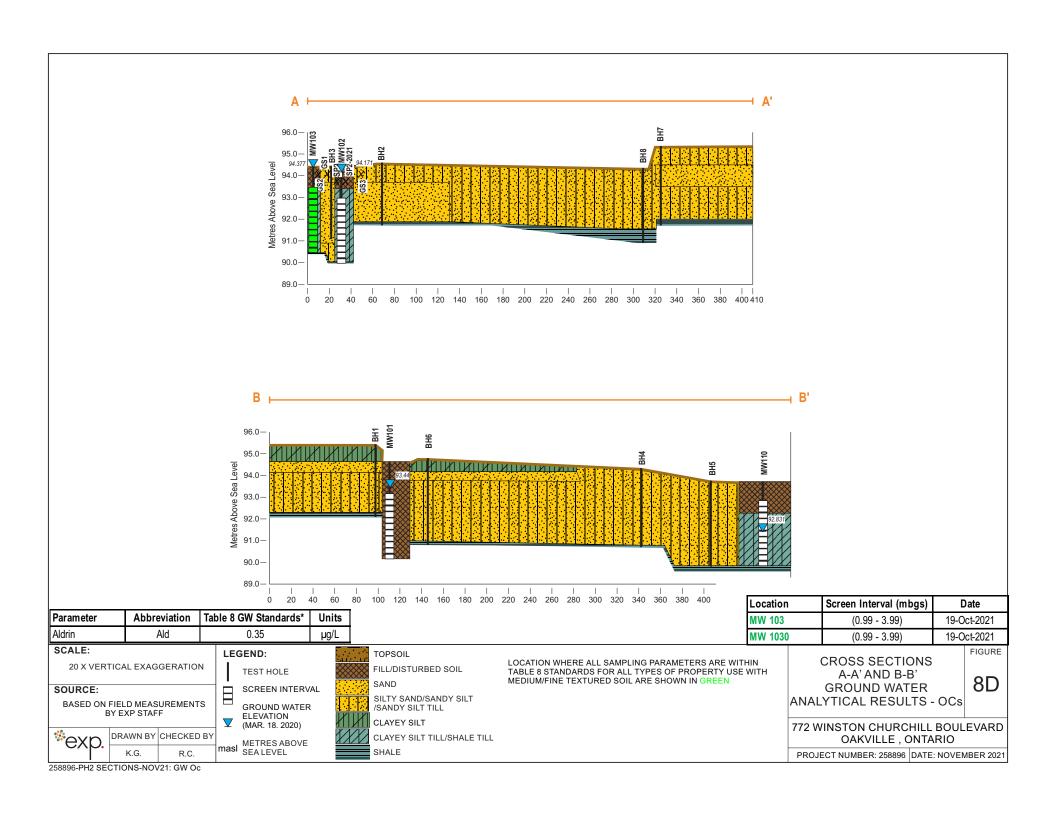



Parameter Parameter	Abbreviation	Table 8 Soil Standards*	Units			
Acenaphthene	AcNp	7.9	μg/g			
SOURCE:	L EXAGGERATION	SCREEN INTERVAL	TOPSOIL FILL/DISTURBED SOIL SAND SAND SILTY SAND/SANDY SILT	LOCATION WHERE SAMPLE IS WITHIN TABLE 8 STANDARDS FOR A RESIDENTIAL/PARKLAND/INSTITUTIONAL PROPERTY USE AND MEDIUM/FINE	CROSS SECTIONS A-A' AND B-B' SOIL ANALYTICAL RESULTS	FIGURE 7C
*exp. DR/	D MEASUREMENTS KP STAFF AWN BY CHECKED E	ELEVATION (MAR. 18. 2020)	CLAYEY SILT TILL/SHALE TILL SHALE	TEXTURED SOILS FOR ALL PARAMETERS ANALYZED IS SHOWN IN GREEN	- PAHS 772 WINSTON CHURCHILL BOULE OAKVILLE, ONTARIO PROJECT NUMBER: 258896 DATE: NOVEM	


258896-PH2 SECTIONS-NOV21: SOIL PAH







EXP Services Inc.
Phase Two Environmental Site Assessment
772 Winston Churchill Boulevard, Oakville, Ontario
MRK-00258896-A0
November 24, 2021

Tables

Table 1: SITE ENVIRONMI	ENTAL SETTING DATA	
		Page 1 of 1
772 Winston Churchill Boulevard, Oak	ville, Ontario	
October 2021		
NATIVE SOIL		
Type:		
Hydraulic Conductivity	(select range)	
> 10 ⁻³ cm/s: _		
<10 ⁻³ to >10 ⁻⁶ cm/s:	Estimated to be 10 ⁻⁶ cm/s	
< 10 ⁻⁶ cm/s:		
Soil Texture:	Medium to fine	
Estimated or Measured:	Estimated	
GROUND WATER		
	0.25 to 1.22 mbgs (metres below ground surface)	
Estimated or Measured:		
Direction of Flow:		
Estimated or Measured: _	Estimated based on topography	
MUNICIPAL SERVICES		
INDIVIOU AL CERVICEO		
Piped Water:	No	
Ground Water Source:		
-	30 metres east and south of the Site	
Surface Water Source:		
Sanitary Sewer:	No	
Storm Sewer:	No	
PRIVATE SERVICES		
Dietonos to Nossest MAN	NΙΔ	
Distance to Nearest Well:		
Approximate Depth of Well: _ Private Sanitary Sewage:		
Filvate Salitary Sewage.	NO	
SURFACE WATER		
Name of water body:	Clearview Creek	
Distance from site:	On-site On-site	
Elevation drop from site: Direct Drainage from site:	Approxiamtely 2 metres Yes	

Table 2: DARCY'S LAW CALCULATIONS		
		Page 1 of 1
772 Winston Churchill Boulevard, Oakville, Ontario		
October 2021		
Q=kia v=ki/n t=T/v		
Permeability k (m/sec) = 1.00E-08	Velocity v (m/sec) = (feet/sec) = (feet/day) = (feet/year) =	3.00E-10 9.84E-10 8.50E-05 3.10E-02
Permeability for silt based on published values (Freeze and Cherry, 1979). Effective porosity based on published values (McWhorter and Sunada, 1977). Gradient estimated based on slope of land.	(metres/year) =	9.46E-03

Table 3: ELEVATIONS OF GROUND WATER TABLE

Page 1 of 1

772 Winston Churchill Boulevard, Oakville, Ontario

October 2021

Test Hole I.D.	Elevation at Ground Surface (masl)	Date	Top of Screened Interval (mbgs)	Bottom of Screened Interval (mbgs)	Ground Water Depth Below Measuring Point (mbgs)	Ground Water Table Elevation (masl)
BH101	94.66	18-Mar-20	1.48	4.48	1.222	93.44
BH102	94.42	18-Mar-20	1.44	4.44	0.249	94.17
BH103	94.78	18-Mar-20	0.99	0.91	0.403	94.38
BH110	93.71	18-Mar-20	0.89	3.89	0.879	92.831
Di 1110	93.71	19-Oct-21	0.09	3.69	0.387	93.323

NOTES:

Elevations were measured by the Trimble with a CS controller

mbgs means "metres below ground surface". masl means "metres above sea level". N/A means "not applicable".

Table 4: SAMPLE ANALYSIS SUMMARY

849 Eglinton Avenue East, Toronto, Ontario

October 2021											Para	meters									
					S	oil Samp	le Analysi	is									Groun	d Water	Sample A	nalysis	
Test Hole I.D.	Sample ID	Sampling Date	Sampling Interval (mbgs)	PHC F1 to F4	1,4-Dioxane	NOCs	PAHs		Metals (and Hydride-Forming Metals)	ORPs	EC/SAR	Grain Size	Hd	Sampling Date	Sampling Interval (mbgs)	PHC F1 to F4	VOCs	PAHs	Metals (and Hydride-Forming Metals)		ORPs
BH1	BH1 SS5	28-Dec-20	3.0 to 3.5	Х		Х								12-Jan-21	1.6 to 4.6	Х	Х				
BH2	BH2 SS2 BH2 SS5	31-Dec-20 31-Dec-20	0.7 to 1.5 3.0 to 3.6	Х		х						х		12-Jan-21 25-Jan-21	1.6 to 4.6 27.5 to 30.5	Х	X X				
ВН3	BH3 SS4	4-Jan-21	2.3 to 2.9	х		х								14-Jan-21 21-Jan-21	0.9 to 3.9 8.5 to 11.5	Х	X X				
BH4	BH4 SS2	31-Dec-20	0.7 to 1.5	x		х								12-Jan-21 21-Jan-21 22-Sep-21	3.1 to 6.1 12 to 15 3.1 to 6.1	(X)	(X) X X				
BH5	BH5 SS2 BH5 SS5	4-Jan-20 4-Jan-20	0.7 to 1.5 3.0 to 3.6	х		х	Х		X X		X X		X X	21-Jan-21 21-Jan-21 22-Sep-21	3.1 to 6.1 12 to 15 3.1 to 6.1	Х	X X X	Х	х	Х	
BH6	BH6 SS2 BH6 SS5	29-Dec-20 29-Dec-20	0.7 to 1.5 3.0 to 3.6	х		х		(X)						14-Jan-21 21-Jan-21 22-Sep-21	4.6 to 7.6 12 to 15 4.6 to 7.6	Х	X (X) X	(X)	(X)	(X)	
BH7	BH7 SS2 BH7 SS5	5-Jan-21 5-Jan-21	0.7 to 1.5 3.0 to 3.6	х		х	х		X X		X X		X X	21-Jan-21	27.5 to 30.5		х				
BH8	BH8 SS2 BH8 SS5	28-Dec-20 28-Dec-20	0.7 to 1.5 3.0 to 3.7	X X		Х	Х		X X		X X		X X	12-Jan-21 21-Jan-21	1.6 to 4.6 12 to 15	Х	X X	Х	Х	Х	
ВН9	BH9 SS1 BH9 SS4	7-Jan-21 7-Jan-21	0 to 0.7 2.3 to 2.9	х		х	(X)		(X)		(X)		(X)	14-Jan-21	0.9 to 3.9	х	х				
BH10	BH10 SS2	7-Jan-21	0.7 to 1.5	(X)		(X)								-	-						
BH101	BH101-SS2 BH101-SS3	8-Sep-21 8-Sep-21	0.7 to 1.5 1.5 to 2.1	Х								х		-	-						
BH102	BH102-SS2	8-Sep-21	0.7 to 1.5	Х								Х		-	-						
BH103	BH103-SS2	8-Sep-21	0.7 to 1.5	Х										-	-						
BH104	-	-	-											22-Sep-21	0.4 to 2.0		Х				
BH105	-	-	-											22-Sep-21	MUD						
BH106	-	-	-											22-Sep-21	DRY						
BH107	-	-	-											22-Sep-21	DRY						
BH108	BH108-SS2 BH108-SS4	8-Sep-21 8-Sep-21	0.7 to 1.5 2.3 to 2.9	Х								х		6-Oct-21	2.13 to 5.18		х				
BH109	BH109-SS2	8-Sep-21	0.7 to 1.5	(X)										-	-						
BH110	-	-	-											22-Sep-21	7.6 to 10.7		(X)				
BH111	-	-	-											22-Sep-21	7.9 to 11.0		Х				
		Total Locat	ions Analyzed	16	0	10	4	1	4	0	4	4	7	Total Location	ns Analyzed	8	13	3	3	3	0
•		Total Samp	oles Analyzed	19	0	11	5	2	8	0	8	*	16	Total Sampl	es Analyzed	9	25	4	4	4	0
		Field Duplicate	Samples Analyzed	2	0	1	1	1	1	0	1	0	2	Field Duplicate S	amples Analyzed	1	3	1	1	1	0

Hydride-Forming Metals include Antimony, Arsenic, and Selenium

Other Regulated Paramets (ORPs) in soil include Hot Water Soluble Boron, Cyanide, Hexavalent Chromium, and Mercury.

ORPs in ground water include Mercury, Chromium VI, Cyanide, Sodium, Chloride, Electrical Conductivity, and pH

Inorganics in ground water include: Aluminum, Bismuth, Iron, Lithium, Manganese, Phosphorus, Silicon, Strontium, Tin, Titanium, and Zirconium

mbgs means "metres below ground surface".

Sample collection location is indicated with an X. The locations where field duplicate samples were collected are indicated using (X).

Page 1 of 1

Table 5: SOIL CHEMICAL ANALYSIS - Petroleum Hydrocarbon Parameters

772 Winston Churchill Boulevard, Oakville, Ontario

October 2021	Odkville, Offici	110						Page 1 of 2	
Sample I.D.			Test Hole BH1-SS4	Test Hole BH2-SS2	Test Hole BH3-SS3	Test Hole BH4-SS5	Test Hole BH8-SS5		
Depth (m)			2.29 to 2.90	0.76 to 1.37	1.52 to 2.13	3.05 to 3.66	3.05 to 3.66		
Soil Type			SANDY SILT TILL	SAND to SANDY SILT TILL	SAND	SANDY SILT TILL	SANDY SILT TILL	Ontario Bassilation 453/04	
Date of Sample Collection	Units	MDL*	16-Mar-20	16-Mar-20	16-Mar-20	17-Mar-20	17-Mar-20	Ontario Regulation 153/04 Table 8 Soil Standards**	
Date of Sample Analysis			26-Mar-20	26-Mar-20	27-Aug-19	27-Aug-19	27-Aug-19	Table 6 Soli Staridards	
Certificate of Analysis Number			20T586006	20T586006	19T507956	19T507956	19T507956		
Laboratory I.D.			1036321	1036317	1036315	1036325	1036323		
Field Vapour Reading			0ppm	Oppm Oppm		0ppm	0ppm	<u> </u>	
Benzene	μg/g	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02	
Toluene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.2	
Ethylbenzene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	
Xylene Mixture (Total)	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05	
PHC F1 (C6 to C10) - BTEX	μg/g	5	<5	<5	<5	<5	< 5	10	
PHC F2 (C10 to C16)	μg/g	10	<10	<10	<10	<10	<10	240	
PHC F3 (C16 to C34)	μg/g	50	<50	<50	<50	<50	<50	120	
PHC F4 (C34 to C50)	μg/g	50	<50	<50	<50	<50	<50	120	

NOTES:

Analysis by AGAT Laboratories.

All results in ppm (µg/g) and based on dry weight basis. NA means "not analysed". NM means "not measured".

^{**} Standards shown are for a potable ground water condition for a residential/parkland/institutional/commercial/ industrial/community property use and medium to fine textured soil. Exceedances of Table 8 Standards are shown in **bold**.

^{*} Minimum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

Table 5: SOIL CHEMICAL ANALYSIS - Petroleum Hydrocarbon Parameters

772 Winston Churchill Boulevard, Oakville, Ontario

October 2021 Page 2 of 2 Sample I.D. Stockpile Sample Stockpile Sample SP1-1-20cm SP2-3-0.5-0.7m Depth (m) Soil Type 0.2 0.5 - 0.7 SILTY CLAY **CLAYEY SILT** Ontario Regulation 153/04 MDL* Units Date of Sample Collection 17-Mar-20 18-Mar-20 Table 8 Soil Standards** Date of Sample Analysis 26-Mar-20 26-Mar-20 Certificate of Analysis Number 20T586006 20T586006 Laboratory I.D. 1036326 1036327 Field Vapour Reading 0ppm 0ppm Benzene 0.02 μg/g < 0.02 < 0.02 0.02 Toluene μg/g 0.05 < 0.05 < 0.05 0.2 Ethylbenzene <0.05 0.05 0.05 < 0.05 μg/g Xylene Mixture (Total) μg/g 0.05 < 0.05 < 0.05 0.05 PHC F1 (C6 to C10) - BTEX PHC F2 (C10 to C16) <5 10 μg/g 5 <5 μg/g 10 <10 <10 240 PHC F3 (C16 to C34) 50 <50 120 μg/g <50 PHC F3 (C16 to C34)
PHC F4 (C34 to C50)
NOTES: 50 <50 <50 120 μg/g

Analysis by AGAT Laboratories.

All results in ppm (μg/g) and based on dry weight basis. NA means "not analysed". NM means "not measured".

^{**} Standards shown are for a potable ground water condition for a residential/parkland/institutional/commercial/ industrial/community property use and medium to fine textured soil. Exceedances of Table 8 Standards are shown in **bold**.

^{*} Minimum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

Table 6: SOIL CHEMICAL ANALYSIS - Volatile Organic Compounds

772 Winston Churchill Boulevard, Oakville, Ontario October 2021

Page 1 of 2

October 2021								r age i or z
Sample I.D.			Test Hole	Test Hole	Test Hole	Test Hole	Test Hole	
			BH1-SS4	BH2-SS2	BH3-SS3	BH4-SS5	BH8-SS5	
Depth (m)			2.29 to 2.90	0.76 to 1.37	1.52 to 2.13	3.05 to 3.66	3.05 to 3.66	
Soil Type	Units	MDL*	SANDY SILT TILL	SAND to SANDY SILT TILL	SAND	SANDY SILT TILL	SANDY SILT TILL	Ontario Regulation 153/04
Date of Sample Collection	Office	MDL	16-Mar-20	16-Mar-20	16-Mar-20	17-Mar-20	17-Mar-20	Table 8 Soil Standards**
Date of Sample Analysis			26-Mar-20	26-Mar-20	27-Aug-19	27-Aug-19	27-Aug-19	
Certificate of Analysis Number			20T586006	20T586006	19T507956	19T507956	19T507956	
Laboratory I.D.			1036321	1036317	1036315	1036325	1036323	
1,1,1,2-Tetrachloroethane	μg/g	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.05
1,1,1-Trichloroethane	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
1,1,2,2-Tetrachloroethane	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
1,1,2-Trichloroethane	μg/g	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.05
1,1-Dichloroethane	μg/g	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.05
1,1-Dichloroethylene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
1,2-Dichlorobenzene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
1,2-Dichloroethane	μg/g	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.05
1,2-Dichloropropane	μg/g	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.05
1,3-Dichlorobenzene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
1,3-Dichloropropene	μg/g	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.05
1,4-Dichlorobenzene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
Acetone	μg/g	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.5
Benzene	μg/g	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.02
Bromodichloromethane	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
Bromoform	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
Bromomethane	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
Carbon Tetrachloride	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
Chlorobenzene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
Chloroform	μg/g	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.05
Cis- 1,2-Dichloroethylene	μg/g	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	0.05
Dibromochloromethane	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
Dichlorodifluoromethane	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
Ethylbenzene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
Ethylene Dibromide	μg/g	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	0.05
Methyl Ethyl Ketone	μg/g	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.5
Methyl Isobutyl Ketone	μg/g	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	0.5
Methyl tert-butyl Ether	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
Methylene Chloride	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
n-Hexane	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
Styrene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
Tetrachloroethylene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
Toluene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.2
Trans- 1,2-Dichloroethylene	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
Trichloroethylene	µg/g	0.03	<0.03	<0.03	<0.03	<0.03	<0.03	0.05
Trichlorofluoromethane	µg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.05
Vinyl Chloride	μg/g	0.03	<0.02	<0.02	<0.02	<0.02	<0.02	0.02

NOTES:

Analysis by AGAT Laboratories.

All results in ppm ($\mu g/g$) and based on dry weight basis.

Exceedances of Table 8 Standards are shown in bold.

^{*} Minimum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

^{**} Standards shown are for a potable ground water condition for a residential/parkland/institutional/commercial/ industrial/community property use and medium to fine textured soil.

Table 6: SOIL CHEMICAL ANALYSIS - Volatile Organic Compounds

772 Winston Churchill Boulevard, Oakville, Ontario

October 2021 Page 2 of 2

Sample I.D.			Stockpile Sample	Stockpile Sample		
			SP1-1-20cm	SP2-3-0.5-0.7m		
Depth (m)		MDL*	0.2	0.5 - 0.7		
Soil Type	Units		SILTY CLAY	CLAYEY SILT	Ontario Regulation 153/04	
Date of Sample Collection	Offits		17-Mar-20	18-Mar-20	Table 8 Soil Standards**	
Date of Sample Analysis			26-Mar-20	26-Mar-20		
Certificate of Analysis Number			20T586006	20T586006		
Laboratory I.D.			1036326	1036327		
1,1,1,2-Tetrachloroethane	μg/g	0.04	<0.04	<0.04	0.05	
1,1,1-Trichloroethane	μg/g	0.05	<0.05	<0.05	0.05	
1,1,2,2-Tetrachloroethane	μg/g	0.05	<0.05	<0.05	0.05	
1,1,2-Trichloroethane	μg/g	0.04	<0.04	<0.04	0.05	
1,1-Dichloroethane	μg/g	0.02	<0.02	<0.02	0.05	
1,1-Dichloroethylene	μg/g	0.05	<0.05	< 0.05	0.05	
1,2-Dichlorobenzene	μg/g	0.05	<0.05	<0.05	0.05	
1,2-Dichloroethane	μg/g	0.03	<0.03	<0.03	0.05	
1,2-Dichloropropane	μg/g	0.03	<0.03	<0.03	0.05	
1,3-Dichlorobenzene	μg/g	0.05	<0.05	<0.05	0.05	
1,3-Dichloropropene	μg/g	0.04	<0.04	<0.04	0.05	
1,4-Dichlorobenzene	μg/g	0.05	<0.05	<0.05	0.05	
Acetone	μg/g	0.50	<0.50	<0.50	0.5	
Benzene	μg/g	0.02	<0.02	<0.02	0.02	
Bromodichloromethane	µg/g	0.05	<0.05	<0.05	0.05	
Bromoform	µg/g	0.05	<0.05	<0.05	0.05	
Bromomethane	μg/g	0.05	<0.05	<0.05	0.05	
Carbon Tetrachloride	μg/g	0.05	<0.05	<0.05	0.05	
Chlorobenzene	μg/g	0.05	<0.05	<0.05	0.05	
Chloroform	µg/g	0.03	<0.04	<0.04	0.05	
Cis- 1,2-Dichloroethylene	µg/g	0.02	<0.04	<0.02	0.05	
Dibromochloromethane	µg/g	0.02	<0.02	<0.05	0.05	
Dichlorodifluoromethane	µg/g	0.05	<0.05	<0.05	0.05	
Ethylbenzene	μg/g	0.05	<0.05	<0.05	0.05	
Ethylene Dibromide	µg/g	0.05	<0.05	<0.05	0.05	
Methyl Ethyl Ketone	μg/g	0.50	<0.04	<0.04	0.05	
Methyl Isobutyl Ketone	µg/g	0.50	<0.50	<0.50	0.5	
Methyl tert-butyl Ether		0.05	<0.50	<0.50	0.05	
Methylene Chloride	μg/g				0.05	
n-Hexane	μg/g	0.05	<0.05	<0.05		
	μg/g	0.05	<0.05 <0.05	<0.05	0.05	
Styrene Tetrachloroethylene	μg/g	0.05		<0.05	0.05	
,	μg/g	0.05	<0.05	<0.05	0.05	
Trans 1.2 Dieblorgethylens	μg/g	0.05	<0.05	<0.05	0.2	
Trans- 1,2-Dichloroethylene	μg/g	0.05	<0.05	<0.05	0.05	
Trichloroethylene	μg/g	0.03	<0.03	<0.03	0.05	
Trichlorofluoromethane	μg/g	0.05	<0.05	<0.05	0.25	
Vinyl Chloride	μg/g	0.02	<0.02	<0.02	0.02	
Xylene Mixture	μg/g	0.05	<0.05	<0.05	0.05	

NOTES:

Analysis by AGAT Laboratories.

All results in ppm (µg/g) and based on dry weight basis.

Exceedances of Table 8 Standards are shown in **bold**.

^{*} Minimum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

** Standards shown are for a potable ground water condition for a residential/parkland/institutional/commercial/ industrial/community property use and medium to fine textured

Table 7: SOIL CHEMICAL ANALYSIS - Polycyclic Aromatic Hydrocarbons

772 Winston Churchill Boulevard, Oakville, Ontario October 2021

Sample I.D.	- Units	MDL*	Test Hole	Ontario Regulation 153/04				
			BH1-SS1	BH2-SS1	BH3-SS1	BH4-SS1	BH8-SS1	
Depth (m)			0.0 - 0.61	0.0 - 0.61	0.0 - 0.61	0.0 - 0.61	0.0 - 0.61	
Soil Type			SILT	SAND	SANDY SILT	SANDY SILT	SILTY SAND	
Date of Sample Collection	Onito	MDE	16-Mar-20	16-Mar-20	16-Mar-20	17-Mar-20	17-Mar-20	Table 8 Soil Standards**
Date of Sample Analysis			26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	
Certificate of Analysis Number			20T586006	20T586006	20T586006	20T586006	20T586006	
Laboratory I.D.			1036319	1036316	1036314	1036324	1036322	
2-and 1-methyl Naphthalene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.59
Acenaphthene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.072
Acenaphthylene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.093
Anthracene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.22
Benzo(a)anthracene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.36
Benzo(a)pyrene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.3
Benzo(b)fluoranthene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.47
Benzo(g,h,i)perylene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.68
Benzo(k)fluoranthene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.48
Chrysene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	2.8
Dibenzo(a,h)anthracene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.1
Fluoranthene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.69
Fluorene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.19
Indeno(1,2,3-cd)pyrene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.23
Naphthalene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.09
Phenanthrene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	0.69
Pyrene	μg/g	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	1

NOTES:

Analysis by AGAT Laboratories.

All results in ppm (µg/g) and based on dry weight basis.

Exceedances of Table 8 Standards are shown in bold.

258896

Page 1 of 2

^{*} Minimum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

^{**} Standards shown are for a potable ground water condition for a residential/parkland/institutional/commercial/ industrial/community property use and medium to fine textured soil.

^{***} The sum of 1- and 2-Methylnaphthalene concentrations must not exceed the soil Standard if both are detected.

Table 7: SOIL CHEMICAL ANALYSIS - Polycyclic Aromatic Hydrocarbons

772 Winston Churchill Boulevard, Oakville, Ontario

October 2021 Page 2 of 2

Sample I.D.			Stockpile Sample	Stockpile Sample	
			SP1-1-20cm	SP2-3-0.5-0.7m	
Depth (m)			0.2	0.5 - 0.7	
Soil Type	Units	MDL*	SILTY CLAY	CLAYEY SILT	Ontario Regulation 153/04
Date of Sample Collection	Offits	MBE	17-Mar-20	18-Mar-20	Table 8 Soil Standards**
Date of Sample Analysis			26-Mar-20	26-Mar-20	
Certificate of Analysis Number			20T586006	20T586006	
Laboratory I.D.			1036326	1036327	
2-and 1-methyl Naphthalene	μg/g	0.05	<0.05	<0.05	0.59
Acenaphthene	μg/g	0.05	<0.05	< 0.05	0.072
Acenaphthylene	μg/g	0.05	<0.05	< 0.05	0.093
Anthracene	μg/g	0.05	<0.05	< 0.05	0.22
Benzo(a)anthracene	μg/g	0.05	<0.05	< 0.05	0.36
Benzo(a)pyrene	μg/g	0.05	<0.05	<0.05	0.3
Benzo(b)fluoranthene	μg/g	0.05	< 0.05	0.07	0.47
Benzo(g,h,i)perylene	μg/g	0.05	< 0.05	< 0.05	0.68
Benzo(k)fluoranthene	μg/g	0.05	< 0.05	0.05	0.48
Chrysene	μg/g	0.05	<0.05	0.05	2.8
Dibenzo(a,h)anthracene	μg/g	0.05	<0.05	<0.05	0.1
Fluoranthene	μg/g	0.05	<0.05	0.09	0.69
Fluorene	μg/g	0.05	< 0.05	< 0.05	0.19
Indeno(1,2,3-cd)pyrene	μg/g	0.05	< 0.05	<0.05	0.23
Naphthalene	μg/g	0.05	<0.05	<0.05	0.09
Phenanthrene	μg/g	0.05	<0.05	<0.05	0.69
Pyrene	μg/g	0.05	<0.05	0.07	1

NOTES:

Analysis by AGAT Laboratories.

All results in ppm ($\mu g/g$) and based on dry weight basis.

- * Minimum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.
- ** Standards shown are for a potable ground water condition for a residential/parkland/institutional/commercial/ industrial/community property use and medium to fine textured soil.
- *** The sum of 1- and 2-Methylnaphthalene concentrations must not exceed the soil Standard if both are detected.

Exceedances of Table 8 Standards are shown in bold.

[®]ехр.

258896

Table 8: SOIL CHEMICAL ANALYSIS - Metals and Inorganics 772 Winston Churchill Boulevard, Oakville, Ontario October 2021

Page 1 of 2

October 2021								Page 1 of 2
Sample I.D.			Test Hole					
			BH1-SS1	BH2-SS1	BH3-SS1	BH4-SS1	BH8-SS1	
Depth (m)			0.0 - 0.61	0.0 - 0.61	0.0 - 0.61	0.0 - 0.61	0.0 - 0.61	
Soil Type	Units	MDL*	SILT	SAND	SANDY SILT	SANDY SILT	SILTY SAND	Ontario Regulation 153/04
Date of Sample Collection	Office	WIDE	16-Mar-20	16-Mar-20	16-Mar-20	17-Mar-20	17-Mar-20	Table 8 Soil Standards**
Date of Sample Analysis			26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	
Certificate of Analysis Number			20T586006	20T586006	20T586006	20T586006	20T586006	
Laboratory I.D.			1036319	1036316	1036314	1036324	1036322	
Antimony	μg/g	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	1.3
Arsenic	μg/g	1	4	6	7	5	5	18
Barium	μg/g	2	45	45	80	45	34	220
Beryllium	μg/g	0.5	<0.5	<0.5	0.7	<0.5	0.8	2.5
Boron	μg/g	5	<5	5	12	8	15	36
Boron (Hot Water Extractable)	μg/g	0.10	0.15	0.27	0.39	0.4	1.17	1.5
Cadmium	μg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	1.2
Chromium	μg/g	5	15	15	22	15	21	70
Cobalt	μg/g	0.5	6.3	4.9	12.1	6.9	11.6	22
Copper	μg/g	1	15	29	36	18	24	92
Lead	μg/g	1	8	12	10	9	4	120
Molybdenum	μg/g	0.5	<0.5	<0.5	0.8	<0.5	<0.5	2
Nickel	μg/g	1	14	14	25	15	25	82
Selenium	μg/g	0.4	<0.4	0.5	<0.4	<0.4	<0.4	1.5
Silver	μg/g	0.2	<0.2	0.2	<0.2	<0.2	<0.2	0.5
Thallium	μg/g	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	1
Uranium	μg/g	0.5	<0.5	<0.5	<0.5	<0.5	0.5	2.5
Vanadium	μg/g	1	27	24	32	24	30	86
Zinc	μg/g	5	35	43	64	41	57	290
Chromium, Hexavalent	μg/g	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.66
Cyanide, Free	μg/g	0.040	<0.040	<0.040	<0.040	<0.040	<0.040	0.051
Mercury	μg/g	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	0.27
Electrical Conductivity (2:1)	mS/cm	0.005	0.182	0.165	0.994	0.414	0.389	0.7
Sodium Adsorption Ratio	NA	NA	0.279	1.08	2.14	1.11	1.43	5
pH, 2:1 CaCl2 Extraction	pH Units	NA	7.4	7.23	7.7	7.35	7.91	NA

NOTES:

Analysis by AGAT Laboratories.

All results in ppm ($\mu g/g$) and based on dry weight basis.

Exceedances of Table 8 Standards are shown in **bold**.

^{*} Minimum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

^{**} Standards shown are for a potable ground water condition for a residential/parkland/institutional/commercial/ industrial/community property use and medium to fine textured soil.

Table 8: SOIL CHEMICAL ANALYSIS - Metals and Inorganics

772 Winston Churchill Boulevard, Oakville, Ontario

October 2021 Page 2 of 2

Sample I.D.			Stockpile Sample	Stockpile Sample	
			SP1-1-20cm	SP2-3-0.5-0.7m	
Depth (m)			0.2	0.5 - 0.7	
Soil Type	Units	MDL*	SILTY CLAY	CLAYEY SILT	Ontario Regulation 153/04
Date of Sample Collection	Ullits	WIDL	17-Mar-20	18-Mar-20	Table 8 Soil Standards**
Date of Sample Analysis			26-Mar-20	26-Mar-20	
Certificate of Analysis Number			20T586006	20T586006	
Laboratory I.D.			1036326	1036327	
Antimony	μg/g	0.8	<0.8	<0.8	1.3
Arsenic	μg/g	1	6	9	18
Barium	μg/g	2	98	76	220
Beryllium	μg/g	0.5	1	0.7	2.5
Boron	μg/g	5	21	11	36
Boron (Hot Water Extractable)	μg/g	0.10	0.51	0.54	1.5
Cadmium	μg/g	0.5	<0.5	<0.5	1.2
Chromium	μg/g	5	26	26	70
Cobalt	μg/g	0.5	13.2	8.9	22
Copper	μg/g	1	31	34	92
Lead	μg/g	1	12	31	120
Molybdenum	μg/g	0.5	1.1	0.7	2
Nickel	μg/g	1	28	20	82
Selenium	μg/g	0.4	<0.4	0.7	1.5
Silver	μg/g	0.2	<0.2	0.3	0.5
Thallium	μg/g	0.4	<0.4	<0.4	1
Uranium	μg/g	0.5	1.2	0.9	2.5
Vanadium	μg/g	1	41	32	86
Zinc	μg/g	5	72	113	290
Chromium, Hexavalent	μg/g	0.2	<0.2	<0.2	0.66
Cyanide, Free	μg/g	0.040	<0.040	<0.040	0.051
Mercury	μg/g	0.10	<0.10	<0.10	0.27
Electrical Conductivity (2:1)	mS/cm	0.005	0.286	0.199	0.7
Sodium Adsorption Ratio	NA	NA	1.02	0.122	5
pH, 2:1 CaCl2 Extraction	pH Units	NA	7.74	7.49	NA

NOTES:

Analysis by AGAT Laboratories.

All results in ppm (μg/g) and based on dry weight basis.

^{**} Standards shown are for a potable ground water condition for a residential/parkland/institutional/commercial/ industrial/community property use and medium to fine textured soil. Exceedances of Table 8 Standards are shown in **bold**.

258896

^{*} Minimum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

Table 9: SOIL CHEMICAL ANALYSIS - Organochlorine Pesticides										
772 Winston Churchill Boulevard, C		Ciganocinon	iio i colloides							
October 2021	Jakville, Oritario							Page 1 of 2		
Sample I.D.			Test Hole	Test Hole	Test Hole	Test Hole	Test Hole	ĺ .		
			BH1-SS1	BH2-SS1	BH3-SS1	BH4-SS1	BH8-SS1			
Depth (m)	1		0.0 - 0.61	0.0 - 0.61	0.0 - 0.61	0.0 - 0.61	0.0 - 0.61	Ontario Regulation 153/04 Table 8 Soil Standards**		
Soil Type	Units	MDL*	SILT	SAND	SANDY SILT	SANDY SILT	SILTY SAND			
Date of Sample Collection	Office	WIDE	16-Mar-20	16-Mar-20	16-Mar-20	17-Mar-20	17-Mar-20			
Date of Sample Analysis			26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20			
Certificate of Analysis Number			20T586006	20T586006	20T586006	20T586006	20T586006			
Laboratory I.D.			1036319	1036316	1036314	1036324	1036322			
Aldrin	μg/g	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.05		
Chlordane	μg/g	0.007	<0.007	<0.007	<0.007	<0.007	<0.007	0.05		
DDD	μg/g	0.007	<0.007	<0.007	<0.007	<0.007	<0.007	0.05		
DDE	μg/g	0.007	<0.007	0.010	<0.007	0.010	<0.007	0.05		
DDT	μg/g	0.007	<0.007	<0.007	<0.007	<0.007	<0.007	1.4		
Dieldrin	μg/g	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.05		
Endosulfan	μg/g	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.04		
Endrin	μg/g	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.04		
Gamma-Hexachlorocyclohexane	μg/g	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.01		
Heptachlor	μg/g	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.05		
Heptachlor Epoxide	μg/g	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	0.05		
Hexachlorobenzene	μg/g	0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	0.02		

< 0.01

<0.01

<0.005

< 0.01

< 0.01

<0.005

< 0.01

<0.01

<0.005

< 0.01

< 0.01

<0.005

Hexachloroethane Methoxychlor NOTES:

Analysis by AGAT Laboratories.

All results in ppm (µg/g) and based on dry weight basis.

μg/g

μg/g

μg/g

0.01

0.01

0.005

< 0.01

<0.01

<0.005

Exceedances of Table 8 Standards are shown in **bold**.

Hexachlorobutadiene

258896

0.01

0.01

0.05

^{*} Minimum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

^{**} Standards shown are for a potable ground water condition for a residential/parkland/institutional/commercial/ industrial/community property use and medium to fine textured soil.

Table 9: SOIL CHEMICAL ANALYSIS - Organochlorine Pesticides

772 Winston Churchill Boulevard, Oakville, Ontario

October 2021

Page 1 of 1

Hand Pit GS3	
0.4	Ontario Regulation
SANDY SILT	153/04
19-Oct-21	Table 8 Soil
25-Oct-21	Standards**
21T817791	
3106250	
<0.005	0.05
<0.007	0.05
<0.007	0.05
<0.007	0.05
<0.007	1.4
<0.005	0.05
<0.005	0.04
<0.005	0.04
<0.005	0.01
<0.005	0.05
<0.005	0.05
<0.005	0.02
<0.01	0.01
<0.01	0.01
<0.005	0.05
	<0.007 <0.007 <0.007 <0.007 <0.007 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.001 <0.001

Analysis by AGAT Laboratories.

All results in ppm (µg/g) and based on dry weight basis.

Exceedances of Table 8 Standards are shown in bold.

258896

^{*} Minimum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

^{**} Standards shown are for a potable ground water condition for a residential/parkland/institutional/commercial/ industrial/community property use and medium to fine textured soil.

Table 10: GROUND WATER CHEMICAL ANALYSIS - Petroleum Hydrocarbon Parameters

772 Winston Churchill Boulevard, Oakville, Ontario

October 2021 Page 1 of 1

Sample I.D.			Monitor	Monitor	Monitor	Monitor	
			MW110	MW101	MW102	MW103	
Screen Interval (m)			0.89 - 3.89	1.48 - 4.48	1.44 - 4.44	0.99 - 3.99	Ontario Regulation 153/04
Date of Sample Collection	Units	MDL*	18-Mar-20	18-Mar-20	18-Mar-20	18-Mar-20	Table 8 Ground Water
Date of Sample Analysis			26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	Standards**
Certificate of Analysis Number			20T586004	20T586004	20T586004	20T586004	
Laboratory I.D.			1036268	1036270	1036271	1036272	
Benzene	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	5
Toluene	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	22
Ethylbenzene	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	2.4
Xylene Mixture (Total)	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	300
PHC F1 (C6 to C10) - BTEX	μg/L	25	<25	<25	<25	<25	150
PHC F2 (C10 to C16)	μg/L	100	<100	<100	<100	<100	500
PHC F3 (C16 to C34)	μg/L	100	<100	<100	<100	<100	500
PHC F4 (C34 to C50)	μg/L	100	<100	<100	<100	<100	500

NOTES:

Analysis by AGAT Laboratories.

All results in ppb (µg/L).

Exceedances of Table 8 Standards are shown in bold.

258896

^{*} Minimum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

^{**} Standards shown are for shallow soils in a potable ground water condition for all types of property use and medium to fine textured soil.

Table 11: GROUND WATER CHEMICAL ANALYSIS - Volatile Organic Compounds

772 Winston Churchill Boulevard, Oakville, Ontario October 2021

Page 1 of 1

October 2021							rage i Ui i
Sample I.D.			Monitor	Monitor	Monitor	Monitor	
			MW110	MW101	MW102	MW103	
Screen Interval (m)			0.89 - 3.89	1.48 - 4.48	1.44 - 4.44	0.99 - 3.99	Ontario Regulation 153/04
Date of Sample Collection	Units	MDL*	18-Mar-20	18-Mar-20	18-Mar-20	18-Mar-20	Table 8 Ground Water
Date of Sample Analysis			26-Mar-20	26-Mar-20	26-Mar-20	26-Mar-20	Standards**
Certificate of Analysis Number			20T586004	20T586004	20T586004	20T586004	
Laboratory I.D.			1036268	1036270	1036271	1036272	
1,1,1,2-Tetrachloroethane	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	1.1
1,1,1-Trichloroethane	μg/L	0.30	<0.30	<0.30	<0.30	<0.30	200
1,1,2,2-Tetrachloroethane	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	1
1,1,2-Trichloroethane	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	4.7
1,1-Dichloroethane	μg/L	0.30	<0.30	<0.30	<0.30	<0.30	5
1,1-Dichloroethylene	μg/L	0.30	<0.30	<0.30	<0.30	<0.30	1.6
1,2-Dichlorobenzene	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	3
1,2-Dichloroethane	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	1.6
1,2-Dichloropropane	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	5
1,3-Dichlorobenzene	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	59
1,3-Dichloropropene	μg/L	0.30	<0.30	<0.30	<0.30	<0.30	0.5
1,4-Dichlorobenzene	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	1
Acetone	μg/L	1.0	<1.0	<1.0	<1.0	<1.0	2700
Benzene	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	5
Bromodichloromethane	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	16
Bromoform	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	25
Bromomethane	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	0.89
Carbon Tetrachloride	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	0.79
Chlorobenzene	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	30
Chloroform	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	2.4
cis- 1,2-Dichloroethylene	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	1.6
Dibromochloromethane	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	25
Dichlorodifluoromethane	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	590
Ethylbenzene	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	2.4
Ethylene Dibromide	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	0.2
Methyl Ethyl Ketone	μg/L	1.0	<1.0	<1.0	<1.0	<1.0	1800
Methyl Isobutyl Ketone	μg/L	1.0	<1.0	<1.0	<1.0	<1.0	640
Methyl tert-butyl ether	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	15
Methylene Chloride	μg/L	0.30	<0.30	<0.30	<0.30	<0.30	50
n-Hexane	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	51
Styrene	μg/L	0.10	<0.10	<0.10	<0.10	<0.10	5.4
Tetrachloroethylene	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	1.6
Toluene	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	22
trans- 1,2-Dichloroethylene	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	1.6
Trichloroethylene	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	1.6
Trichlorofluoromethane	μg/L	0.40	<0.40	<0.40	<0.40	<0.40	150
Vinyl Chloride	μg/L	0.17	<0.17	<0.17	<0.17	<0.17	0.5
Xylene Mixture	μg/L	0.20	<0.20	<0.20	<0.20	<0.20	300

NOTES:

Analysis by AGAT Laboratories.

All results in ppb (µg/L).

^{**} Standards shown are for shallow soils in a potable ground water condition for all types of property use and medium to fine textured soil. Exceedances of Table 8 Standards are shown in <u>bold</u>.

^{*} Minimum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

Table 12: GROUND WATER CHEMICAL ANALYSIS - Metals and Inorganics

772 Winston Churchill Boulevard, Oakville, Ontario

October 2021 Page 1 of 1

0010001 2021					r age r or r
Sample I.D.			Monitor	Duplicate of MW103	
			MW103	MW103-0	
Screen Interval (m)			0.99 - 3.99	0.99 - 3.99	Ontorio Bagulation 152/01 Table 9 Craund
Date of Sample Collection	Units	MDL*	19-Oct-21	19-Oct-21	Ontario Regulation 153/04 Table 8 Ground Water Standards**
Date of Sample Analysis			25-Oct-21	25-Oct-21	Water Standards
Certificate of Analysis Number			21T817791	21T817791	
Laboratory I.D.			3106300	3106302	
Dissolved Antimony	μg/L	1.0	<1.0	<1.0	6
Dissolved Arsenic	μg/L	1.0	1.9	1.9	25
Dissolved Barium	μg/L	2.0	92.1	90.9	1000
Dissolved Beryllium	μg/L	0.50	<0.50	<0.50	4
Dissolved Boron	μg/L	10.0	338	341	5000
Dissolved Cadmium	μg/L	0.20	<0.20	<0.20	2.1
Dissolved Chromium	μg/L	2.0	4.8	4.9	50
Dissolved Cobalt	μg/L	0.50	0.85	0.92	3.8
Dissolved Copper	μg/L	1.0	1.5	1.5	69
Dissolved Lead	μg/L	0.50	2.2	1.3	10
Dissolved Molybdenum	μg/L	0.50	<0.50	<0.50	70
Dissolved Nickel	μg/L	3.0	<3.0	<3.0	100
Dissolved Selenium	μg/L	1.0	2.9	2.4	10
Dissolved Silver	μg/L	0.20	<0.20	<0.20	1.2
Dissolved Thallium	μg/L	0.30	<0.30	<0.30	2
Dissolved Uranium	μg/L	0.50	1.67	1.7	20
Dissolved Vanadium	μg/L	0.40	<0.40	<0.40	6.2
Dissolved Zinc	μg/L	5.0	6	<5.0	890

NOTES:

Analysis by AGAT Laboratories.

All results in ppb (µg/L).

^{**} Standards shown are for shallow soils in a potable ground water condition for all types of property use and medium to fine textured soil. Exceedances of Table 8 Standards are shown in **bold**.

^{*} Minimum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

Table 13: GROUND WATER CHEMICAL ANALYSIS - Organochlorine Pesticides

772 Winston Churchill Boulevard, Oakville, Ontario

October 2021 Page 1 of 1

Sample I.D.			Monitor	Duplicate of MW103	
			MW103	MW103-0	
Screen Interval (m)			0.99 - 3.99	0.99 - 3.99	Ontaria Dagulation 152/04 Table 9 Cround Water
Date of Sample Collection	Units	MDL*	19-Oct-21	19-Oct-21	Ontario Regulation 153/04 Table 8 Ground Water Standards**
Date of Sample Analysis			25-Oct-21	25-Oct-21	Staridardo
Certificate of Analysis Number			21T817791	21T817791	
Laboratory I.D.			3106300	3106302	
Aldrin	μg/L	0.01	<0.01	<0.01	0.35
Chlordane	μg/L	0.04	<0.04	<0.04	0.06
DDD	μg/L	0.05	<0.05	<0.05	1.8
DDE	μg/L	0.01	<0.01	<0.01	10
DDT	μg/L	0.04	<0.04	<0.04	0.05
Dieldrin	μg/L	0.02	<0.02	<0.02	0.35
Endosulfan	μg/L	0.05	<0.05	<0.05	0.56
Endrin	μg/L	0.05	<0.05	<0.05	0.36
Gamma-Hexachlorocyclohexane	μg/L	0.01	<0.01	<0.01	0.95
Heptachlor	μg/L	0.01	<0.01	<0.01	0.038
Heptachlor Epoxide	μg/L	0.01	<0.01	<0.01	0.038
Hexachlorobenzene	μg/L	0.01	<0.01	<0.01	1
Hexachlorobutadiene	μg/L	0.01	<0.01	<0.01	0.44
Hexachloroethane	μg/L	0.01	<0.01	<0.01	2.1
Methoxychlor	μg/L	0.04	<0.04	<0.04	0.3

NOTES:

Analysis by AGAT Laboratories.

All results in ppb (µg/L).

^{**} Standards shown are for shallow soils in a potable ground water condition for all types of property use and medium to fine textured soil. Exceedances of Table 8 Standards are shown in **bold**.

^{*} Minimum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.

Table 14: SEDIMENT CHEMICAL ANALYSIS - Polycyclic Aromatic Hydrocarbons

772 Winston Churchill Boulevard, Oakville, Ontario October 2021

Page 1 of 1

Sample I.D.			Grab Sample	Grab Sample			
			SED 1	SED 2			
Date of Sample Collection	Units	RDL	18-Mar-20	18-Mar-20	Ontario Regulation 153/04	Ontario Regulation 153/04	
Date of Sample Analysis	Offics	KDL	26-Mar-20	26-Mar-20	Table 8 Sediment Standards**	Table 1 Soil Standards***	
Certificate of Analysis Number			20T586007	20T586007			
AGAT I.D.			1036282	1036283			
2-and 1-methyl Naphthalene	μg/g	0.05	<0.05	<0.05	NV	0.59	
Acenaphthene	μg/g	0.05	<0.05	<0.05	NV	0.072	
Acenaphthylene	μg/g	0.05	<0.05	<0.05	NV	0.093	
Anthracene	μg/g	0.05	<0.05	<0.05	0.22	NR	
Benz(a)anthracene	μg/g	0.05	0.05	0.08	0.32	NR	
Benzo(a)pyrene	μg/g	0.05	0.05	0.08	0.37	NR	
Benzo(b)fluoranthene	μg/g	0.05	0.06	0.11	NV	0.47	
Benzo(g,h,i)perylene	μg/g	0.05	<0.05	<0.05	0.17	NR	
Benzo(k)fluoranthene	μg/g	0.05	0.06	0.11	0.24	NR	
Chrysene	μg/g	0.05	0.08	0.12	0.34	NR	
Dibenz(a,h)anthracene	μg/g	0.05	<0.05	<0.05	0.06	NR	
Fluoranthene	μg/g	0.05	0.15	0.24	0.75	NR	
Fluorene	μg/g	0.05	<0.05	<0.05	0.19	NR	
Indeno(1,2,3-cd)pyrene	μg/g	0.05	<0.05	<0.05	0.2	NR	
Naphthalene	μg/g	0.05	<0.05	<0.05	NV	0.09	
Phenanthrene	μg/g	0.05	0.07	0.13	0.56	NR	
Pyrene	μg/g	0.05	0.11	0.20	0.49	NR	

NOTES:

Analysis by AGAT Laboratories.

All results in ppm (µg/g) and based on dry weight basis.

NV - no value; NR - not required.

- * Analytical Reporting Detection Limits (RDLs) are shown except as indicated in brackets.
- ** Standards shown are for all types of property use.
- *** Table 1 Background Soil Standards considered suitable in the absence of a Table 8 Sediment Standard.

Exceedances of Table 1 and/or 8 Standards are shown in bold.

Table 15: SEDIMENT CHEMICAL ANALYSIS - Metals Parameters

772 Winston Churchill Boulevard, Oakville, Ontario October 2021

//2 Winston Cruz'n Boulevard, Oakville, Ontano October 2021 Page 1 of 1										
Sample I.D.	1		Grab Sample	Grab Sample	Grab Sample	Grab Sample	Duplicate of SED 102	Grab Sample	l-	rage i oi i
			SED 1	SED 2	SED 101	SED 102	SED 102-0	SED 103		
Date of Sample Collection	_		18-Mar-20	18-Mar-20	19-Oct-21	19-Oct-21	19-Oct-21	19-Oct-21	Ontario Regulation 153/04	Ontario Regulation 153/04
Date of Sample Analysis	Units	RDL	26-Mar-20	26-Mar-20	25-Oct-21	25-Oct-21	25-Oct-21	25-Oct-21	Table 8 Sediment Standards**	Table 1 Soil Standards**
Certificate of Analysis Number	1		20T586007	20T586007	21T817791	21T817791	21T817791	21T817791	1	
AGAT I.D.			1036282	1036283	3106279	3106281	3106282	3106294	1	
Antimony	µg/g	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	NV	1
Arsenic	ha/a	1	6	5	6	<u>18</u>	19	6	6	NR
Barium	ug/g	2	67	36	48.6	53	53.3	63	NV	210
Beryllium	ha/a	0.5	0.8	0.9	1	<0.4	0.4	0.8	NV	2.5
Boron	μg/g	5	13	17	14	<5	5	13	NV	36
Boron (Hot Water Extractable)	μg/g	0.10	0.64	0.61	-	-	-	-	NA	NA
Cadmium	μg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	NR
Chromium	μg/g	5	23	25	22	17	16	23	26	NR
Cobalt	μg/g	0.5	13.3	13.4	12	4	4.4	11.1	50	NR
Copper	μg/g	1	<u>29</u>	<u>31</u>	<u>33.2</u>	<u>22.2</u>	<u>22.1</u>	<u>29.2</u>	16	NR
Lead	μg/g	1	14	7	13	<u>79</u>	<u>72</u>	16	31	NR
Molybdenum	μg/g	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.7	NV	2
Nickel	μg/g	1	<u>28</u>	<u>30</u>	<u>28</u>	10	10	<u>26</u>	16	NR
Selenium	μg/g	0.4	<0.4	<0.4	<0.8	0.8	<0.8	<0.8	NV	1.2
Silver	μg/g	0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.5	0.5	NR
Thallium	μg/g	0.4	<0.4	<0.4	<0.5	<0.5	<0.5	<0.5	NV	1
Uranium	μg/g	0.5	0.6	0.7	0.57	0.57	0.5	0.66	NV	1.9
Vanadium	μg/g	1	32	33	29.6	20.8	21.7	31	NV	86
Zinc	μg/g	5	80	92	77	48	47	120	120	NR
Chromium, Hexavalent	μg/g	0.2	<0.2	<0.2	-	=	-	-	NV	0.66
Cyanide, Free	μg/g	0.040	<0.040	<0.040	-	-	-	-	0.1	NR
Mercury	μg/g	0.10	<0.10	<0.10	-	-	-	-	0.2	NR
Electrical Conductivity (2:1)	mS/cm	0.005	0.508	1.46	-	-	-	-	NA	-
Sodium Adsorption Ratio	NA	NA	3.22	20.8	-	-	-	-	NA	-
pH, 2:1 CaCl2 Extraction	pH Units	NA	7.71	7.62	-	-	-	-	NA	-

NOTES:

Analysis by AGAT Laboratories.

NV - no value; NR - not required.

All results in ppm (µg/g) and based on dry weight basis.

* Analytical Reporting Detection Limits (RDLs) are shown except as indicated in brackets.

^{**} Standards shown are for all types of property use.

^{***} Table 1 Background Soil Standards considered suitable in the absence of a Table 8 Sediment Standard. Exceedances of Table 1 and/or 8 Standards are shown in <u>bold</u>.

Table 16: SEDIMENT CHEMICAL ANALYSIS - Organochlorine Pesticides

772 Winston Churchill Boulevard, Oakville, Ontario

October 2021

Page 1 of 1

Sample I.D.			Grab Sample	Grab Sample			
			SED 1	SED 2			
Date of Sample Collection	Units	RDL	18-Mar-20	18-Mar-20	Ontario Regulation 153/04	Ontario Regulation 153/04 Table 1 Soil Standards**	
Date of Sample Analysis	Office	NDL	26-Mar-20	26-Mar-20	Table 8 Sediment Standards**		
Certificate of Analysis Number			20T586007	20T586007			
AGAT I.D.			1036282	1036283			
Aldrin	μg/g	0.002	<0.002	<0.002	0.002	NR	
Chlordane	μg/g	0.007	<0.007	<0.007	0.007	NR	
DDD	μg/g	0.007	<0.007	<0.007	0.008	NR	
DDE	μg/g	0.005	<0.005	<0.005	0.005	NR	
DDT	μg/g	0.007	<0.007	<0.007	0.007	NR	
Dieldrin	μg/g	0.002	<0.002	<0.002	0.002	NR	
Endosulfan	μg/g	0.005	<0.005	<0.005	NV	0.04	
Endrin	μg/g	0.003	<0.003	<0.003	0.003	NR	
Gamma-Hexachlorocyclohexane	μg/g	0.005	<0.005	<0.005	NV	0.01	
Heptachlor	μg/g	0.005	<0.005	<0.005	NV	0.05	
Heptachlor Epoxide	μg/g	0.005	<0.005	<0.005	0.005	NR	
Hexachlorobenzene	μg/g	0.002	<0.002	<0.002	0.02	NR	
Hexachlorobutadiene	μg/g	0.01	<0.01	<0.01	NV	0.01	
Hexachloroethane	μg/g	0.01	<0.01	<0.01	NV	0.01	
Methoxychlor	μg/g	0.005	<0.005	<0.005	NV	0.05	

NOTES:

Analysis by AGAT Laboratories.

All results in ppm (μ g/g) and based on dry weight basis.

NV - no value; NR - not required.

- * Analytical Reporting Detection Limits (RDLs) are shown except as indicated in brackets.
- ** Standards shown are for all types of property use.

Exceedances of Table 1 and/or 8 Standards are shown in bold.

^{***} Table 1 Background Soil Standards considered suitable in the absence of a Table 8 Sediment Standard.

EXP Services Inc.
Phase Two Environmental Site Assessment
772 Winston Churchill Boulevard, Oakville, Ontario
MRK-00258896-A0
November 24, 2021

Appendix A – Limitations

LIMITATIONS AND USE OF REPORT

BASIS OF REPORT

The Report is based on site conditions known or inferred by the investigation undertaken as of the date of the Report. Should changes occur which potentially impact the condition of the site the recommendations of EXP may require re-evaluation. Where special concerns exist, or the Client has special considerations or requirements, these should be disclosed to EXP to allow for additional or special investigations to be undertaken not otherwise within the scope of investigation conducted for the purpose of the Report.

Where applicable, recommended field services are the minimum necessary to ascertain that construction is being carried out in general conformity with building code guidelines, generally accepted practices and EXP's recommendations. Any reduction in the level of services recommended will result in EXP providing qualified opinions regarding the adequacy of the work. EXP can assist design professionals or contractors retained by the Client to review applicable plans, drawings, and specifications as they relate to the Report or to conduct field reviews during construction.

RELIANCE ON INFORMATION PROVIDED

The evaluation and conclusions contained in the Report are based on conditions in evidence at the time of site inspections and information provided to EXP by the Client and others. The Report has been prepared for the specific site, development, building, design or building assessment objectives and purpose as communicated by the Client. EXP has relied in good faith upon such representations, information and instructions and accepts no responsibility for any deficiency, misstatement or inaccuracy contained in the Report as a result of any misstatements, omissions, misrepresentation or fraudulent acts of persons providing information. Unless specifically stated otherwise, the applicability and reliability of the findings, recommendations, suggestions or opinions expressed in the Report are only valid to the extent that there has been no material alteration to or variation from any of the information provided to EXP.

STANDARD OF CARE

This report ("Report") has been prepared in a manner consistent with the degree of care and skill exercised by engineering consultants currently practicing under similar circumstances and locale. No other warranty, EXPressed or implied, is made. Unless specifically stated otherwise, the Report does not contain environmental consulting advice.

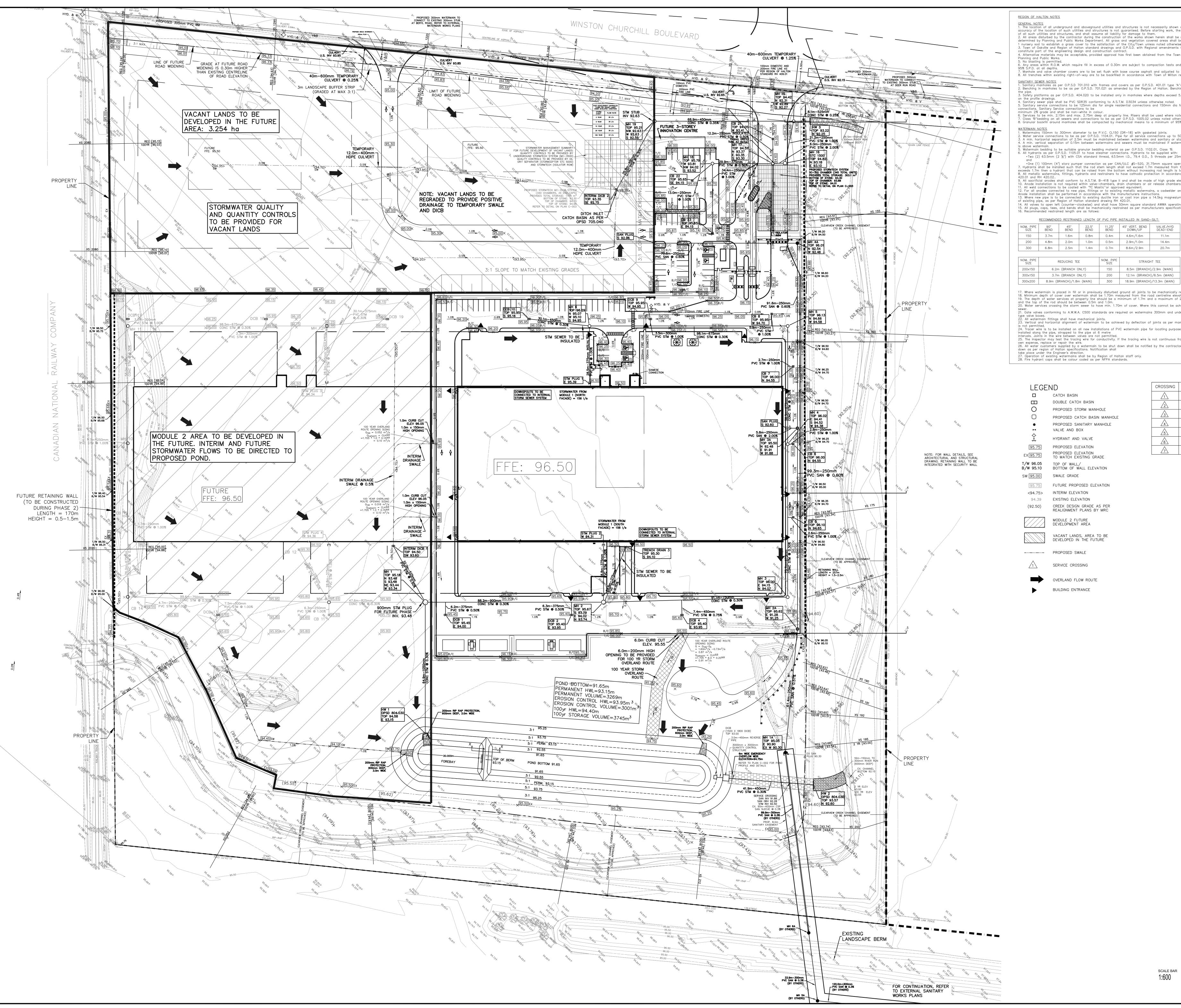
COMPLETE REPORT

All documents, records, data and files, whether electronic or otherwise, generated as part of this assignment form part of the Report. This material includes, but is not limited to, the terms of reference given to EXP by the Client, communications between EXP and the Client, other reports, proposals or documents prepared by EXP for the Client in connection with the site described in the Report. In order to properly understand the suggestions, recommendations and opinions expressed in the Report, reference must be made to the Report in its entirety. EXP is not responsible for use by any party of portions of the Report.

USE OF REPORT

The information and opinions expressed in the Report, or any document forming part of the Report, are for the sole benefit of the Client. No other party may use or rely upon the Report in whole or in part without the written consent of EXP. Any use of the Report, or any portion of the Report, by a third party are the sole responsibility of such third party. EXP is not responsible for damages suffered by any third party resulting from unauthorised use of the Report.

REPORT FORMAT


Where EXP has submitted both electronic file and a hard copy of the Report, or any document forming part of the Report, only the signed and sealed hard copy shall be the original documents for record and working purposes. In the event of a dispute or discrepancy, the hard copy shall govern. Electronic files transmitted by EXP utilize specific software and hardware systems. EXP makes no representation about the compatibility of these files with the Client's current or future software and hardware systems. Regardless of format, the documents described herein are EXP's instruments of professional service and shall not be altered without the written consent of EXP.

EXP Services Inc.
Phase Two Environmental Site Assessment
772 Winston Churchill Boulevard, Oakville, Ontario
MRK-00258896-A0
November 24, 2021

Appendix B – Topographic Maps

GENERAL NOTES

1. The location of all underground and aboveground utilities and structures is not necessarily shown on these drawings, and, where shown, the accuracy of the location of such utilities and structures is not guaranteed. Before starting work, the contractor shall determine the exact location of all such utilities and structures, and shall assume all liability for damage to them.

2. All areas disturbed by the contractor during the construction of the works shown herein shall be restored to original condition or better as determined by Planning and Public Works Department. All grass and vegetation covered areas shall be restored by placing 100mm of topsoil and No.

1 nursery sod to establish a grass cover to the satisfaction of the City/Town unless noted otherwise.

3. Town of Oakville and Region of Halton standard drawings and 0.P.S.D. with Regional amendments for sanitary sewers and watermains shall constitute part of the engineering design and construction contract. constitute part of the engineering design and construction contract.

4. Alternative materials may be acceptable, provided approval has first been obtained from the Town Engineer and/or the Regional Commissioner of Planning and Public Works.

5. No blasting is permitted.

6. Any areas within R.O.W. which require fill in excess of 0.30m are subject to compaction tests and such tests must show a min. compaction of 95% S.P.D. at all depths. 7. Manhole and valve chamber covers are to be set flush with base course asphalt and adjusted to final grade prior to installing top lift of asphalt.

8. All trenches within existing right—of—way are to be backfilled in accordance with Town of Milton requirements.

SANITARY SEWER NOTES

1. Sanitary manholes as per 0.P.S.D 701.010 with frames and covers as per 0.P.S.D. 401.01 type "A" unless otherwise noted on the drawings.

2. Benching in manholes to be as per 0.P.S.D. 701.021 as amended by the Region of Halton. Benching in sanitary manholes to be to the obvert of the pipe.
3. Safety platforms as per O.P.S.D. 404.020 to be installed only in manholes where depths exceed 5.0m as directed by the Region and as indicated on the profile drawings.

4. Sanitary sewer pipe shall be PVC SDR35 conforming to A.S.T.M. D3034 unless otherwise noted. . Sanitary service connections to be 125mm dia for single residential connections and 150mm dia for dual residential and single non—residential

connections. Sanitary Service connections to be minimum 2% grade and shall be non-white in colour.

6. Services to be min. 2.15m and max. 2.75m deep at property line. Risers shall be used where noted as per OPSD 1006.01.

7. Class 'B"bedding on all sewers and connections to be as per 0.P.S.D. 1005.02 unless noted otherwise

8. Granular backfill around manholes shall be compacted by mechanical means to a minimum of 95% S.P.D.

WATERMAIN NOTES

1. Watermains 150mm to 300mm diameter to be P.V.C. CL150 (DR-18) with gasketed joints.

2. Water service connections to be as per 0.P.S.D. 1104.01. Pipe for all service connections up to 50mm dia. shall be type K soft copper tubing.

3. A min. horizontal separation of 2.5m must be maintained between watermains and sanitary or storm sewers, including service laterals.

4. A min. vertical separation of 0.15m between watermains and sewers must be maintained if watermain is installed above sewer or 0.50m if sewer is above watermain.

5. Watermain bedding to be suitable granular bedding material as per 0.P.S.D. 1102.01, Class "B.

6. All hydrants as per 0.P.S.D. 1105.01 to have steamer connections. Hydrants to be supplied with:

• Two (2) 63.5mm (2 ½") with CSA standard thread, 63.5mm I.D., 79.4 0.D., 5 threads per 25mm, 31.75mm square operating nut;

•One (1) 100mm (4") storz pumper connection as per CAN/ULC #S-520, 31.75mm square operating nut, and storz cap painted gloss black.
7. Hydrants shall be installed such that the rod stem length shall not exceed 1.7m measured from the break-off flange. If hydrant barrel length exceeds 1.7m then a hydrant that can be raised from the bottom without increasing rod length is to be used.
8. All metallic watermains, fittings, hydrants and restrainers to have cathodic protection in accordance with Region of Halton standard drawings RH 420.01 and RH 420.02.

420.01 and RH 420.02..

9. All sacrificial anodes shall conform to A.S.T.M. B—418 type II and shall be made of high grade electrolytic zinc, 99.99% pure.

10. Anode installation is not required within valve—chambers, drain chambers or air release chambers.

11. All weld connections to be coated with "TC Mastic" or approved equivalent.

12. For all anodes connected to new pipe, fittings or to existing metallic watermains, a cadwelder and CA—15 or equivalent cartridge shall be used. Anode installation shall be performed in accordance with the manufacturers instructions.

13. Where new pipe is to be connected to existing ductile iron or cast iron pipe a 14.5kg magnesium anode is to be connected to the first length of existing pipe, as per Region of Halton standard drawing RH 420.01.

14. All valves to open left (counter—clockwise) and shall have 50mm square standard AWWA operating nut.

15. All plugs, caps, tees, and bends shall be mechanically restrained as per manufacturers specifications. Restraints shall meet UNI—B—13—92.

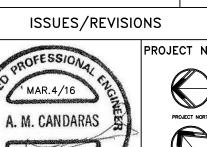
16. Recommended restrained length are as follows: 16. Recommended restrained length are as follows:

RECOMMENDED	RESTRAINED	LENGTH	OF	PVC	PIPE	INSTALLED	IN	SAND-SILT:

150	3.7m	1.6m	1.6m 0.8m		4.6m/1.6m	11.1m		
200	4.8m	2.0m	2.0m 1.0m		0.5m 2.9m/1.0m			
300	6.8m	2.5m	1.4m	0.7m	8.6m/2.9m	20.7m		
NOM. PIPE DEDUCINO TEE NOM. PIPE CTRAIGUT TEE								
SIZE		REDUCING TE	<u> </u>	SIZE	STRAIG	HT TEE		
200x150	6.:	2m (BRANCH C	NLY)	150	8.5m (BRANCH)/2.9m (MAIN)			
300x150		. (55,44,64,6		200	12.1m (BRANCH)/6.5m (MAIN)			
300X130	3.	7m (BRANCH C	NLY)	200	12.IIII (BRAINCE	1)/6.5m (MAIN)		

17. Where watermain is placed in fill or in previously disturbed ground all joints to be mechanically restrained.
18. Minimum depth of cover over watermain shall be 1.70m measured from the road centreline elevation.
19. The depth of water services at property line should be a minimum of 1.7m and a maximum of 2.0m. The distance between the ground elevation and the top of the rod should be between 0.5m and 1.0m. 20. Water services crossing the storm sewer to have min. 1.70m of cover. Where this cannot be achieved, water service is to cross under storm 21. Gate valves conforming to A.W.W.A. C500 standards are required on watermains 300mm and under. Line gate valves shall have auger of screw type valve boxes.

22. All watermain fittings shall have mechanical joints.


23. Vertical and horizontal alignment of watermain to be achieved by deflection of joints as per manufacturer's specifications. Deflection in the barrel 23. Vertical and norizontal digriment of watermain to be defined by deflection of joints as per managed as a specific specific of specific 26. All water customers supplied by a watermain to be shut down shall be notified by the contractor at least 24 hours in advance of the shut down as per region of Halton specifications. Notification shall

take place under the Engineer's direction. 27. Operation of existing watermains shall be by Region of Halton staff only. 28. Fire hydrant caps shall be colour coded as per NFPA standards.

GEND		CROSSING	SITE SERVICE CROSSING SUMMARY					
	CATCH BASIN	1	STM INV 94.57	SAN OBV 92.80				
	DOUBLE CATCH BASIN	/2	STM INV 92.38	WM OBV 91.88				
	PROPOSED STORM MANHOLE	^2						
	PROPOSED CATCH BASIN MANHOLE	3	STM INV 92.38	WM OBV 91.88				
	PROPOSED SANITARY MANHOLE	4	STM INV 93.42	WM OBV 92.92				
	VALVE AND BOX	5	STM INV 93.42	WM OBV 92.92				
	HYDRANT AND VALVE	6	WM INV 93.80	SAN OBV 93.07				
]	PROPOSED ELEVATION	\wedge	WM INV 93.90	SAN OBV 93.07				
]	PROPOSED ELEVATION TO MATCH EXISTING GRADE		WW 114 V 93.90	3AN OBV 93.07				
5)	TOP OF WALL/ BOTTOM OF WALL ELEVATION							
1	0000							

RESUBMISSION FOR SPA ISSUED FOR SITE PLAN APPROVAL NOV.11,

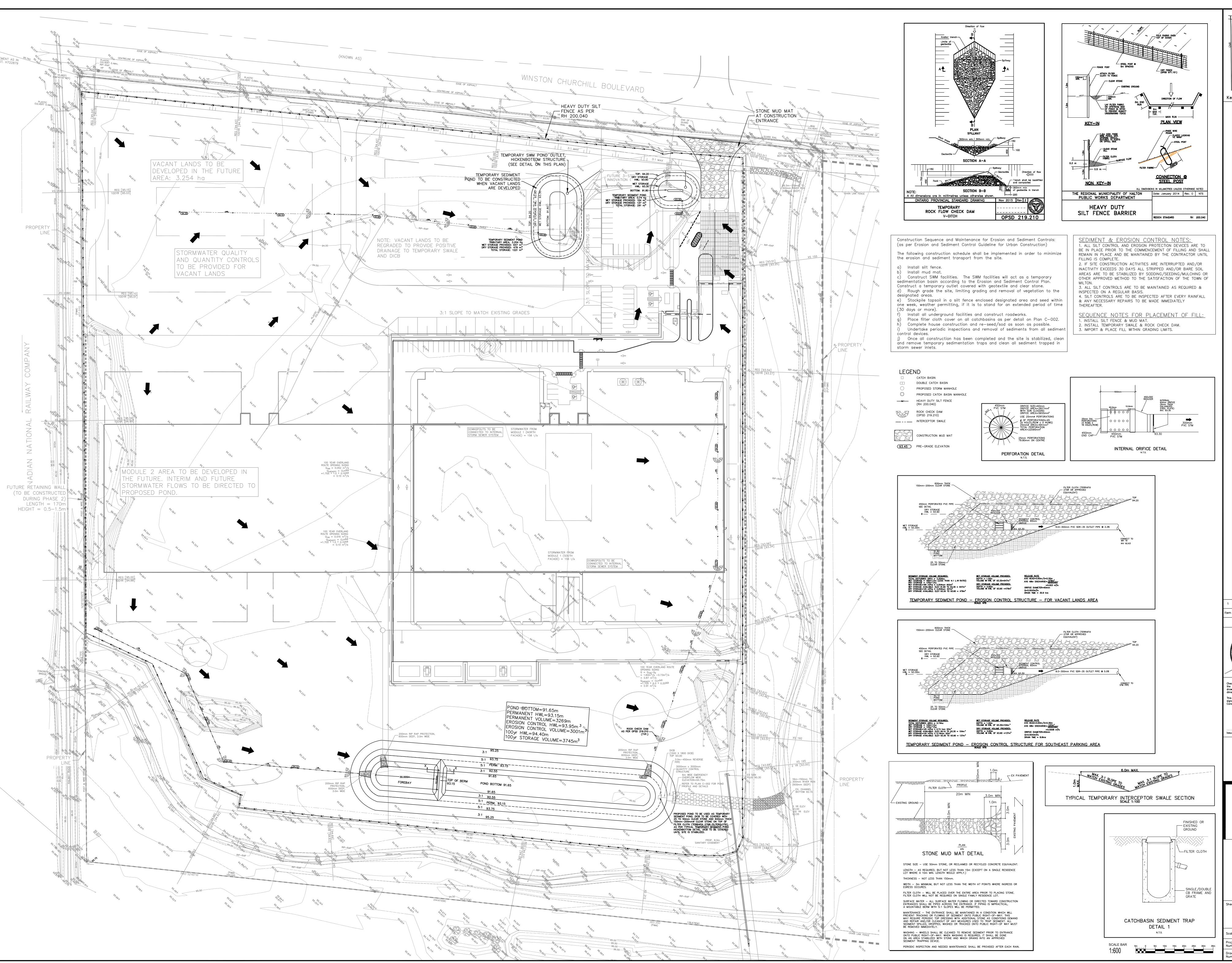
Key Plan

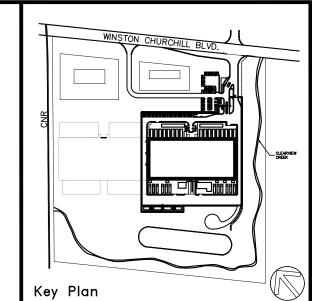
Check and verify all dimensions and report any discrepancies to the Consultant whose seal is affixed to this drawing. This drawing is not to be scaled for the purpose of verifying

This drawing shall not be used for construction purposes until signed and dated in the space below by the above mentioned

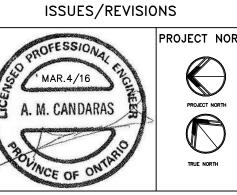
HHAngus

HHAngus & Associates Limited Consulting Engineers 1127 Leslie Street, Toronto, ON, M3C 2J6 Canada www.hhangus.com | T 416 443 8200 | F 416 443 8290




PROJECT OMEGA

772 WINSTON CHURCHILL BLVD. OAKVILLE, ONTARIO


GRADING, SERVICING, AND STORMWATER MANAGEMENT PLAN

1507 C - 001

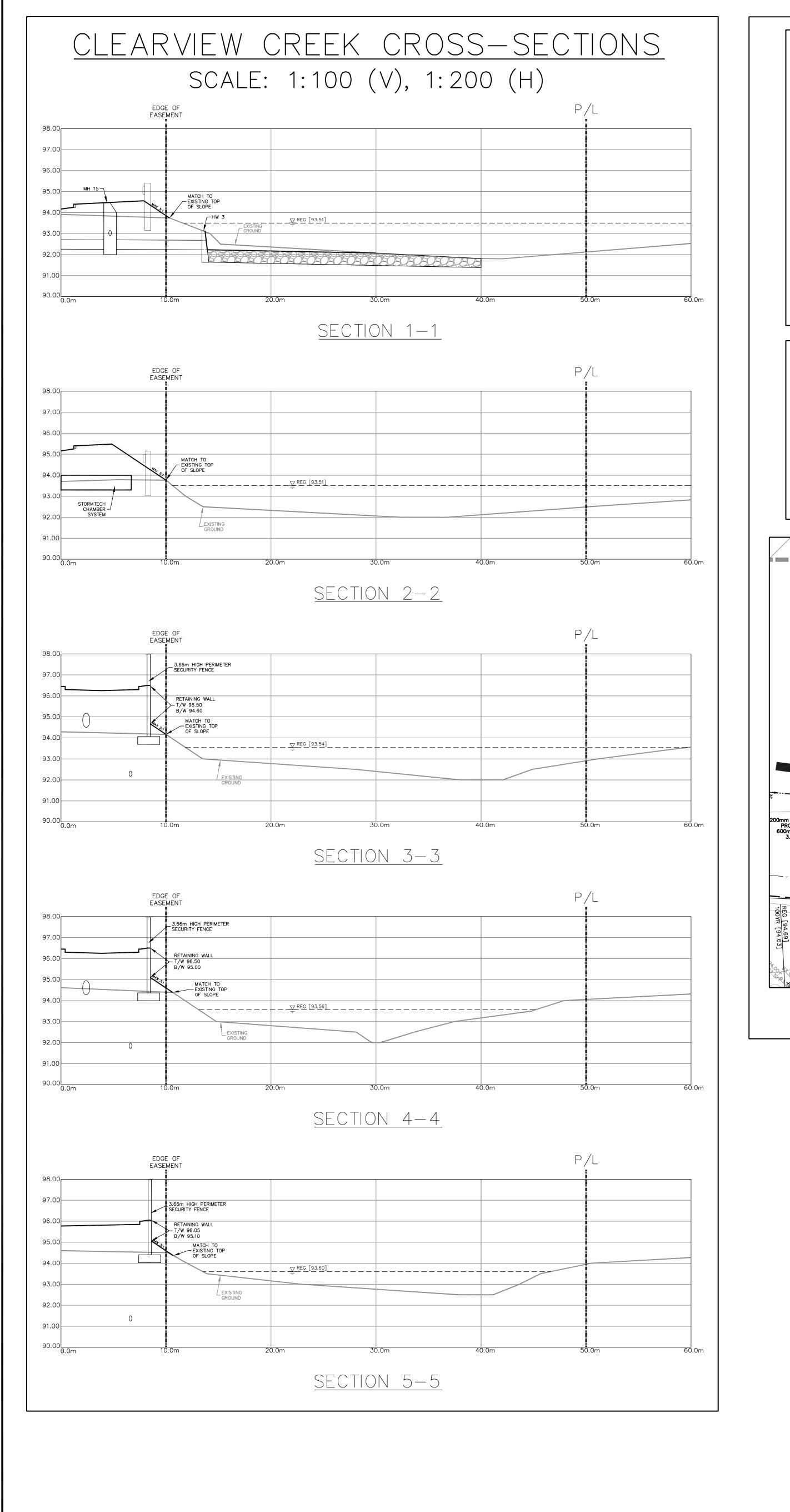
1 RESUBMISSION FOR SPA MAR.4
tem Description Dat

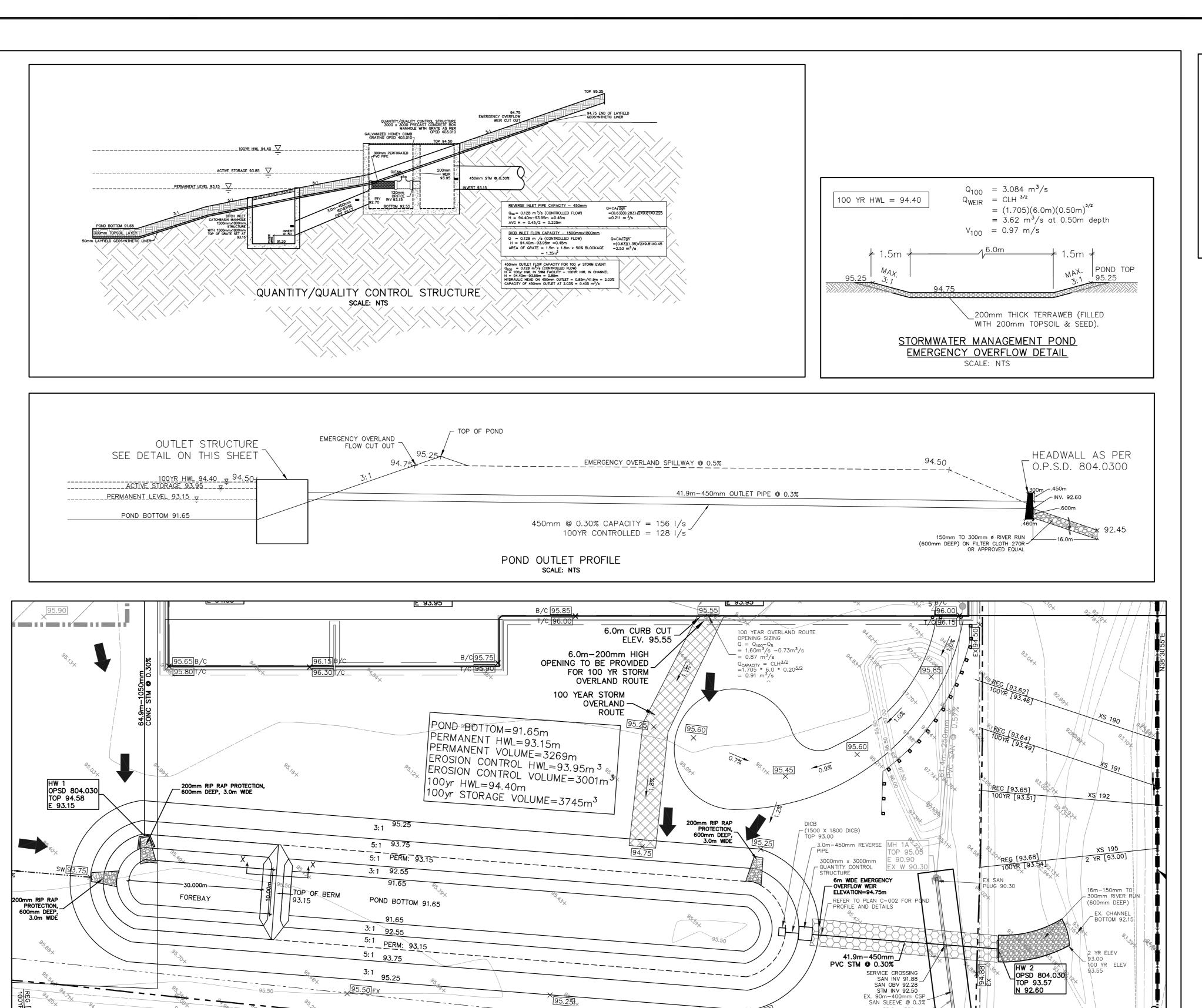
Check and verify all dimensions and report any discrepancies to the Consultant whose seal is affixed to this drawing. This drawing is not to be scaled for the purpose of verifying dimensions.

This drawing shall not be used for construction purposes until signed and dated in the space below by the above mentioned Consultant.

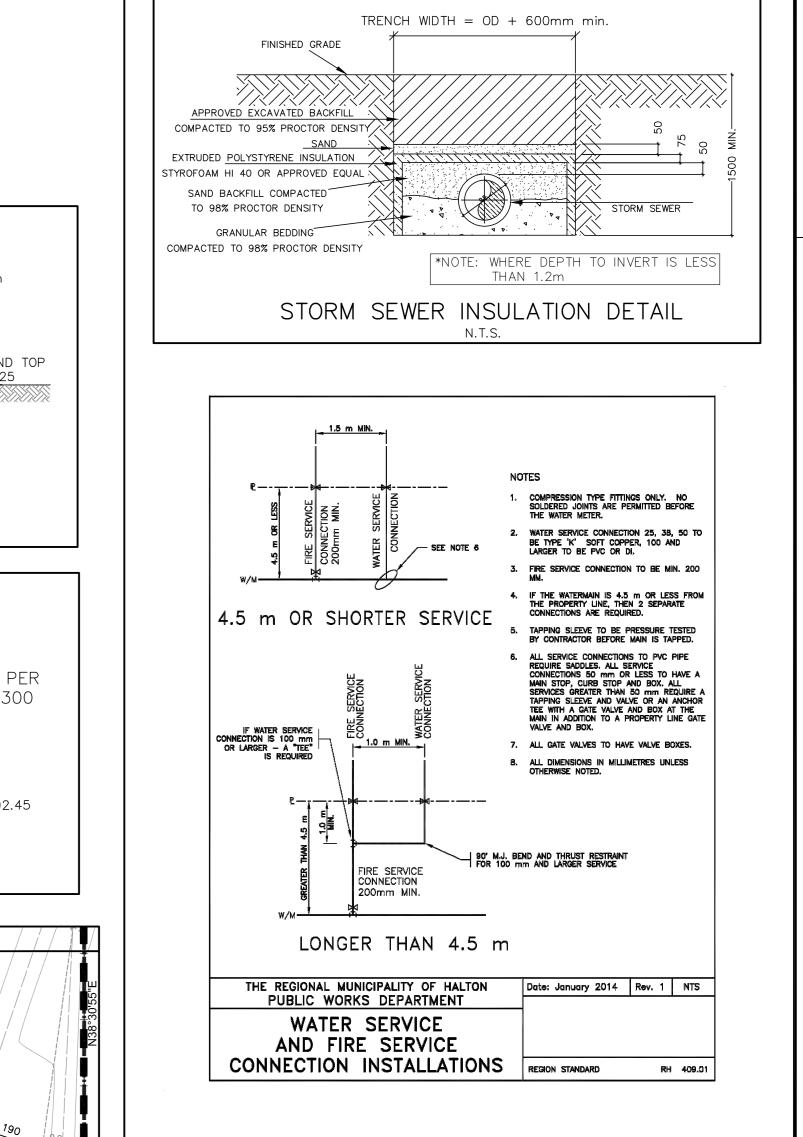
sued For Construction Date

HHAngus & Associates Limited Consuling Engineers 1127 Leslie Street, Toronto, ON, M3C 216 Canada www.hhangus.com | T 416 443 8200 | F 416 443 8290

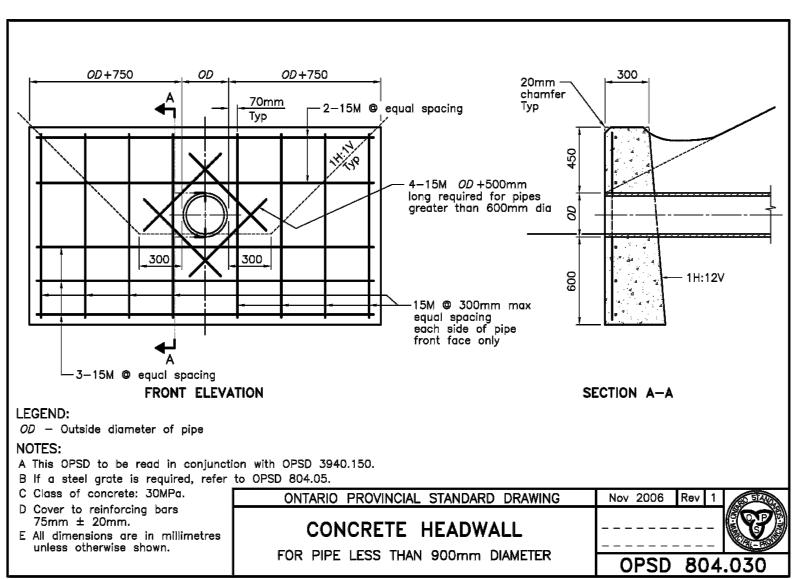

PROJECT OMEGA

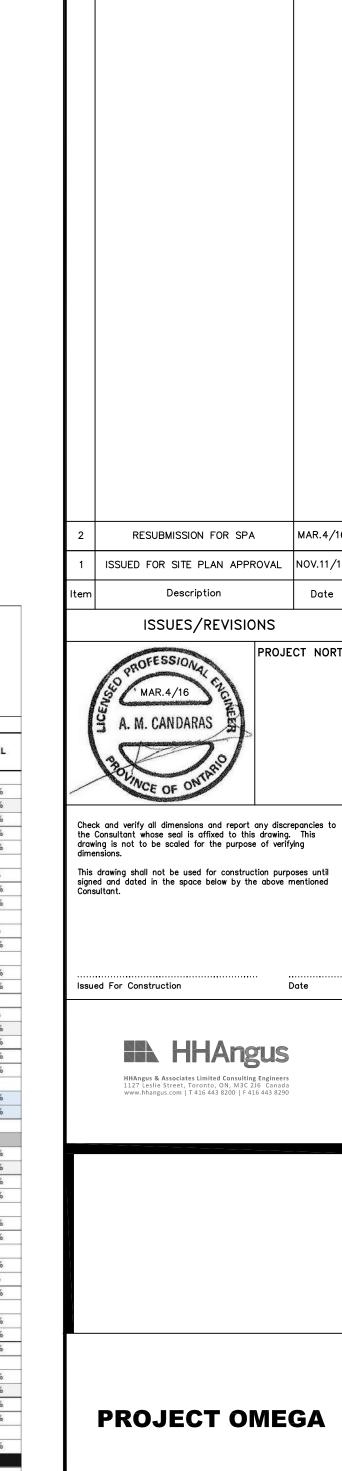

772 WINSTON CHURCHILL BLVD.

OAKVILLE, ONTARIO


Sheet Title:


EROSION & SEDIMENT CONTROL PLAN


STORMWATER MANAGEMENT POND



89.9m-300mm PVC SAN @ 0.3%

PROP. 8.0m _ SANITARY EASEMENT

Q = PEAK FLOW (L/s) A = AREA (ha) I = RAINFALL INTENSI C = RUNOFF COEFFICIE					\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	onsulting 551 Weston oodbridge (enginee rd., suite ont. L4L 9 20 Fax	: 203 R4 905-850-8				a= b= c=	353	0 8	$=\frac{\epsilon}{(t+1)^{n}}$	8
LOCATION		S	AREAS @ C	;						SEWER DA TA						T
SUBCATC HMENT ID	FROM	ТО	0.25	0.90	INDIV . 2.778*A C	A CCUM. 2.778*AC	TIME OF CONC.	RAINFALL INTENSITY	PEAK FLOW (L/s)	DIAMETER (mm)	SLOPE (%)	LENGTH (m)	CAPACITY (L/s) n=	VELOCITY (m/s)	TIME OF FLOW (min)	% F
WEST PORTION									<u></u>						()	
	DCB 10	MH 6		0.35	0.88	0.88	10.00	112.65	98.58	450	0.30	30.1	156.2	0.98	0.51	63
(1)	STM PLUG 1 DCB 9	MH 6		0.62	0.68	0.68	10.00	112.65	156.00 76.04	375 300	1.00	28.5 3.5	175.3 96.7	1.59	0.30	89 78
	CB 8	PPE		0.20	0.50	0.50	10.00	112.65	56.33	250	1.00	5.9	59.5	1.21	0.04	94
	MH 6	MH 5				2.05	10.51	109.65	380.80	675	0.30	98.1	460.4	1.29	1.27	82
					7.00											
	CB 7	RPE		0.02	0.05	0.05	10.00	112.65	5.63	250	1.00	2.7	59.5	1.21	0.04	9.
	CB 6 MH 5	PPE		0.05	0.13	0.13	10.00	112.65	14.08	250 675	1.00	2.8	59.5	1.21	0.04	23
	I INIT O	MH 4				2.23	11.78	102.89	384.95	610	0.30	58.5	460.4	1.29	0.76	83
	CB 5	APE .		0.02	0.05	0.05	10.00	112.65	5.63	250	1.00	2.6	59.5	1.21	0.04	9.
	MH 4	MH 3		Ī		2.28	12.54	99.27	381.87	675	0.30	75.7	460.4	1.29	0.98	82
	DCB 4 MH 3	PIPE MH 2		0.39	0.98	0.98 3.25	10.00 13.52	112.65 94.98	200.00 464.72	450 750	0.75	7.4 91.1	246.9 609.8	1.55 1.38	0.08	81 76
	IVIII	IVILIZ		<u> </u>		3.23	10.32	94.90	404.72	730	0.00	91.1	009.0	1.00	1.10	10
(2)	TRENCH DRAIN 3	MH 2		0.03	0.08	0.08	10.00	112.65	8.45	375	0.30	28.5	96.0	0.87	0.55	8.
(1)	STM PLUG 2	MH 2		0.62					156.00	375	1.00	28.8	175.3	1.59	0.30	89
	DCB 2	PPE		0.32	0.80	0.80	10.00	112.65	90.13	375	0.50	6.3	124.0	1.12	0.09	72
	DCB 1	RPE NULL		0.32	0.80	0.80	10.00	112.65	90.13	375	0.50	6.2	124.0	1.12	0.09	72
	MH 2	MH 1				4.93	14.62	90.63	758.37	900	0.30	88.2	991.5	1.56	0.94	76
(3)	INTERIM DICB	MH 1	1.93	0.13	1.67	1.67	10.00	112.65	187.61	525	0.50	32.0	304.1	1.40	0.38	61
	MH 1	HW1				6.59	15.56	87.22	886.86	1050	0.30	64.9	1495.7	1.73	0.63	59
	DCB 19	MH 12		0.25	0.63	0.63	10.00	112.65	70.41	375	0.30	30.1	96.0	0.87	0.58	73
(1)	STM PLUG 3	MH 12		0.62	0.03	0.00	10.00	112.00	156.00	375	1.00	28.2	175.3	1.59	0.30	89
	DCB 18	PPE		0.27	0.68	0.68	10.00	112.65	76.04	300	1.00	3.3	96.7	1.37	0.04	78
	MH 12	MH 11				1.30	10.58	109.27	298.07	675	0.30	98.5	460.4	1.29	1.28	64
	DOD 47	NAT 44		0.00	0.55	0.55	40.00	440.05	C4 OC		4.00	0.0	00.7	4.07	0.04	
	DCB 17 MH 11	MH 11 MH 10		0.22	0.55	0.55 1.85	10.00 11.85	112.65 102.54	61.96 345.71	300 675	1.00 0.30	3.6 58.0	96.7 460.4	1.37	0.04	64 75
	TWI II	WII 10				1.00	11.00	102.04	040.71	1 0,0	0.00	00.0	400.4	1.23	0.70	10
	CB 16	MH 10		0.05	0.13	0.13	10.00	112.65	14.08	250	1.00	1.7	59.5	1.21	0.02	23
	CB 15	PPE		0.02	0.05	0.05	10.00	112.65	5.63	250	1.00	1.7	59.5	1.21	0.02	9.
	MH 10	MH 9			/////////////////////////////////////	2.03	12.60	98.98	356.44	675	0.30	76.0	460.4	1.29	0.98	77
	CB 14	PPE PPE		0.10	0.25	0.25	10.00	112.65	28.16	250	1.00	4.7	59.5	1.21	0.06	47
	DCB 13	RPE RPE		0.10	0.60	0.60	10.00	112.65	67.59	300	1.00	7.5	96.7	1.37	0.09	69
	MH 9	MH 8				2.88	13.59	94.70	428.28	750	0.30	99.6	609.8	1.38	1.20	70
(4)	CB 12 STM PLUG 4	MH 8		0.08	0.20	0.20	10.00	112.65	22.53 156.00	250 375	0.30 1.00	30.0 28.8	32.6 175.3	0.66 1.59	0.75 0.30	69 89
(1)	CB 11	MH 8		0.62	0.45	0.45	10.00	112.65	50.70	250	1.00	6.3	175.3 59.5	1.59	0.30	85
	MH 8	MH 1		0.10	5.45	3.53	14.79	89.99	629.23	825	0.30	47.6	786.2	1.47	0.54	80
	MH 1	HW1				8.45	15.56	87.22	1361.09	1050	0.30	64.9	1495.7	1.73	0.63	91
SOUTHEAST PORTION																
300 IIILAGT PORTION	CB 22	MH 18		0.20	0.50	0.50	10.00	112.65	56.33	250	1.00	13.0	59.5	1.21	0.18	94
	CB 21	MH 18		0.10	0.25	0.25	10.00	112.65	28.16	250	1.00	34.4	59.5	1.21	0.47	47
(4)	MH 18	MH 17				0.75	10.47	109.86	82.40	375	0.50	29.9	124.0	1.12	0.44	66
(5)	MH 17	MH 16 (STC 1500)							56.00	250	2.00	6.0	84.1	1.71	0.06	66
	MH 16	MH 15				<u> </u>			56.00	250	1.00	21.2	59.5	1.21	0.29	94
(6)	INTERIM DICB 2	MH 19	3.25			<u>I</u>			139.00	450	0.30	38.8	156.2	0.98	0.66	89
(9)	MH 19	MH 15					<u> </u>		139.00	450	0.30	68.9	156.2	0.98	1.17	89
	MH 15	HW 3					0		195.00	525	0.30	8.1	235.6	1.09	0.12	82
									Dec 200 10 10		2		***************************************			o Daniel Million

772 WINSTON CHURCHILL BLVD.

OAKVILLE, ONTARIO

CONSTRUCTION NOTES

AND DETAILS PLAN

Project Number:

Appendix C – Qualifications of Assessors

Amanda Catenaro, M.E.Sc., P.Geo., QP_{ESA} (Project Manager)

Amanda Catenaro graduated from McMaster University in 2012 with a Bachelor of Science degree in Environmental Science, specialized in Hydrogeology and Climatology. She completed her Master of Environmental Science Degree from the University of Toronto in 2013. Ms. Catenaro has worked on a number of Phase One and Two environmental site assessments, delineation programs, ex-situ and insitu remediation projects, and peer reviews since joining EXP Services Inc. in 2013. Ms. Catenaro is a Professional Geologist (P.Geo.) in Ontario and is a Qualified Person (QP) for environmental site assessments under Ontario Regulation 153/04.

Ms. Catenaro has international experience working on environmental projects in the United Kingdom and United States of America, including undertaking desk studies, risk assessments, and remediation projects (strategy development, design, implementation and validation). She has closed-out projects in a variety of specialized sectors such as transportation, highway, rail, and water schemes.

Jon Keates, B.Sc, AdvDip (Environmental Technician)

Jon Keates graduated from the University of Waterloo in 2019 with a Bachelor of Science in Environmental Science and obtained an Advanced Diploma in Environmental Technology from Durham College in 2020. Since starting at EXP January 18, 2021, he has been involved in groundwater monitoring, borehole logging, test pitting, well installations, and Phase One and Two Environmental Site Assessments.

Sarah DiBattista, B.Sc, M.E.Sc. (Environmental Technician)

Sarah DiBattista graduated from the University of Toronto with an Honours Bachelor of Science, double majoring in Nutrition and Environment and Health and minoring in Environmental Studies. Following her graduation in 2019, Ms. DiBattista earned her Master of Environmental Science from the University of Toronto in 2021. Since joining EXP in January 2021, her fieldwork experiences have included overseeing the drilling of boreholes and installation of monitoring wells, the development and monitoring of said wells, conducting Phase One and Two Environmental Site Assessments, and aiding in project reporting efforts.

EXP Services Inc.
Phase Two Environmental Site Assessment
772 Winston Churchill Boulevard, Oakville, Ontario
MRK-00258896-A0
November 24, 2021

Appendix D – Sampling and Analysis Plan

Memorandum

Date:	October 19, 2021
То:	Mike Luong
From:	Amanda Catenaro
CC:	

RE: Soil and Sediment Sampling Program, 722-772 Winston Churchill Boulevard, Oakville, Ontario

Project Number: GTR-00258896-E0-C100
Date(s) of Field Work: October 19, 2021

Site Address: 722-772 Winston Churchill Boulevard, Oakville, Ontario
PM Contact: Amanda Catenaro, 905-695-3217 x 3684 or cell 647-937-700
Laboratory: AGAT Laboratories, Michael Conversano, 905-712-5074

LOCK BOX CODE FOR SITE ENTRY - 0000

PROJECT OBJECTIVES:

In order to upgrade the current work for the site to O.Reg. 153/04 Standards, additional delineation sampling and duplicate samples must be obtained. The following outstanding work is required:

- Horizontally delineate an organochlorine (OC) pesticides previously identified in stockpile #2, as shown on the attached figure. Also resample this location to determine if the exceedance is present.
- Assess off-site concentrations of metals in the sediment (upstream and downstream) as well as at the central portion of the on-site creek.
- Collect field duplicates for groundwater for metals and OC pesticides in any of the on-site wells (any of MW101, MW102, MW103, MW110) (we just need duplicate samples for QA/QC purposes)

Prior to Attending Site

1) Complete the Covid-19 screening form found at the following website: https://covid-19.ontario.ca/screening/worker/

Email the completed form to samiya.tabassum@exp.com .

2) Complete the EXP ENV - Field Level Risk Assessment (office.com)

Page 2
Confirmatory Soil, Sediment, and Groundwater Sampling
722-772 Winston Churchill Boulevard, Oakville, Ontario

3) Sign the project specific HASP form and save in the project folder

SCOPE OF WORK:

Soil and Sediment Sampling

All samples obtained will be "grab" samples, directly obtained from an auger, shovel, or hand trowel. Given that the proposed depth of excavation is ideally 0.3 -0.6 metres below ground surface (mbgs), please do your best to get as deep as possible. This information is summarized in tabular form below.

Table 1: Soil and Sediment Sampling Summary

Sampling Location (Grab Sample)	Depth of Sample	Sampling Analysis
Soil Samples		
GS1 + duplicate	1 sample from 0.3-0.6 mbgs	OCPs
	1 duplicate from 0.3-0.6 mbgs	
GS2	1 sample from 0.3-0.6 mbgs	OCPs
GS3	1 sample from 0.3-0.6 mbgs	OCPs
SP2-2021	1 sample from 0.3-0.6 mbgs (put	OCPs
	on separate chain on hold)	
Sediment Samples		
SED101	1 sample from surficial soil (0.1-0.5	Metals
	mbgs)	
SED102 + duplicate	1 sample from surficial soil (0.1-0.5	Metals
	mbgs)	
	1 duplicate from surficial soil	
SED103	1 sample from surficial soil (0.1-0.5	Metals
	mbgs)	

Groundwater Sampling

- One of the following wells will be sampled using **low flow techniques**; MW101, MW102, MW103, MW110. Please record stabilized field parameters for each monitor on sample form. Groundwater samples will be retrieved from each of the newly installed monitors, using either a peristaltic pump or bladder pump. Use proper sampling techniques to avoid introducing contaminants into the groundwater sample. Use proper decontamination techniques between monitors.
- If no obvious impacts are noted, purged water can be disposed onto a paved area of the site away from any catch basins.

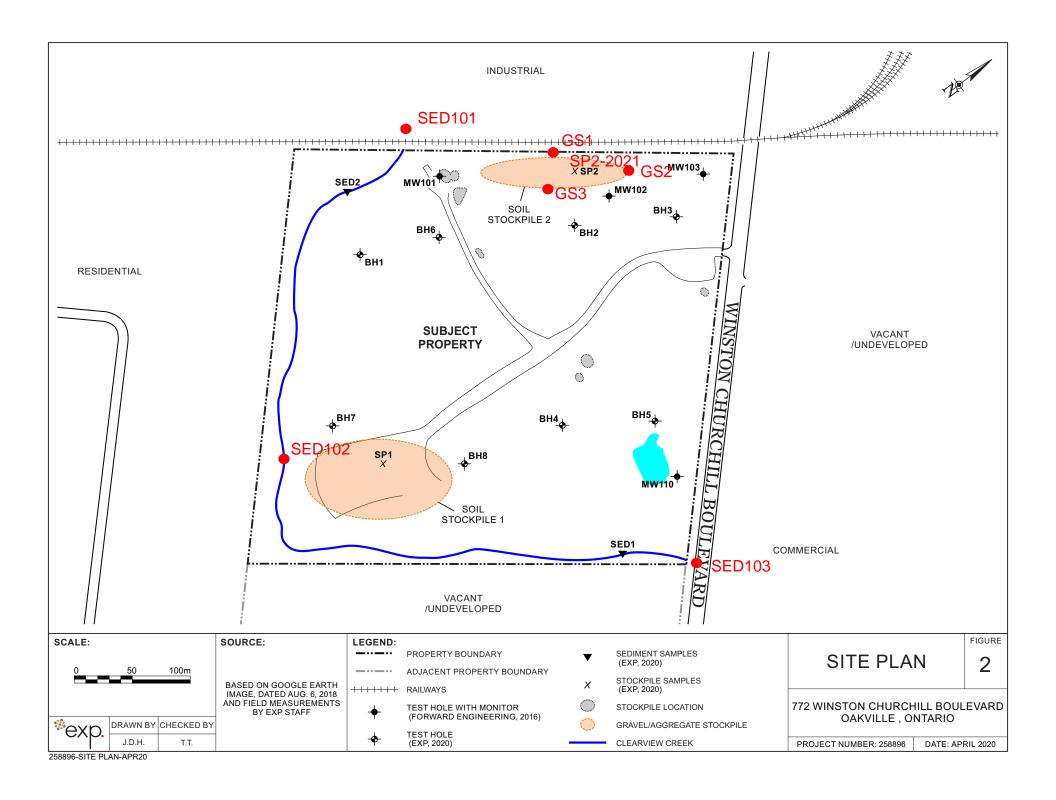
- Groundwater samples will be collected from the groundwater monitoring wells using new clean tubing.
 Collected groundwater samples will be submitted to AGAT for analysis of metals and OC Pesticides,
- Please communicate with the PM to arrange the sample pickup details for the groundwater samples. Groundwater samples should be submitted on a **regular** turn-around time. Please ensure samples are properly preserved with ice in a storage cooler maintained below 10°C.

Table 2: Groundwater Sampling Summary

Monitor ID	Screen Interval	Purpose	Parameters
MW101, MW102,	0.89 to 3.89 mbgs at	- Collect duplicates for	Metals, OCPs
MW103, MW110	MW110, 1.48 to 4.48	update to O.Reg	
(whichever you can find,	mbgs at MW101, 1.44 to	153/04 Standards	
if any) Any 1 of these is	4.44 mbgs at MW102 and		
okay	0.99 to 3.99 mbgs at		
	MW103		

Chain of Custody Information

- Project number **GTR-00258896-E0-C100**
- Soil Analysis OCPs
- Sediment Analysis Metals
- Groundwater Analysis Metals and OCPs
- Table 8 SCS RPI and medium to fine textured soils
- Regular 4 day TAT
- Please drop off samples at AGAT after sampling.


Health and Safety

- Review attached HASP
- Report any incidents, including near misses, to PM.

References

EXP Standard Operating Procedure, *Decontamination*, *version 2.0*, revision date June 22, 2017 EXP Standard Operating Procedure, *Field Screening*, *version 2.0*, revision date June 22, 2017 EXP Standard Operating Procedure, *Field QA/QC Programs*, *version 2.0*, revision date June 22, 2017 EXP Standard Operating Procedure, *Soil Descriptions*, *version 2.0*, revision date June 22, 2017 EXP Standard Operating Procedure, *Subsurface Soil Sampling*, *version 2.0*, revision date June 22, 2017

Appendix E – Borehole Logs

Project No.	MRK-00258896-A0													Dr	aw	/ing	No.		1	
Project:	Due Diligence Phase II En	vironme	ent	tal	Site	Ass	essr	ne	nt/F	rel	im	ina	ary	Ge	Str	æeln	Nic	a <u>l ľ</u>	hves	t <u>iglat</u> i
Location:	772 Winston Churchill Boulevard, Oakville, Ontario																			
	4816098.051 m N, 609739	.501 m	Ε																	
Date Drilled:	March 16, 2020				emical A	-	is ne, Tolu	ana	Ethyl	honze	no :	and \	(vlene	20	,		Dun	licate	Sample	
Drill Type:	CME 75, track mount		_	IN			and Inc			Denze	SIIC (anu z	PC		Р	olych			iphenyls	5
Datum:	,		_	ME PA		netals olvcv	clic Aro	matic	: Hvdr	ocarb	ons		PH VO						carbons Compou	(F1-F4) nds
Datum.			_				ochlorin							•	·	O.G.	J 0.8	Juli 10 C	, in pour	
G M B O L	Soil Description	ELEV.	D E P T H			ΝV	alue			Com	bust	ible V	′apou	r Read	gnit	(ppm	SAMPLES	% RECOV	S A M P L E	A N A L Y S
	n clayey silt TOPSOIL , some	95.45 7 ~95.4	0 0	L	20	4	0	60			25	5	50		75		S S	<u> </u>	l D	Š
∖ grave ∖odoui	el and sand, rootlets, moist, no r, no staining.		(Þ					OPPM	3								30	SS1	PAH PEST
Brow	n clavey SILT . some gravel and	~94.7															7			
Brow	, moist, no odour, no staining	~94.2	1	(D			()PPM]					Ħ			55	SS2	ING
	t, no odour, no staining to brown sandy SILT , some	-		Ħ											Ē		7/			
grave	el, some clay from 1.52 mbgs, cobbles from 1.52 mbgs, moist,	/ ~93.6	2		0				OPPM]					Ħ			60	SS3	
∦ ∤no od	dour, no staining.			Ħ			50-	3"							Ħ		7			
clav.	to brown sandy silt TILL , some trace to some gravel, trace						0		OPPM	3					F			30	SS4	PHC VOC
∐⊿⊢cobb	les, grey shale cobbles from 2.85 s, moist, wet from 2.29 to 2.37	~92.4	3				50- O	5"							Ħ		7	10	SS5	
 -\\mbgs	s, no odour, no staining.	~92.1															22			
Grey weathered SHALE bedrock. End of test hole at 3.35 mbgs.			1												Ē					
	E: All vapour readings taken		-	Ħ									+		Ħ					
usino	an RKI Eagle 2 petroleum														Ŧ					
nyara	ocarbon detector.		5												F					
															Ē					
															Ē					
			6												Ħ					
				Ħ											Ħ		Ħ			
			'												H					
			8	Ħ											Ħ					
															F					
			9	Ħ							+				Ħ		Ħ			
								++							I					
											\rightarrow									
			10								\parallel				f		Ħ			
								++-							Ħ		Ħ			
															F					
			11	Ħ									#		Ħ		Ħ			
															F					
1 1		1	- 1	+	++++	\perp	+++	+	+++	\perp	\rightarrow	+	+	\perp	+	\perp	\vdash	I	1	1

	exp Services Inc.
ex	Markham, Ontario
٠, ١	Telephone: 905.695.3217

Time	Water Level (m)	Depth to Cave (m)
	, ,	, ,

MRK-00258896-A0 Project No. Drawing No. Due Diligence Phase II Environmental Site Assessment/Preliminary Gesteehnical Investigation Project: 772 Winston Churchill Boulevard, Oakville, Ontario Location: 4816276.444 m N, 609813.041 m E **Chemical Analysis** March 16, 2020 Date Drilled: Benzene, Toluene, Ethylbenzene and Xylenes BTEX Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls Drill Type: CME 75, track mount Petroleum Hydrocarbons (F1-F4) MET PHC PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides G W L ELEV. RECOV N Value Soil Description m 8 cm of brown sand TOPSOIL, trace gravel, rootlets, wet, no odour, no 0 60 SS1 ~94.1 staining. Brown **SAND**, some gravel, wet, no odour, no staining. 70 SS2 -93.4 0PPM Grey sandy silt TILL, some gravel, trace cobbles, shale cobbles from 2.29 mbgs, moist, no odour, no staining. SS3 50 30 SS4 -91.9 10 Grey weathered SHALE bedrock. -91.7 End of test hole at 2.90 mbgs. NOTE: All vapour readings taken using an RKI Eagle 2 petroleum hydrocarbon detector.

	exp Services Inc.
exp	Markham, Ontario
٠, ١٠	Telephone: 905.695.3217

Time	Water Level (m)	Depth to Cave (m)
on completion	Ò.46	. ,

Project No.	MRK-00258896-A0	9									Dra	awing	No.		3			
Project:	Due Diligence Phase II Env	vironme	ent	tal Site	e As	sessr	ment/F	Prelir	nina	ary (Geo	steel	nnic	a <u>l I</u>	<u>ıve</u> s	t <u>ig</u> latior		
Location:	772 Winston Churchill Boul	evard,	0	akville	, Or	tario												
	4816887.024 m N, 609886.	353 m	Ε															
Date Drilled:	March 16, 2020			Chemica BTEX	-		iene Ethv	lbenzen	e and	Xvlene	s	*	Dun	licate S	Sample			
Drill Type:	CME 75, track mount			ING	Meta	s and Ind			penzene and Xylenes * Duplicate Sample PCB Polychlorinated Biphenyls PHC Petroleum Hydrocarbons (F1-F4)									
Datum:			_	MET PAH	Metal Polyc		matic Hydi	rocarbor	าร	PH0 VO					arbons ompour			
				PEST	Orgai	nochlorin	e Pesticide	es										
SY M BO L	Soil Description	ELEV. m	DEPTH	20		Value 40	60	Combu	ıstible \	∕apour 50		ng (ppn	SAMPLES	% RECOV	SAMPLE -D	424LY9-0		
∖ silt a	n of brown sand TOPSOIL , some // ind gravel, rootlets, wet, no odour, // taining.	94.47 ~94.4 .~93.7	0	0			0PPM							70	SS1	PAH PEST ING		
Brown to grey sandy SILT, trace gravel, moist, no odour, no staining. Brown SAND turning grey at 1.57 mbgs, some silt, trace to some gravel, trace cobbles from 0.76 to 1.57 mbgs, moist, no odour, no staining. Seam of grey sandy silt TILL from]	1				0PPM	33; 50-3 D	3"					60	SS2				
		2				O _{OPPM}							80	SS3	PHC VOC			
—1.68 ∏ \ no o	m of grey sandy slit TILL from to 1.98 mbgs, trace gravel, moist, – dour, no staining.	~91.9					OPPM	2						60	SS4			
cobbles, grey shale cobbles from 2.85 mbgs, moist, no odour, no staining.	~91.1	3			O 50-	0PPM						Z	30	SS5				
End	of test hole at 3.35 mbgs.		4															
using	E: All vapour readings taken g an RKI Eagle 2 petroleum ocarbon detector.		5															
			6															
			7															
			8															
			9															
			10															
			11															

e. ? .	exp Services Inc.
exp	Markham, Ontario
	Telephone: 905.695.3217

Time	Water Level (m)	Depth to Cave (m)
	, ,	, ,

MRK-00258896-A0 Project No. Drawing No. Due Diligence Phase II Environmental Site Assessment/Preliminary Gesteehnical Investigation Project: 772 Winston Churchill Boulevard, Oakville, Ontario Location: 4816144.263 m N, 609951.906 m E **Chemical Analysis** March 17, 2020 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls CME 75, track mount Drill Type: Petroleum Hydrocarbons (F1-F4) MET PHC PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides G W L ELEV. RECOV N Value Soil Description m 94.34 ~94.3 5 cm of grey clayey silt TOPSOIL, \some sand and gravel, rootlets, wet, 0 70 SS1 ∖no odour, no staining. Brown to grey sandy SILT, some clay and gravel, moist, no odour, no 80 SS2 staining. 0PPM О SS3 70 ~92.4 Brown to grey sandy silt TILL, some clay and gravel, moist, no odour, no 60 SS5 -90.8 Grey weathered SHALE bedrock. End of test hole at 3.66 mbgs. NOTE: All vapour readings taken using an RKI Eagle 2 petroleum hydrocarbon detector.

	exp Services Inc.
exp	Markham, Ontario
٠, ١,٠	Markham, Ontario Telephone: 905.695.3217

Time	Water Level (m)	Depth to Cave (m)
	, ,	, ,

MRK-00258896-A0 Project No. Drawing No. Due Diligence Phase II Environmental Site Assessment/Preliminary Gesteehnical Investigation Project: 772 Winston Churchill Boulevard, Oakville, Ontario Location: 4816263.507 m N, 610025.785 m E **Chemical Analysis** March 17, 2020 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls Drill Type: CME 75, track mount Petroleum Hydrocarbons (F1-F4) MET PHC PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides G W L ELEV. RECOV N Value Soil Description 93.76 ~93.7 8 cm of brown clayey silt TOPSOIL, some sand and gravel, rootlets, wet, 20 SS1 no odour, no staining. Brown to grey sandy SILT, some clay and gravel, moist, no odour, no SS2 staining. 0PPM 0 SS3 0PPM ~91.3 Grey sandy silt TILL, some 45 weathered shale and shale cobbles, some gravel from 3.05 to 3.66 mbgs, moist, no odour, no staining. SS5 Φ 55 40 SS6 -89.8 End of test hole at 3.96 mbgs. NOTE: All vapour readings taken using an RKI Eagle 2 petroleum hydrocarbon detector.

	exp Services Inc.
exp	Markham, Ontario
٠, ١٠	Telephone: 905.695.3217

Time	Water Level (m)	Depth to Cave (m)
	,	, ,

MRK-00258896-A0 Project No. Drawing No. Due Diligence Phase II Environmental Site Assessment/Preliminary Gesteehnical Investigation Project: 772 Winston Churchill Boulevard, Oakville, Ontario Location: 4816191.842 m N, 609707.063 m E **Chemical Analysis** March 16, 2020 Date Drilled: BTEX Benzene, Toluene, Ethylbenzene and Xylenes Duplicate Sample ING Metals and Inorganics Polychlorinated Biphenyls CME 75, track mount Drill Type: Petroleum Hydrocarbons (F1-F4) MET PHC PAH Polycyclic Aromatic Hydrocarbons VOC Volatile Organic Compounds Datum: PEST Organochlorine Pesticides G W L ELEV. RECOV N Value Soil Description m 5 cm of grey to brown clayey silt \TOPSOIL, some gravel, rootlets, wet, 0 SS1 -94.3 ∖no odour, no staining. Grey to brown clayey SILT, some -93.9 ∄sand, trace gravel, moist, no odour, no ⊬ 40 SS2 \\staining. 0PPM Brown **SAND**, trace to some gravel, lmoist, no odour, no staining. 0 50 SS3 Brown sandy silt TILL turning grey at 0PPM 1.67 mbgs, trace to some gravel and cobbles, grey boulder fragments from 1.52 to 1.57 mbgs, grey shale cobbles from 2.85 mbgs, moist, no odour, no O staining. SS5 Ф 30 50-6 **O** -91:091.0 10 SS6 Grey weathered SHALE bedrock. -90.8 End of test hole at 3.96 mbgs. NOTE: All vapour readings taken using an RKI Eagle 2 petroleum hydrocarbon detector.

	exp Services Inc.
· ex	Markham, Ontario
٠, ١	Telephone: 905.695.3217

Time	Water Level (m)	Depth to Cave (m)
on completion	3.81	

Project No.	MRK-00258896-A0	5 01				-	_ `							Dra	win	g N	ο.		7	
Project:	Due Diligence Phase II Env	vironme	ent	al :	Site	e As	se	ssn	nent/F	Pre	lim	ina	ry G	ee	tee	hn	ica	a <u>l Ir</u>	vesi	iglation
Location:	772 Winston Churchill Bou	levard,	O	akv	/ille	, Oı	nta	rio												
	4815998.685 m N, 609857	.653 m	E																	
Date Drilled:	March 17, 2020			Che		l Analy Benz			ene, Ethyl	lbenz	ene a	and Xv	/lenes		*	D	oilau	cate S	ample	
Drill Type:	CME 75, track mount			ING		Meta	ıls a		ganics				PCB			chlor	rinat	ted Bip	henyls	
Datum:			_	MET PAH PES	ł		cycli		natic Hydr Pesticide		oons		VOC						rbons (ompoun	
ş		Τ	р														S	%	S A	A N
G Y M B O L	Soil Description	ELEV.	D E P T H		20		Valu		0	Con	nbusti 25		pour F		ng (pp	om)	SAMPLES	RECOV	SAMP TH TO	N A L Y S
↑ 15 cm of brown to grey clayey silt ↑ TOPSOIL, some gravel, rootlets, wet, ↑ no odour, no staining.		95.36 ~95.3	0		Ο				OPPM									30	SS1	
Brown to grey sandy SILT, some gravel, moist, no odour, no staining. Brown SAND, trace gravel, some silt from 1.29 mbgs, moist, no odour, no staining. Brown to grey sandy SILT, some clay, trace to some gravel, moist, no odour, no staining.	el, moist, no odour, no staining. n SAND, trace gravel, some silt	~94.5	1		¢)			ОРРМ									50	SS2	
	~93.5	2	С)				OPPM									40	SS3		
	~92.5				0			оррм	2								80	SS4		
to soi mbgs	to brown sandy silt TILL, trace me gravel, some clay from 3.46 s, moist, no odour, no staining. weathered SHALE bedrock.	~91.9	3					50-3 Q 30-1	" 0PPM									30	SS5 SS6	
	of test hole at 3.66 mbgs.	~91.7	4																	
using	E: All vapour readings taken g an RKI Eagle 2 petroleum ocarbon detector.		5																	
			6																	
			7																	
			8																	
			9																	
			10																	
			11																	

0.00	exp Services Inc.
exp	Markham, Ontario
٠, ١٥٠	Telephone: 905.695.3217

Time	Water Level (m)	Depth to Cave (m)
	, ,	, ,

Project No.	MRK-00258896-A0	9											Dra	win	g N	lo.		8	
Project:	Due Diligence Phase II En	vironm	ent	tal :	Site	Ass	essn	nent/F	² rel	imiı	nar	y G	ec	tee	ahk	iica	a <u>l Ir</u>	V e s	t <u>ig</u> lation
Location:	772 Winston Churchill Bou	levard,	0	akv	⁄ille,	On	tario												
	4816048.414 m N, 609946	.679 m	E																
Date Drilled:	March 17, 2020			Che BTE		Analys Benze		ene, Ethy	lhenze	ne ar	nd XvI	enes		*	Г)unli	rate S	ample	
Drill Type:	CME 75, track mount			ING		Metals	and Inor					PCB			/chlo	rinat	ed Bip	henyls	
Datum:				MET PAF		Metals Polycy		natic Hydi	rocarb	ons		PHC VOC						irbons (ompoun	(F1-F4) nds
				PES	Т	Organo	ochlorine	Pesticide	es										
GW L BO L	Soil Description	ELEV. m	DEPTH		20	N V	alue 0 6	60	Com	bustib 25		oour F 50		ng (pp	om)	o∢≦n_illo	% RECOV	O- M-45>0	4 N 4 L Y 0 - 0
∖some	vn sandy SILT, trace clay and el, moist, no odour, no staining. y to brown sandy silt TILL, some thered shale and shale cobbles, e gravel, moist, no odour, no hing.	~94.36 ~94.36 ~92.8 ~91.5 ~91.0 ~90.9	1 2 3			0		0PPM]								45	SS1	PAH PEST ING
—grave Brow 0.76					Φ			0PPM									70	SS2	
∖ trace ⊟stain					0			OPPM									70	SS3	
grave							50-3 O	OPPM	2								30	SS4	
wea trace stair				3	1.0				50-1 G 0-3	0PPM									20 5
End	weathered SHALE bedrock. of test hole at 3.51 mbgs.		4																
using	E: All vapour readings taken g an RKI Eagle 2 petroleum ocarbon detector.		5																
			6																
			/																
			8																
			9																
			10																
			11																

	exp Services Inc.
ex	Markham, Ontario
٠, ١	Telephone: 905.695.3217

Time	VVater Level (m)	Depth to Cave (m)
dry on completion		, ,

Appendix F – Quality Assurance Quality Control (QAQC)

Quality Management, Control and Assurance

Project Quality Management

Sample collection was performed using generally accepted principles and with appropriate sampling equipment. Written field sampling procedures for groundwater developed by EXP Services Inc. (EXP) were used to ensure consistency in sample collection and preparation of samples for submission to the laboratory. The Ministry of Environment, Conservation and Parks (MECP) document entitled Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario, December 1996, was used as a reference.

The staff involved in the field sampling have participated in regular, ongoing EXP training programs and were qualified and experienced in collecting, describing, and preparing environmental samples for laboratory analysis.

Laboratory analysis was performed using generally accepted principles in accordance with the Protocol for Analytical Methods Used in the Assessment of Properties under Part XV.1 of the Environmental Protection Act (Protocol).

Data quality objectives for the parameters of concern were set to meet acceptable Reporting Detection Limits (RDLs) to achieve the goal of defining areas where such parameters are present at levels in excess of applicable generic Standards, as defined in Ontario Regulation (O. Reg.) 153/04, as amended to date, under the Environmental Protection Act. This included providing written instruction to the participating analytical laboratory describing the required analyses on the Chain of Custody prepared and delivered with the samples.

Field Quality Assurance/Quality Control

The Sampling and Analysis Plan was prepared and executed based on the findings of previous investigations, including the needs of the client during future site redevelopment activities, and on professional judgment at the time of the investigation.

Field observations were made and documented in a field book in accordance with generally accepted practices and with the procedures developed and utilized by EXP.

EXP field sampling Quality Assurance/ Quality Control (QA/QC) protocols are tailored to the investigation and include, where appropriate:

- the collection of at least one duplicate sample per site for groundwater (where three or more such samples are collected);
- where volatile organic chemical (VOC) analysis of groundwater is required, one trip blank shall be submitted for laboratory analysis with each submission;
- where VOC analysis is required, the collection of discrete samples directly into sample bottles with teflon-lined lids and immediate placement into a cooler with free ice to maintain the temperature at less than 10°C for transport to the laboratory;
- the use of dedicated equipment for groundwater sampling at different monitors and the thorough cleaning of soil sampling equipment between sample sites; and,
- where sampling for trace organics (organic chemicals with a criterion value of less than 1 µg/g and/or samples collected for determination of background trace organic concentrations), ensuring that neither the bare hand or latex glove comes into contact with the water as it is being placed into the laboratory sample container.

The results of the duplicate samples are presented along with the tabulated data in the report. Tabulated data are presented to a maximum of three significant digits where reported by the laboratory.

Laboratory Quality Assurance/Quality Control

All laboratory analyses were completed by AGAT laboratories (AGAT) an accredited laboratory for these tests. AGAT performed the work following formal written methods and procedures. These methods include all the minimum requirements as specified in the Protocol.

EXP has accepted the data provided by AGAT based on the assurance from AGAT that as a minimum, the following requirements have been met and documentation to demonstrate compliance can be produced on request:

- the method performance criteria identified in the Protocol were met;
- sample storage requirements, pre-analysis processing techniques, and holding times for all sample types as identified in the Protocol were met;
- the results of all laboratory QC samples were within statistically determined control limits and if not, reasons were provided;
- surrogate recoveries (for organic analyses) were monitored and recorded;
- details on the precision and accuracy of the data have been recorded and retained and are available from the laboratory should they be required as a result of an MECP audit;
- the analytical data were reported without blank correction (unless the correction was clearly identified on the Certificate of Analysis(COA)); and,
- a COA with all QA/QC sample data, including surrogate recoveries, has been received from the laboratory and is appended.

A total of one (1) duplicate soil sample (GS1-0), one (1) groundwater duplicate sample (MW1030), and one (1) sediment duplicate sample (SED102-0) were collected during the Site investigation. A summary of the sample and field duplicate samples collected are provided below.

The following soil sample/field duplicate sample pairs were collected and analyzed for the specified parameters:

• GS1/GS1-0 for Organochlorine Pesticides (OCs).

The following groundwater sample/field duplicate sample pair was collected and analyzed for the specified parameters:

MW103/MW1030 for OCs and metals.

The following sediment sample/field duplicate sample pair was collected and analyzed for the specified parameters:

SED102/SED102-0 for metals.

The relative percent differences (RPDs) for the original and field duplicate sample sets is provided in the Table F-1A, attached at the end of this Appendix. It should be noted that meaningful RPDs cannot be calculated if one or both of the analytical results are less than the reporting detection limits (RDLs) or if the average of the two sample concentrations are less than 5x the RDL.

The field duplicate sample results were quantitatively evaluated by calculating the RPD. For soil samples, the alert limit criteria for the field duplicate RPD is >30% for metals and OCs. The calculated RPD between the duplicate sample and the original sample for soil was below the applicable alert limit criteria for all of the parameters analyzed.

For groundwater samples, the alert limit criteria for the field duplicate RPD is >30% for OCs and metals. The calculated RPD between the duplicate sample and the original sample for groundwater was below the applicable alert limit criteria for all of the parameters analyzed.

For sediment samples, the alert limit criteria for the field duplicate RPD is >30% for metals. The calculated RPD between the duplicate sample and the original sample for sediment was below the applicable alert limit criteria for all of the parameters analyzed.

There were no comments/remarks on the COAs regarding the validity of the results for any of the samples analyzed.

No laboratory data quality issues were identified that would have a material effect on the interpretation of results presented in this report.

TABLE F-1A: SOIL FIELD DUPLICATES - RELATIVE PERCENT DIFFERENCES

Organochlorine Pesticides

772 Winston Churchill Boulevard, Oakville, Ontario October 2021 Page 1 of 1

Sample ID		Hand Pit	Duplicate of GS-1					
		GS1	GS1-0					
Depth (mbgs)		0.4	0.4					
Date Sampled	MDL*	19-Oct-21	19-Oct-21	RPD	Alert Limit			
Date Analyzed		25-Oct-21	25-Oct-21		ı			
Lab Job Number		21T817791	21T817791					
Lab Identifier		3106243	3106246					
Aldrin	0.005	< 0.005	< 0.005	nc	>30%			
Chlordane	0.007	<0.007	<0.007	nc	>30%			
DDD	0.007	0.023	0.027	nc	>30%			
DDE	0.007	<u>0.145</u>	0.193	28	>30%			
DDT	0.007	0.067	0.088	27	>30%			
Dieldrin	0.005	< 0.005	< 0.005	nc	>30%			
Endosulfan	0.005	< 0.005	< 0.005	nc	>30%			
Endrin	0.005	< 0.005	< 0.005	nc	>30%			
Gamma-Hexachlorocyclohexane	0.005	< 0.005	< 0.005	nc	>30%			
Heptachlor	0.005	< 0.005	< 0.005	nc	>30%			
Heptachlor Epoxide	0.005	< 0.005	< 0.005	nc	>30%			
Hexachlorobenzene	0.005	< 0.005	< 0.005	nc	>30%			
Hexachlorobutadiene	0.01	<0.01	<0.01	nc	>30%			
Hexachloroethane	0.01	<0.01	<0.01	nc	>30%			
Methoxychlor	0.005	<0.005	<0.005	nc	>30%			

NOTES:

All results in ppm (µg/g) and based on dry weight basis.

* Minimum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value. 'nc' means "not calculable", since one (or both) of the results are less than the RDL or the results are <5x the RDL. Exceedences of alert limits are shown in bold.

263362

TABLE F-1A: GROUND WATER FIELD DUPLICATES - RELATIVE PERCENT DIFFERENCES Metals, Hydride-Forming Metals, and Other Regulated Parameters

772 Winston Churchill Boulevard, Oakville, Ontario

October 2021	ara, Garvino, Gritain				Page 1 of 1			
Sample ID		Monitor MW103	Duplicate of MW103 MW103-0					
Screen Interval (mbgs)		0.99 - 3.99	0.99 - 3.99					
Date Sampled	MDL*	19-Oct-21	19-Oct-21	RPD	Alert Limit			
Date Analyzed		25-Oct-21	25-Oct-21					
Lab Job Number		21T817791	21T817791					
Lab Identifier		3106300	3106302					
Dissolved Antimony	1.0	<1.0	<1.0	nc	>30%			
Dissolved Arsenic	1.0	1.9	1.9	nc	>30%			
Dissolved Barium	2.0	92.1	90.9	1	>30%			
Dissolved Beryllium	0.50	<0.50	<0.50	nc	>30%			
Dissolved Boron	10.0	338	341	1	>30%			
Dissolved Cadmium	0.20	<0.20	<0.20	nc	>30%			
Dissolved Chromium	2.0	4.8	4.9	nc	>30%			
Dissolved Cobalt	0.50	0.85	0.92	nc	>30%			
Dissolved Copper	1.0	1.5	1.5	nc	>30%			
Dissolved Lead	0.50	2.2	1.3	nc	>30%			
Dissolved Molybdenum	0.50	<0.50	<0.50	nc	>30%			
Dissolved Nickel	3.0	<3.0	<3.0	nc	>30%			
Dissolved Selenium	1.0	2.9	2.4	nc	>30%			
Dissolved Silver	0.20	<0.20	<0.20	nc	>30%			
Dissolved Thallium	0.30	<0.30	<0.30	nc	>30%			
Dissolved Uranium	0.50	1.67	1.7	nc	>30%			
Dissolved Vanadium	0.40	<0.40	<0.40	nc	>30%			
Dissolved Zinc	5.0	6	<5.0	nc	>30%			

NOTES:

^{*} Minimum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value. 'nc' means "not calculable", since one (or both) of the results are less than the RDL or the results are <5x the RDL. Exceedences of alert limits are shown in **bold**.

263362

All results in ppb (µg/L).

TABLE F-1A: GROUND WATER FIELD DUPLICATES - RELATIVE PERCENT DIFFERENCES

772 Winston Churchill Boulevard, Oakville, Ontario
October 2021
Sample ID Page 1 of 1 Duplicate of MW103 Monitor

Campic ib		Wichito	Dupilouto of WITT 100					
		MW103	MW103-0					
Depth (mbgs)		0.99 - 3.99	0.99 - 3.99					
Date Sampled	MDL*	44488	44488	RPD	Alert Limit			
Date Analyzed		25-Oct-21	25-Oct-21					
Lab Job Number		21T817791	21T817791					
Lab Identifier		3106300	3106302		į .			
Aldrin	0.005	<0.01	<0.01	nc	>30%			
Chlordane	0.007	<0.04	<0.04	nc	>30%			
DDD	0.007	<0.05	<0.05	nc	>30%			
DDE	0.007	<0.01	<0.01	nc	>30%			
DDT	0.007	<0.04	<0.04	nc	>30%			
Dieldrin	0.005	<0.02	<0.02	nc	>30%			
Endosulfan	0.005	<0.05	<0.05	nc	>30%			
Endrin	0.005	< 0.05	< 0.05	nc	>30%			
Gamma-Hexachlorocyclohexane	0.005	<0.01	<0.01	nc	>30%			
Heptachlor	0.005	<0.01	<0.01	nc	>30%			
Heptachlor Epoxide	0.005	<0.01	<0.01	nc	>30%			
Hexachlorobenzene	0.005	<0.01	<0.01	nc	>30%			
Hexachlorobutadiene	0.01	<0.01	<0.01	nc	>30%			
Hexachloroethane	0.01	<0.01	<0.01	nc	>30%			
Methoxychlor	0.005	<0.04	<0.04	nc	>30%			

NOTES:

All results in ppm (µg/g) and based on dry weight basis.

* Minimum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value.
'nc' means "not calculable", since one (or both) of the results are less than the RDL or the results are <5x the RDL.
Exceedences of alert limits are shown in bold.

263362

TABLE F-1A: SEDIMENT FIELD DUPLICATES - RELATIVE PERCENT DIFFERENCES Metals, Hydride-Forming Metals, and Other Regulated Parameters

772 Winston Churchill Boulevard, Oakville, Ontario October 2021

0 00000: 202 :					1 ugo 1 01 1		
Sample ID		Grab Sample SED 102	Duplicate of SED 102 SED 102-0				
Date Sampled	MDL*	19-Oct-21	19-Oct-21	RPD	Alama Limaia		
Date Analyzed	IVIDL	25-Oct-21	25-Oct-21	RPD	Alert Limit		
Lab Job Number		21T817791	21T817791				
Lab Identifier		3106281	3106282				
Antimony	0.8	<0.8	<0.8	nc	>30%		
Arsenic	1	18	19	5	>30%		
Barium	2	53	53.3	1	>30%		
Beryllium	0.5	<0.4	0.4	nc	>30%		
Boron	5	<5	5	nc	>30%		
Boron (Hot Water Extractable)	0.10	-	-	nc	>30%		
Cadmium	0.5	<0.5	<0.5	nc	>30%		
Chromium	5	17	16	nc	>30%		
Cobalt	0.5	4	4.4	10	>30%		
Copper	1	22.2	22.1	0	>30%		
Lead	1	79	72	9	>30%		
Molybdenum	0.5	<0.5	<0.5	nc	>30%		
Nickel	1	10	10	0	>30%		
Selenium	0.4	0.8	<0.8	nc	>30%		
Silver	0.2	<0.5	<0.5	nc	>30%		
Thallium	0.4	<0.5	<0.5	nc	>30%		
Uranium	0.5	0.57	0.5	nc	>30%		
Vanadium	1	20.8	21.7	4	>30%		
Zinc	5	48	47	2	>30%		

NOTES:

All results in ppb (μ g/L).

^{*} Minimum Analytical Reporting Detection Limit (MDL) is listed. Refer to individual Certificate of Analyses for sample-specific Reporting Detection Limit (RDL) value. 'nc' means "not calculable", since one (or both) of the results are less than the RDL or the results are <5x the RDL. Exceedences of alert limits are shown in <u>bold</u>.

263362

Page 1 of 1

EXP Services Inc.

Phase Two Environmental Site Assessment

772 Winston Churchill Boulevard, Oakville, Ontario

MRK-00258896-A0

November 24, 2021

Appendix G – Certificates of Analysis

CLIENT NAME: EXP Services Inc

220 Commerce Valley Drive West, Suite 500

Markham, ON, ON L3T0A8

(905) 695-3217

ATTENTION TO: Corey Ferguson

PROJECT: MRK-00258896-A0

AGAT WORK ORDER: 20T586004

TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Mar 26, 2020

PAGES (INCLUDING COVER): 9 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

**!---

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This report shall not be reproduced or distributed, in whole or in part, without the prior written consent of AGAT Laboratories.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the information
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 9

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 20T586004 PROJECT: MRK-00258896-A0

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP Services Inc

SAMPLING SITE:

ATTENTION TO: Corey Ferguson

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

DATE RECEIVED: 2020-03-18								DATE REPORTED: 2020-03-26
		SAMPLE DESC	RIPTION:	MW110	MW101	MW102	MW103	
		SAMP	LE TYPE:	Water	Water	Water	Water	
		DATE S	AMPLED:	2020-03-18	2020-03-18	2020-03-18	2020-03-18	
Parameter	Unit	G/S	RDL	1036268	1036270	1036271	1036272	
=1 (C6 - C10)	μg/L		25	<25	<25	<25	<25	
1 (C6 to C10) minus BTEX	μg/L	420	25	<25	<25	<25	<25	
2 (C10 to C16)	μg/L	150	100	<100	<100	<100	<100	
3 (C16 to C34)	μg/L	500	100	<100	<100	<100	<100	
F4 (C34 to C50)	μg/L	500	100	<100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	μg/L	500	500	NA	NA	NA	NA	
Surrogate	Unit	Acceptable	e Limits					
Terphenyl	%	60-14	40	99	73	74	69	

Comments:

RDL - Reported Detection Limit: G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Ground

Water - All Types of Property Uses

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1036268-1036272 The C6-C10 fraction is calculated using Toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

NPopukoloj

AGAT WORK ORDER: 20T586004 PROJECT: MRK-00258896-A0 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP Services Inc

SAMPLING SITE:

ATTENTION TO: Corey Ferguson

SAMPLED BY:

0.	Reg. 153(511) - VOCs (Water)	

DATE RECEIVED: 2020-03-18								DATE REPORTED: 2020-03-26
		SAMPLE DESCRIPT	ΓΙΟΝ:	MW110	MW101	MW102	MW103	
		SAMPLE T	YPE:	Water	Water	Water	Water	
		DATE SAMP	LED: 2	2020-03-18	2020-03-18	2020-03-18	2020-03-18	
Parameter	Unit	G/S RI	DL	1036268	1036270	1036271	1036272	
Dichlorodifluoromethane	μg/L	590 0.	20	<0.20	<0.20	<0.20	<0.20	
Vinyl Chloride	μg/L	0.5 0.	17	<0.17	<0.17	<0.17	<0.17	
Bromomethane	μg/L	0.89 0.	20	<0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	μg/L	150 0.	40	<0.40	<0.40	<0.40	<0.40	
Acetone	μg/L	2700 1	.0	<1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethylene	μg/L	1.6 0.	30	<0.30	<0.30	<0.30	< 0.30	
Methylene Chloride	μg/L	50 0.	30	<0.30	< 0.30	< 0.30	< 0.30	
trans- 1,2-Dichloroethylene	μg/L	1.6 0.	20	<0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	μg/L	15 0.	20	<0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	μg/L	5 0.	30	<0.30	<0.30	< 0.30	< 0.30	
Methyl Ethyl Ketone	μg/L	1800 1	.0	<1.0	<1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	1.6 0.	20	<0.20	<0.20	<0.20	<0.20	
Chloroform	μg/L	2.4 0.	20	<0.20	<0.20	<0.20	<0.20	
1,2-Dichloroethane	μg/L	1.6 0.	20	<0.20	<0.20	<0.20	<0.20	
1,1,1-Trichloroethane	μg/L	200 0.	30	<0.30	< 0.30	< 0.30	< 0.30	
Carbon Tetrachloride	μg/L	0.79 0.	20	<0.20	<0.20	<0.20	<0.20	
Benzene	μg/L	5 0.	20	<0.20	<0.20	<0.20	<0.20	
1,2-Dichloropropane	μg/L	5 0.	20	<0.20	<0.20	<0.20	<0.20	
Trichloroethylene	μg/L	1.6 0.	20	<0.20	<0.20	<0.20	<0.20	
Bromodichloromethane	μg/L	16 0.	20	<0.20	<0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	640 1	.0	<1.0	<1.0	<1.0	<1.0	
1,1,2-Trichloroethane	μg/L	4.7 0.	20	<0.20	<0.20	<0.20	<0.20	
Toluene	μg/L	22 0.	20	<0.20	<0.20	<0.20	<0.20	
Dibromochloromethane	μg/L	25 0.	10	<0.10	<0.10	<0.10	<0.10	
Ethylene Dibromide	μg/L	0.2 0.	10	<0.10	<0.10	<0.10	<0.10	
Tetrachloroethylene	μg/L	1.6 0.	20	<0.20	<0.20	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	1.1 0.	10	<0.10	<0.10	<0.10	<0.10	
Chlorobenzene	μg/L	30 0.	10	<0.10	<0.10	<0.10	<0.10	
Ethylbenzene	μg/L	2.4 0.	10	<0.10	<0.10	<0.10	<0.10	
m & p-Xylene	μg/L	0.	20	<0.20	<0.20	<0.20	<0.20	

AGAT WORK ORDER: 20T586004 PROJECT: MRK-00258896-A0 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP Services Inc

SAMPLING SITE:

ATTENTION TO: Corey Ferguson

SAMPLED BY:

O. Reg. 153(511) - VOCs (Water)

							DATE REPORTED: 2020-03-26
S			MW110	MW101	MW102	MW103	
	_						
Unit	G/S	RDL	1036268	2020-03-18 1036270	2020-03-18 1036271	2020-03-18 1036272	
μg/L	25	0.10	<0.10	<0.10	<0.10	<0.10	
μg/L	5.4	0.10	<0.10	<0.10	<0.10	<0.10	
μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	
μg/L		0.10	<0.10	<0.10	<0.10	<0.10	
μg/L	59	0.10	<0.10	<0.10	<0.10	<0.10	
μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	
μg/L	3	0.10	<0.10	<0.10	<0.10	<0.10	
μg/L	0.5	0.30	< 0.30	< 0.30	< 0.30	<0.30	
μg/L	300	0.20	<0.20	<0.20	<0.20	<0.20	
μg/L	51	0.20	<0.20	<0.20	<0.20	<0.20	
Unit	Acceptab	le Limits					
% Recovery	50-1	40	94	95	104	104	
% Recovery	50-1	40	84	83	85	77	
	Unit µg/L µg/L	Unit SAMIDATE S Unit G / S μg/L 25 μg/L 5.4 μg/L 1 μg/L 59 μg/L 1 μg/L 3 μg/L 3.00 μg/L 51 Unit Acceptab % Recovery 50-1	μg/L 25 0.10 μg/L 5.4 0.10 μg/L 1 0.10 μg/L 59 0.10 μg/L 1 0.10 μg/L 3 0.10 μg/L 0.5 0.30 μg/L 300 0.20 μg/L 51 0.20 Unit Acceptable Limits	SAMPLE TYPE: Water DATE SAMPLED: 2020-03-18 Unit G / S RDL 1036268 μg/L 25 0.10 <0.10	SAMPLE TYPE: Water Water DATE SAMPLED: 2020-03-18 2020-03-18 Unit G / S RDL 1036268 1036270 μg/L 25 0.10 <0.10	SAMPLE TYPE: Water Water Water Water Water Water Water Day and the property of the part of the p	SAMPLE TYPE: Water Water Water Water Water Water Water Water DATE SAMPLED: 2020-03-18 2020-03-10 20.10

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Ground Water - All Types of Property Uses

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1036268-1036272 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

Analysis performed at AGAT Toronto (unless marked by *)

Quality Assurance

CLIENT NAME: EXP Services Inc

PROJECT: MRK-00258896-A0

SAMPLING SITE:

AGAT WORK ORDER: 20T586004

ATTENTION TO: Corey Ferguson

SAMPLED BY:

SAMPLING SITE:								SAMP	LED B	Y:							
			Trac	e Or	gani	cs Ar	nalys	is									
RPT Date: Mar 26, 2020				UPLICAT	E		REFERENCE MATERIAL			METHOD BLANK SPIKE			MAT	RIX SPI	IKE		
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value			Measured Limits		Recovery	Acceptabl Limits		Recovery	Acceptable Limits	
							Value	Lower	Upper		Lower	Upper		Lower	Upper		
O. Reg. 153(511) - VOCs (Water))																
Dichlorodifluoromethane	1031357		< 0.20	< 0.20	NA	< 0.20	86%	50%	140%	96%	50%	140%	100%	50%	140%		
Vinyl Chloride	1031357		< 0.17	< 0.17	NA	< 0.17	73%	50%	140%	100%	50%	140%	83%	50%	140%		
Bromomethane	1031357		< 0.20	< 0.20	NA	< 0.20	74%	50%	140%	71%	50%	140%	85%	50%	140%		
Trichlorofluoromethane	1031357		< 0.40	< 0.40	NA	< 0.40	90%	50%	140%	96%	50%	140%	78%	50%	140%		
Acetone	1031357		< 1.0	< 1.0	NA	< 1.0	104%	50%	140%	116%	50%	140%	97%	50%	140%		
1,1-Dichloroethylene	1031357		< 0.30	< 0.30	NA	< 0.30	92%	50%	140%	106%	60%	130%	90%	50%	140%		
Methylene Chloride	1031357		< 0.30	< 0.30	NA	< 0.30	116%	50%	140%	114%	60%	130%	87%	50%	140%		
trans- 1,2-Dichloroethylene	1031357		< 0.20	< 0.20	NA	< 0.20	106%	50%	140%	106%	60%	130%	76%	50%	140%		
Methyl tert-butyl ether	1031357		< 0.20	< 0.20	NA	< 0.20	114%	50%	140%	97%	60%	130%	115%	50%	140%		
1,1-Dichloroethane	1031357		< 0.30	< 0.30	NA	< 0.30	113%	50%	140%	114%	60%	130%	82%	50%	140%		
Methyl Ethyl Ketone	1031357		< 1.0	< 1.0	NA	< 1.0	70%	50%	140%	97%	50%	140%	84%	50%	140%		
cis- 1,2-Dichloroethylene	1031357		< 0.20	< 0.20	NA	< 0.20	100%	50%	140%	106%	60%	130%	105%	50%	140%		
Chloroform	1031357		< 0.20	< 0.20	NA	< 0.20	88%	50%	140%	114%	60%	130%	85%	50%	140%		
1,2-Dichloroethane	1031357		< 0.20	< 0.20	NA	< 0.20	112%	50%	140%	106%	60%	130%	116%	50%	140%		
1,1,1-Trichloroethane	1031357		< 0.30	< 0.30	NA	< 0.30	100%	50%	140%	118%	60%	130%	113%	50%	140%		
Carbon Tetrachloride	1031357		< 0.20	< 0.20	NA	< 0.20	94%	50%	140%	87%	60%	130%	92%	50%	140%		
Benzene	1031357		< 0.20	< 0.20	NA	< 0.20	78%	50%	140%	93%	60%	130%	99%	50%	140%		
1,2-Dichloropropane	1031357		< 0.20	< 0.20	NA	< 0.20	85%	50%	140%	78%	60%	130%	83%	50%	140%		
Trichloroethylene	1031357		< 0.20	< 0.20	NA	< 0.20	103%	50%	140%	99%	60%	140%	105%	50%	140%		
Bromodichloromethane	1031357		< 0.20	< 0.20	NA	< 0.20	91%	50%	140%	79%	60%	130%	82%	50%	140%		
Methyl Isobutyl Ketone	1031357		< 1.0	< 1.0	NA	< 1.0	102%	50%	140%	120%	50%	140%	97%	50%	140%		
1,1,2-Trichloroethane	1031357		< 0.20	< 0.20	NA	< 0.20	105%	50%	140%	105%	60%	130%	105%	50%	140%		
Toluene	1031357		< 0.20	< 0.20	NA	< 0.20	111%	50%	140%	107%	60%	130%	105%	50%	140%		
Dibromochloromethane	1031357		< 0.10	< 0.10	NA	< 0.10	83%	50%	140%	73%	60%	130%	92%	50%	140%		
Ethylene Dibromide	1031357		< 0.10	< 0.10	NA	< 0.10	94%	50%		98%	60%	130%	95%	50%	140%		
Tetrachloroethylene	1031357		< 0.20	< 0.20	NA	< 0.20	117%	50%	140%	106%	60%	130%	106%	50%	140%		
1,1,1,2-Tetrachloroethane	1031357		< 0.10	< 0.10	NA	< 0.10	104%	50%	140%	100%	60%		101%	50%	140%		
Chlorobenzene	1031357		< 0.10	< 0.10	NA	< 0.10	116%	50%	140%	119%	60%	130%	86%	50%	140%		
Ethylbenzene	1031357		< 0.10	< 0.10	NA	< 0.10	107%	50%	140%	110%	60%	130%	116%	50%	140%		
m & p-Xylene	1031357		< 0.20	< 0.20	NA	< 0.20	110%	50%		113%	60%	130%	107%		140%		
Bromoform	1031357		< 0.10	< 0.10	NA	< 0.10	90%	50%	140%	81%	60%	130%	83%	50%	140%		
Styrene	1031357		< 0.10	< 0.10	NA	< 0.10	96%		140%	104%		130%	102%		140%		
1,1,2,2-Tetrachloroethane	1031357		< 0.10	< 0.10	NA	< 0.10	94%		140%	103%		130%	101%		140%		
o-Xylene	1031357		< 0.10	< 0.10	NA	< 0.10	112%	50%		106%		130%	106%		140%		
1,3-Dichlorobenzene	1031357		< 0.10	< 0.10	NA	< 0.10	97%	50%	140%	109%	60%		107%	50%			
1,4-Dichlorobenzene	1031357		< 0.10	< 0.10	NA	< 0.10	93%	50%	140%	105%	60%	130%	101%	50%	140%		
1,2-Dichlorobenzene	1031357		< 0.10	< 0.10	NA	< 0.10	82%	50%		88%		130%	88%		140%		
1,3-Dichloropropene	1031357		< 0.10	< 0.10	NA	< 0.10	110%	50%		96%	60%		106%		140%		
n-Hexane	1031357		< 0.20	< 0.20	NA	< 0.20	86%		140%	87%		130%	86%		140%		
II-Hexaile	1031357		< 0.20	< 0.20	NA	< 0.20	00%	50%	140%	0/%	00%	130%	00%	50%	140%		

AGAT QUALITY ASSURANCE REPORT (V1)

Page 5 of 9

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

60% 140%

60% 140%

Quality Assurance

CLIENT NAME: EXP Services Inc AGAT WORK ORDER: 20T586004
PROJECT: MRK-00258896-A0 ATTENTION TO: Corey Ferguson

SAMPLING SITE: SAMPLED BY:

< 100

< 100

TW

TW

Trace Organics Analysis (Continued)																	
RPT Date: Mar 26, 2020		REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		KE							
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Blank Measured						Acceptable Limits		Recovery	Lin	ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper		
O. Reg. 153(511) - PHCs F1 - F4 (O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)																
F1 (C6 - C10)	1036270 1	1036270	< 25	< 25	NA	< 25	103%	60%	140%	104%	60%	140%	102%	60%	140%		
F2 (C10 to C16)		TW	< 100	< 100	NA	< 100	100%	60%	140%	110%	60%	140%	84%	60%	140%		

NA

NA

< 100

< 100

94%

89%

140%

140%

60%

60%

99%

95%

140%

140%

102%

106%

60%

60%

Comments: Tap water analysis has been performed as QC sample testing for duplicate and matrix spike due to insufficient sample volume. When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

< 100

< 100

Certified By:

F3 (C16 to C34)

F4 (C34 to C50)

Method Summary

CLIENT NAME: EXP Services Inc PROJECT: MRK-00258896-A0

SAMPLING SITE:

AGAT WORK ORDER: 20T586004 ATTENTION TO: Corey Ferguson

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Trace Organics Analysis	1						
F1 (C6 - C10)	VOL-91- 5010	modified from MOE PHC E3421	(P&T)GC/FID				
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC E3421	(P&T)GC/FID				
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC E3421	GC / FID				
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC E3421	GC / FID				
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC E3421	GC / FID				
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC E3421	BALANCE				
Terphenyl	VOL-91-5010	modified from MOE PHC E3421	GC/FID				
Dichlorodifluoromethane	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
Vinyl Chloride	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
Bromomethane	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
Trichlorofluoromethane	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
Acetone	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
1,1-Dichloroethylene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
Methylene Chloride	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
Methyl tert-butyl ether	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
1,1-Dichloroethane	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
Chloroform	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
1,2-Dichloroethane	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
Carbon Tetrachloride	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
Benzene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
1,2-Dichloropropane	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
Trichloroethylene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
Bromodichloromethane	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
Toluene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				

Method Summary

CLIENT NAME: EXP Services Inc PROJECT: MRK-00258896-A0

SAMPLING SITE:

AGAT WORK ORDER: 20T586004 ATTENTION TO: Corey Ferguson

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Dibromochloromethane	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS

5835 Coopers Avenue

Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com **Laboratory Use Only**

Cooler Quantity:

Work Order #: 20 7 58 600 4

Chain of Custody Recor	d If this is	a Drinking Wa	ter sample,	please use Dr	Inking Water Chain of Custody Form (p	otable v	vater c	onsumed	d by humar	s)		A	rrival	Temp	perat	ures:	3-	5	13		4.2	-
Report Information: Company: Exf Serv Contact: Correy Fer Address: 220 Correy Suite 110	merce V Mar	nc alley k ham	Dri	N (Plea	Regulatory Requirements: ase check all applicable boxes) Regulation 153/04 Table 3 Indicate One Sani	' Use tary	No Re		egulation		nent	Tu	oustoo Notes: urna	rou	nd '	Time		T) R	equire Business]No	Gnu	-
Phone: Reports to be sent to: 1. Email: 2. Email: 905 695 321 corey. Fergular andrea. fergular ferg	7 Fax:				☐ Region ☐ Storication Agriculture Check One)		-		rov. Water bjectives ther	(PWQO		Ru		3 Bu Days	sines			2 Busi Days	iness urcharges	⊔ Da	. ,	∍ss
Project Information: Project: MRK-0025 Site Location: Sampled By: AF J CF AGAT Quote #:	58896-	A0		R	Is this submission for a ecord of Site Condition? Yes No		Cer		1					TAT	is exc	lusive	of we	ekend dease	fication for the state of the s	atutory h	nolidays	- 0
Invoice Information: Company: Contact: Address: Email:	ls not provided, client w	ill be billed full price		В	Oil Paint Soil Sediment	Field Filtered - Metals, Hg, CrVI	Metals and Inorganics	53	ORPs: □B+WS □CI □CN □Cr ^{6·} □EC □FOC □Hg □pH □SAR	als Scan	Nutrients: TP DNH TKN	:: XQ VOC □ BTEX □ THM	L - F4				nochlorine Pesticides	U VOCS U ABNS U B(a)P				Hazardous or High Concentration (Y/
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	All Met	ORPs: [Full Metals S	Nutrient Nutrient □ No, [Volatiles:	PHCs F1 - F4	ABNS	PAHs	PCBs: ☐ Total	Organochlorine	Sewer U		100		Potentially
WW 110	18/3/20	pM	7	GW								X	Х									
WM 101	1		4									X	X						7		3740	
MW103		1		1								X	X									
	7																					
											ij									1		
Samples Relinquished By (Print Name and Sign): Andrea Pernance: Samples Hellinquished By (Print Name and Sign):	Indiana	Pate 8/3 Date	120	me 5 00pm me	Samples Received By (Print Name and Sign) Samples Received By (Print Name and Sign)	/					Date Date	I		ime ime				Pag		R18	5:09	p
Samples 9 imquished By (Print Name and Sign):		Date	Ти	me	Samples Received By (Print Name and Sign):						Date		Т	me			Nº:	T 1	01	19	3	
roument ID-01V-78 1511 016									Pink C	ony - C	ient I Y	wolle	Copy	- AG A	T T	White (Conv-	AGAT	Dat	edestion A	Janes 23: 201	19

CLIENT NAME: EXP Services Inc

220 Commerce Valley Drive West, Suite 500

Markham, ON, ON L3T0A8

(905) 695-3217

ATTENTION TO: Corey Ferguson

PROJECT: MRK-00258896-A0

AGAT WORK ORDER: 20T586006

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

DATE REPORTED: Mar 26, 2020

PAGES (INCLUDING COVER): 22 VERSION*: 2

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	
VERSION 2:Revised report issued March 26, 2020.	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This report shall not be reproduced or distributed, in whole or in part, without the prior written consent of AGAT Laboratories.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the information
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V2)

Page 1 of 22

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 20T586006 PROJECT: MRK-00258896-A0

CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO

CLIENT NAME: EXP Services Inc ATTENTION TO: Corey Ferguson SAMPLING SITE:

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

		CAMBLE DEC	CDIDTION	DUO CC4	DUO CC4	DIM CCO	DUO CC4	DUA CCA	CD4 4 00 am	CD2 2 0 5 0 7 ···	
Parameter	Unit		PLE TYPE: SAMPLED: RDL	BH3-SS1 Soil 2020-03-16 1036314	BH2-SS1 Soil 2020-03-16 1036316	BH1-SS2 Soil 2020-03-16 1036320	BH8-SS1 Soil 2020-03-17 1036322	BH4-SS1 Soil 2020-03-17 1036324	SP1-1-20cm Soil 2020-03-17 1036326	SP2-3-0.5-0.7m Soil 2020-03-18 1036327	
		1.3	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	
Antimony Arsenic	μg/g	1.3	1	<0.6 7		<0.6 4				<0.6 9	
Barium	μg/g	220	2	80	6 45	45	5 34	5 45	6 98	9 76	
	μg/g		0.5								
Beryllium	μg/g	2.5 36		0.7 12	<0.5	<0.5	0.8	<0.5	1.0 21	0.7 11	
Boron	μg/g		5 0.10		5	<5	15	8			
Boron (Hot Water Extractable)	μg/g	1.5		0.39	0.27	0.15	1.17	0.40	0.51	0.54	
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	μg/g	70	5	22	15	15	21	15	26	26	
Cobalt	µg/g	22	0.5	12.1	4.9	6.3	11.6	6.9	13.2	8.9	
Copper	μg/g	92	1	36	29	15	24	18	31	34	
Lead	μg/g	120	1	10	12	8	4	9	12	31	
Molybdenum	μg/g	2	0.5	0.8	<0.5	<0.5	<0.5	<0.5	1.1	0.7	
Nickel	µg/g	82	1	25	14	14	25	15	28	20	
Selenium	μg/g	1.5	0.4	<0.4	0.5	<0.4	<0.4	<0.4	<0.4	0.7	
Silver	μg/g	0.5	0.2	<0.2	0.2	<0.2	<0.2	<0.2	<0.2	0.3	
Thallium	μg/g	1	0.4	<0.4	< 0.4	<0.4	<0.4	<0.4	<0.4	<0.4	
Uranium	μg/g	2.5	0.5	<0.5	<0.5	<0.5	0.5	<0.5	1.2	0.9	
Vanadium	μg/g	86	1	32	24	27	30	24	41	32	
Zinc	μg/g	290	5	64	43	35	57	41	72	113	
Chromium, Hexavalent	μg/g	0.66	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Cyanide, Free	μg/g	0.051	0.040	<0.040	< 0.040	<0.040	<0.040	<0.040	<0.040	<0.040	
Mercury	μg/g	0.27	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.994	0.165	0.182	0.389	0.414	0.286	0.199	
Sodium Adsorption Ratio	NA	5	NA	2.14	1.08	0.279	1.43	1.11	1.02	0.122	
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.70	7.23	7.40	7.91	7.35	7.74	7.49	

AGAT WORK ORDER: 20T586006

PROJECT: MRK-00258896-A0

SAMPLED BY:

FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

TEL (905)712-5100

CLIENT NAME: EXP Services Inc ATTENTION TO: Corey Ferguson

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2020-03-18 DATE REPORTED: 2020-03-26

Comments:

SAMPLING SITE:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1036314-1036327 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated parameter.

Analysis performed at AGAT Toronto (unless marked by *)

CLIENT NAME: EXP Services Inc

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 20T586006 PROJECT: MRK-00258896-A0

O. Reg. 153(511) - OC Pesticides (Soil)

ATTENTION TO: Corey Ferguson

SAMPLED BY:

TEL (905)712-5100 FAX (905)712-5122

http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

DATE RECEIVED: 2020-03-18						I	DATE REPORT	ED: 2020-03-26
	SAMPLE DESCRIPTION:	BH3-SS1	BH2-SS1	BH1-SS1	BH8-SS1	BH4-SS1	SP1-1-20cm	SP2-3-0.5-0.7m
	SAMPLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil

	;	SAMPLE DES		BH3-SS1	BH2-SS1	BH1-SS1	BH8-SS1	BH4-SS1	SP1-1-20cm	SP2-3-0.5-0.7m	
			PLE TYPE:	Soil							
			SAMPLED:	2020-03-16	2020-03-16	2020-03-16	2020-03-17	2020-03-17	2020-03-17	2020-03-18	
Parameter	Unit	G/S	RDL	1036314	1036316	1036319	1036322	1036324	1036326	1036327	
Hexachloroethane	μg/g	0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Gamma-Hexachlorocyclohexane	μg/g	0.01	0.005	<0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	
Heptachlor	μg/g	0.05	0.005	< 0.005	<0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	
Aldrin	μg/g	0.05	0.005	< 0.005	<0.005	< 0.005	<0.005	<0.005	< 0.005	<0.005	
Heptachlor Epoxide	μg/g	0.05	0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	
Endosulfan	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	
Chlordane	μg/g	0.05	0.007	<0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	
DDE	μg/g	0.05	0.007	< 0.007	0.010	< 0.007	< 0.007	0.010	< 0.007	0.28	
DDD	μg/g	0.05	0.007	< 0.007	< 0.007	< 0.007	< 0.007	<0.007	< 0.007	0.056	
DDT	μg/g	1.4	0.007	<0.007	< 0.007	< 0.007	< 0.007	< 0.007	< 0.007	0.15	
Dieldrin	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	
Endrin	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	
Methoxychlor	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	
Hexachlorobenzene	μg/g	0.02	0.005	<0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	
Hexachlorobutadiene	μg/g	0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Moisture Content	%		0.1	14.6	13.8	16.7	7.8	10.8	17.8	17.8	
Surrogate	Unit	Acceptab	le Limits								
TCMX	%	50-1	140	102	95	75	95	83	108	88	
Decachlorobiphenyl	%	50-1	140	117	102	93	107	94	108	94	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Soil -Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1036314-1036327 Results are based on the dry weight of the soil.

DDT total is a calculated parameter. The calculated value is the sum of op'DDT and pp'DDT. DDD total is a calculated parameter. The calculated value is the sum of op'DDD and pp'DDD. DDE total is a calculated parameter. The calculated value is the sum of op'DDE and pp'DDE.

Endosulfan total is a calculated parameter. The calculated value is the sum of Endosulfan I and Endosulfan II.

Chlordane total is a calculated parameter. The calculated value is the sum of Alpha-Chlordane and Gamma-Chlordane.

Analysis performed at AGAT Toronto (unless marked by *)

CLIENT NAME: EXP Services Inc

Certificate of Analysis

AGAT WORK ORDER: 20T586006 PROJECT: MRK-00258896-A0

ATTENTION TO: Corey Ferguson

..... -- --

SAMPLED BY:

SAMPLING SITE:

O. Reg. 153(511) - PAHs (Soil)

DATE RECEIVED: 2020-03-18								[DATE REPORT	ED: 2020-03-26	
	;	SAMPLE DES	_	BH3-SS1	BH2-SS1	BH1-SS1	BH8-SS1	BH4-SS1	SP1-1-20cm	SP2-3-0.5-0.7m	
		DATES	PLE TYPE: SAMPLED:	Soil 2020-03-16	Soil 2020-03-16	Soil 2020-03-16	Soil 2020-03-17	Soil 2020-03-17	Soil 2020-03-17	Soil 2020-03-18	
Parameter	Unit	G/S	RDL	1036314	1036316	1036319	1036322	1036324	1036326	1036327	
Naphthalene	μg/g	0.09	0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	
Acenaphthylene	μg/g	0.093	0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	
Acenaphthene	μg/g	0.072	0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	
Fluorene	μg/g	0.19	0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	
Phenanthrene	μg/g	0.69	0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	
Anthracene	μg/g	0.22	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
Fluoranthene	μg/g	0.69	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.09	
Pyrene	μg/g	1	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.07	
Benz(a)anthracene	μg/g	0.36	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
Chrysene	μg/g	2.8	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	
Benzo(b)fluoranthene	μg/g	0.47	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.07	
Benzo(k)fluoranthene	μg/g	0.48	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	0.05	
Benzo(a)pyrene	μg/g	0.3	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
Indeno(1,2,3-cd)pyrene	μg/g	0.23	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
Dibenz(a,h)anthracene	μg/g	0.1	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
Benzo(g,h,i)perylene	μg/g	0.68	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
2-and 1-methyl Naphthalene	μg/g	0.59	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
Moisture Content	%		0.1	14.6	14.8	16.7	7.8	10.8	17.8	17.8	
Surrogate	Unit	Acceptab	le Limits								
Naphthalene-d8	%	50-1	40	95	93	85	90	100	90	65	
Acenaphthene-d10	%	50-1	40	104	106	95	99	109	99	72	
Chrysene-d12	%	50-1	40	109	114	104	101	113	110	77	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1036314-1036327 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Jung

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

AGAT WORK ORDER: 20T586006 PROJECT: MRK-00258896-A0

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP Services Inc

SAMPLING SITE:

ATTENTION TO: Corey Ferguson

SAMPLED BY:

O. Reg. 153(511) - PHC:	F1 - F4 ((-BTEX)	(Soil)
-------------------------	-----------	---------	--------

DATE RECEIVED: 2020-03-18									DATE REPORTED: 2020-03-26
		SAMPLE DES	CRIPTION: PLE TYPE:	BH3-SS3 Soil	BH2-SS2 Soil	BH1-SS4 Soil	BH8-SS5 Soil	BH4-SS5 Soil	
Parameter	Unit	DATE S G/S	SAMPLED: RDL	2020-03-16 1036315	2020-03-16 1036317	2020-03-16 1036321	2020-03-17 1036323	2020-03-17 1036325	
F1 (C6 to C10)	μg/g		5	<5	<5	<5	<5	<5	
F1 (C6 to C10) minus BTEX	μg/g	25	5	<5	<5	<5	<5	<5	
F2 (C10 to C16)	μg/g	10	10	<10	<10	<10	<10	<10	
F3 (C16 to C34)	μg/g	240	50	<50	<50	<50	<50	<50	
F4 (C34 to C50)	μg/g	120	50	<50	<50	<50	<50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	120	50	NA	NA	NA	NA	NA	
Moisture Content	%		0.1	9.5	14.2	18.7	10.3	10.1	
Surrogate	Unit	Acceptab	le Limits						
Terphenyl	%	60-1	40	88	95	100	108	91	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1036315-1036325 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 20T586006 PROJECT: MRK-00258896-A0

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP Services Inc

SAMPLING SITE:

ATTENTION TO: Corey Ferguson

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Soil)

DATE RECEIVED: 2020-03-18 DATE REPORTED: 2020-03-26

		SAMPLE DESC	RIPTION:	SP1-1-20cm	SP2-3-0.5-0.7m	
		SAMP	LE TYPE:	Soil	Soil	
		DATE S	AMPLED:	2020-03-17	2020-03-18	
Parameter	Unit	G/S	RDL	1036326	1036327	
F1 (C6 to C10)	μg/g		5	<5	<5	
F1 (C6 to C10) minus BTEX	μg/g	25	5	<5	<5	
F2 (C10 to C16)	μg/g	10	10	<10	<10	
F2 (C10 to C16) minus Naphthalene	μg/g		10	<10	<10	
F3 (C16 to C34)	μg/g	240	50	<50	<50	
F3 (C16 to C34) minus PAHs	μg/g		50	<50	<50	
F4 (C34 to C50)	μg/g	120	50	<50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	120	50	NA	NA	
Moisture Content	%		0.1	17.8	17.8	
Surrogate	Unit	Acceptabl	e Limits			
Terphenyl	%	60-1	40	103	102	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Soil -Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1036326-1036327 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene,

Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 20T586006 PROJECT: MRK-00258896-A0 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP Services Inc

SAMPLING SITE:

ATTENTION TO: Corey Ferguson

SAMPLED BY:

O. Reg. 153(511) - VOCs (Soil)

DATE RECEIVED: 2020-03-18									DATE REPORT	ED: 2020-03-26	
		SAMPLE DESCRI	PTION:	BH3-SS3	BH2-SS2	BH1-SS4	BH8-SS5	BH4-SS5	SP1-1-20cm	SP2-3-0.5-0.7m	
		SAMPLE	TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
		DATE SAM	IPLED:	2020-03-16	2020-03-16	2020-03-16	2020-03-17	2020-03-17	2020-03-17	2020-03-18	
Parameter	Unit	G/S I	RDL	1036315	1036317	1036321	1036323	1036325	1036326	1036327	
Dichlorodifluoromethane	μg/g	0.05	0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	<0.02	< 0.02	< 0.02	<0.02	<0.02	< 0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	
Trichlorofluoromethane	ug/g	0.25	0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	
Acetone	ug/g	0.5	0.50	< 0.50	< 0.50	< 0.50	<0.50	<0.50	< 0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	
Methylene Chloride	ug/g	0.05	0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
1,1-Dichloroethane	ug/g	0.05	0.02	< 0.02	<0.02	<0.02	<0.02	< 0.02	< 0.02	<0.02	
Methyl Ethyl Ketone	ug/g	0.5	0.50	< 0.50	<0.50	< 0.50	<0.50	<0.50	< 0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	0.05	0.02	< 0.02	<0.02	<0.02	<0.02	<0.02	< 0.02	<0.02	
Chloroform	ug/g	0.05	0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	
1,1,1-Trichloroethane	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
Benzene	ug/g	0.02	0.02	< 0.02	< 0.02	< 0.02	<0.02	< 0.02	< 0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	
Trichloroethylene	ug/g	0.05	0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03	<0.03	
Bromodichloromethane	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	0.5	0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	
Toluene	ug/g	0.2	0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
Dibromochloromethane	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	< 0.04	< 0.04	<0.04	<0.04	<0.04	<0.04	<0.04	
Tetrachloroethylene	ug/g	0.05	0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	
Chlorobenzene	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
Ethylbenzene	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	
m & p-Xylene	ug/g	(0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	

AGAT WORK ORDER: 20T586006 PROJECT: MRK-00258896-A0

ATTENTION TO: Corey Ferguson

SAMPLED BY:

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

CLIENT NAME: EXP Services Inc

SAMPLING SITE:

O. Reg. 153(511) - VOCs (Soil)

DATE RECEIVED: 2020-03-18								1	DATE REPORT	ED: 2020-03-26	
	S	SAMPLE DES	CRIPTION:	BH3-SS3	BH2-SS2	BH1-SS4	BH8-SS5	BH4-SS5	SP1-1-20cm	SP2-3-0.5-0.7m	
		SAM	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	Soil	Soil	
		DATE	SAMPLED:	2020-03-16	2020-03-16	2020-03-16	2020-03-17	2020-03-17	2020-03-17	2020-03-18	
Parameter	Unit	G/S	RDL	1036315	1036317	1036321	1036323	1036325	1036326	1036327	
Bromoform	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	
Styrene	ug/g	0.05	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	
o-Xylene	ug/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
,3-Dichlorobenzene	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
,4-Dichlorobenzene	ug/g	0.05	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05	
,2-Dichlorobenzene	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
(ylenes (Total)	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	
,3-Dichloropropene (Cis + Trans)	μg/g	0.05	0.04	< 0.04	<0.04	<0.04	< 0.04	< 0.04	< 0.04	<0.04	
n-Hexane	μg/g	0.05	0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	
Surrogate	Unit	Acceptab	le Limits								
oluene-d8	% Recovery	50-	140	102	101	101	103	103	100	102	
I-Bromofluorobenzene	% Recovery	50-1	140	83	85	84	85	85	84	83	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Soil -Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1036315-1036327 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

Analysis performed at AGAT Toronto (unless marked by *)

Guideline Violation

AGAT WORK ORDER: 20T586006 PROJECT: MRK-00258896-A0 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP Services Inc

ATTENTION TO: Corey Ferguson

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
1036314	BH3-SS1	ON T8 S RPI/ICC	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	0.994
1036327	SP2-3-0.5-0.7m	ON T8 S RPI/ICC	O. Reg. 153(511) - OC Pesticides (Soil)	DDD	μg/g	0.05	0.056
1036327	SP2-3-0.5-0.7m	ON T8 S RPI/ICC	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	μg/g	0.05	0.28

Quality Assurance

CLIENT NAME: EXP Services Inc AGAT WORK ORDER: 20T586006
PROJECT: MRK-00258896-A0 ATTENTION TO: Corey Ferguson

SAMPLED BY:

Soil Analysis															
RPT Date: Mar 26, 2020			г	OUPLICATE			REFEREN	NCE MA	TFRIAI	METHOD	BI ANK	SPIKE	МАТ	RIX SPI	KF
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD Method Blank M	Measured	Acce	Acceptable Limits Recovery		Acce	ptable nits	Recovery	Acce	ptable nits	
PARAMETER	Batch	ld	Dup#1	Dup #2			Value	Lower	Upper	Recovery	Lower	Upper	Recovery	Lower	Upper
O. Reg. 153(511) - Metals & Inor	ganics (Soil)							•							•
Antimony	1036314 1	036314	<0.8	<0.8	NA	< 0.8	146%	70%	130%	99%	80%	120%	87%	70%	130%
Arsenic	1036314 1	036314	7	7	0.0%	< 1	113%	70%	130%	105%	80%	120%	101%	70%	130%
Barium	1036314 1	036314	80	82	2.5%	< 2	113%	70%	130%	104%	80%	120%	96%	70%	130%
Beryllium	1036314 1	036314	0.7	0.7	NA	< 0.5	101%	70%	130%	94%	80%	120%	93%	70%	130%
Boron	1036314 1	036314	12	12	NA	< 5	99%	70%	130%	105%	80%	120%	100%	70%	130%
Boron (Hot Water Extractable)	1036314 1	036314	0.39	0.39	NA	< 0.10	96%	60%	140%	97%	70%	130%	94%	60%	140%
Cadmium	1036314 1	036314	<0.5	<0.5	NA	< 0.5	109%	70%	130%	99%	80%	120%	96%	70%	130%
Chromium	1036314 1	036314	22	23	NA	< 5	106%	70%	130%	98%	80%	120%	95%	70%	130%
Cobalt	1036314 1	036314	12.1	12.1	0.0%	< 0.5	96%	70%	130%	101%	80%	120%	93%	70%	130%
Copper	1036314 1	036314	36	36	0.0%	< 1	90%	70%	130%	99%	80%	120%	80%	70%	130%
Lead	1036314 1	036314	10	10	0.0%	< 1	108%	70%	130%	90%	80%	120%	86%	70%	130%
Molybdenum	1036314 1	036314	0.8	0.8	NA	< 0.5	97%	70%	130%	101%	80%	120%	97%	70%	130%
Nickel	1036314 1	036314	25	25	0.0%	< 1	96%	70%	130%	103%	80%	120%	91%	70%	130%
Selenium	1036314 1	036314	< 0.4	<0.4	NA	< 0.4	97%	70%	130%	102%	80%	120%	97%	70%	130%
Silver	1036314 1	036314	<0.2	<0.2	NA	< 0.2	106%	70%	130%	101%	80%	120%	91%	70%	130%
Thallium	1036314 1	036314	<0.4	<0.4	NA	< 0.4	93%	70%	130%	99%	80%	120%	94%	70%	130%
Uranium	1036314 1	036314	<0.5	< 0.5	NA	< 0.5	99%	70%	130%	101%	80%	120%	101%	70%	130%
Vanadium	1036314 1	036314	32	32	0.0%	< 1	105%	70%	130%	102%	80%	120%	100%	70%	130%
Zinc	1036314 1	036314	64	65	1.6%	< 5	101%	70%	130%	104%	80%	120%	95%	70%	130%
Chromium, Hexavalent	1035803		< 0.2	< 0.2	NA	< 0.2	89%	70%	130%	89%	80%	120%	82%	70%	130%
Cyanide, Free	1035801		<0.040	<0.040	NA	< 0.040	87%	70%	130%	103%	80%	120%	97%	70%	130%
Mercury	1036314 1	036314	<0.10	<0.10	NA	< 0.10	112%	70%	130%	100%	80%	120%	104%	70%	130%
Electrical Conductivity (2:1)	1036314 1	036314	0.994	0.986	0.8%	< 0.005	116%	80%	120%						
Sodium Adsorption Ratio	1036314 1	036314	2.14	2.15	0.5%	NA									
pH, 2:1 CaCl2 Extraction	1037342		7.51	7.48	0.4%	NA	101%	80%	120%						

Comments: NA signifies Not Applicable.

SAMPLING SITE:

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Antimony Reference recovery is outside method's acceptance limit by more than an absolute maximum of 10% however, all other QCs i.e. duplicate, blank, blank spike and matrix spike are within method's QC acceptance criteria.

Quality Assurance

CLIENT NAME: EXP Services Inc PROJECT: MRK-00258896-A0

SAMPLED BY:

AGAT WORK ORDER: 20T586006

ATTENTION TO: Corey Ferguson

SAMPLING SITE: **Trace Organics Analysis DUPLICATE** REFERENCE MATERIAL METHOD BLANK SPIKE RPT Date: Mar 26, 2020 MATRIX SPIKE Method Acceptable Acceptable Acceptable Sample Massurad Blank Limits Dup #2 **PARAMETER** Batch Dup #1 RPD Recovery Recovery Value Lower Upper Lower Upper Lower Upper O. Reg. 153(511) - PAHs (Soil) 140% Naphthalene < 0.05 NA < 0.05 50% 140% 97% 140% 101% 50% 1014992 < 0.05 116% 50% 140% Acenaphthylene 1014992 < 0.05 < 0.05 NA < 0.05 112% 50% 140% 96% 50% 140% 99% 50% Acenaphthene 1014992 < 0.05 < 0.05 NΑ < 0.05 119% 50% 140% 96% 50% 140% 96% 50% 140% 50% Fluorene 1014992 < 0.05 < 0.05 NΑ < 0.05 114% 50% 140% 97% 50% 140% 95% 140% 1014992 < 0.05 < 0.05 106% 50% 140% 95% 140% 91% 50% 140% Phenanthrene < 0.05 NA 50% 1014992 < 0.05 101% 50% 140% 86% 140% 84% 50% 140% Anthracene < 0.05 NA < 0.05 50% Fluoranthene 1014992 < 0.05 < 0.05 NA < 0.05 112% 50% 140% 95% 50% 140% 92% 50% 140% Pyrene 1014992 < 0.05 < 0.05 NA < 0.05 111% 50% 140% 96% 50% 140% 93% 50% 140% Benz(a)anthracene 1014992 < 0.05 < 0.05 NA < 0.05 110% 50% 140% 82% 50% 140% 83% 50% 140% 97% 140% 1014992 < 0.05 < 0.05 NA < 0.05 119% 50% 140% 50% 95% 50% 140% Chrysene Benzo(b)fluoranthene < 0.05 99% 92% 140% 74% 140% 1014992 < 0.05 NA < 0.0550% 140% 50% 50% < 0.05 Benzo(k)fluoranthene 115% 50% 95% 101% 140% 1014992 < 0.05 < 0.05 NA 140% 50% 140% 50% 140% Benzo(a)pyrene 1014992 < 0.05 < 0.05 NA < 0.05 117% 50% 140% 92% 50% 140% 88% 50% < 0.05 Indeno(1,2,3-cd)pyrene 1014992 < 0.05 < 0.05 NA 118% 50% 140% 89% 50% 140% 87% 50% 140% Dibenz(a,h)anthracene 1014992 < 0.05 < 0.05 NA < 0.05 111% 50% 140% 85% 50% 140% 89% 50% 140% Benzo(g,h,i)perylene 1014992 < 0.05 < 0.05 NA < 0.05 112% 50% 140% 86% 50% 140% 84% 50% 140% O. Reg. 153(511) - OC Pesticides (Soil) Hexachloroethane 1025827 < 0.01 < 0.01 NA < 0.01 93% 50% 140% 94% 50% 140% 90% 50% 140% Gamma-Hexachlorocyclohexane 1025827 < 0.005 < 0.005 104% 50% 98% 102% NA < 0.005 140% 50% 140% 50% 140% 140% Heptachlor 1025827 < 0.005 < 0.005 NA < 0.005 92% 50% 140% 102% 50% 140% 103% 50% Aldrin 1025827 < 0.005 < 0.005 NA < 0.005 102% 50% 140% 104% 50% 140% 106% 50% 140% Heptachlor Epoxide 1025827 < 0.005 < 0.005 < 0.005 103% 50% 140% 103% 140% 105% 50% 140% NA 50% Endosulfan 1025827 < 0.005 < 0.005 NA < 0.005 102% 50% 140% 99% 50% 140% 103% 50% 140% Chlordane 1025827 < 0.007< 0.007NA < 0.007100% 50% 140% 104% 50% 140% 108% 50% 140% DDE 1025827 < 0.007 < 0.007 NA < 0.007 103% 50% 140% 105% 50% 140% 107% 50% 140% DDD 1025827 < 0.007< 0.007 NA < 0.007 104% 50% 140% 102% 50% 140% 103% 50% 140% DDT 1025827 < 0.007 < 0.007 NA < 0.007 102% 50% 140% 103% 50% 140% 108% 50% 140% Dieldrin 1025827 < 0.005 < 0.005 NA < 0.005 97% 50% 140% 102% 50% 140% 102% 50% 140% 1025827 < 0.005 < 0.005 NA < 0.005 102% 50% 140% 98% 50% 140% 108% 50% 140% Endrin Methoxychlor 1025827 < 0.005 < 0.005 < 0.005 94% 50% 140% 97% 140% 102% 50% 140% NA 50% 140% Hexachlorobenzene 1025827 < 0.005 < 0.005 NA < 0.005 100% 50% 140% 102% 50% 140% 98% 50% Hexachlorobutadiene 1025827 < 0.01 < 0.01 NA < 0.01 93% 50% 140% 98% 50% 140% 102% 50% 140% O. Reg. 153(511) - VOCs (Soil) Dichlorodifluoromethane 1035936 < 0.05 < 0.05 NA < 0.05 86% 50% 140% 84% 50% 140% 72% 50% 140% Vinyl Chloride 140% 1035936 < 0.02 < 0.02 NA < 0.02 93% 50% 140% 100% 50% 140% 93% 50% 71% 86% 140% Bromomethane 1035936 < 0.05< 0.05NA < 0.0574% 50% 140% 50% 140% 50% Trichlorofluoromethane 140% 1035936 < 0.05 < 0.05 NA < 0.05 83% 50% 140% 96% 50% 140% 83% 50% 97% Acetone 1035936 < 0.50 < 0.50 NA < 0.50 102% 50% 140% 50% 140% 91% 50% 140%

AGAT QUALITY ASSURANCE REPORT (V2)

Page 12 of 22

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: EXP Services Inc AGAT WORK ORDER: 20T586006
PROJECT: MRK-00258896-A0 ATTENTION TO: Corey Ferguson

SAMPLING SITE: SAMPLED BY:

Trace Organics Analysis (Continued)															
RPT Date: Mar 26, 2020			С	UPLICATI	E		REFERE	NCE MATERIAL METHOD BLANK SPIKE		MATRIX SPIKE		KE			
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery	1 1 1	eptable mits	Recovery		ptable nits
TANAMETER		ld		-up=			Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper
1,1-Dichloroethylene	1035936		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	112%	60%	130%	73%	50%	140%
Methylene Chloride	1035936		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	113%	60%	130%	111%	50%	140%
Trans- 1,2-Dichloroethylene	1035936		< 0.05	< 0.05	NA	< 0.05	106%	50%	140%	93%	60%	130%	110%	50%	140%
Methyl tert-butyl Ether	1035936		< 0.05	< 0.05	NA	< 0.05	87%	50%	140%	97%	60%	130%	106%	50%	140%
1,1-Dichloroethane	1035936		< 0.02	< 0.02	NA	< 0.02	113%	50%	140%	106%	60%	130%	111%	50%	140%
Methyl Ethyl Ketone	1035936		< 0.50	< 0.50	NA	< 0.50	82%	50%	140%	99%	50%	140%	89%	50%	140%
Cis- 1,2-Dichloroethylene	1035936		< 0.02	< 0.02	NA	< 0.02	99%	50%	140%	106%	60%	130%	115%	50%	140%
Chloroform	1035936		< 0.04	< 0.04	NA	< 0.04	88%	50%	140%	93%	60%	130%	118%	50%	140%
1,2-Dichloroethane	1035936		< 0.03	< 0.03	NA	< 0.03	112%	50%	140%	107%	60%	130%	94%	50%	140%
1,1,1-Trichloroethane	1035936		< 0.05	< 0.05	NA	< 0.05	100%	50%	140%	115%	60%	130%	90%	50%	140%
Carbon Tetrachloride	1035936		< 0.05	< 0.05	NA	< 0.05	92%	50%	140%	87%	60%	130%	106%	50%	140%
Benzene	1035936		< 0.02	< 0.02	NA	< 0.02	78%	50%	140%	93%	60%	130%	78%	50%	140%
1,2-Dichloropropane	1035936		< 0.03	< 0.03	NA	< 0.03	85%	50%	140%	78%	60%	130%	72%	50%	140%
Trichloroethylene	1035936		< 0.03	< 0.03	NA	< 0.03	103%	50%	140%	99%	60%	130%	100%	50%	140%
Bromodichloromethane	1035936		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	79%	60%	130%	97%	50%	140%
Methyl Isobutyl Ketone	1035936		< 0.50	< 0.50	NA	< 0.50	104%	50%	140%	87%	50%	140%	93%	50%	140%
1,1,2-Trichloroethane	1035936		< 0.04	< 0.04	NA	< 0.04	105%	50%	140%	105%	60%	130%	98%	50%	140%
Toluene	1035936		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	107%	60%	130%	100%	50%	140%
Dibromochloromethane	1035936		< 0.05	< 0.05	NA	< 0.05	83%	50%	140%	73%	60%	130%	95%	50%	140%
Ethylene Dibromide	1035936		< 0.03	< 0.03	NA	< 0.03	94%	50%	140%	98%	60%	130%	117%	50%	140%
Tetrachloroethylene	1035936		< 0.05	< 0.05	NA	< 0.05	117%	50%	140%	113%	60%	130%	87%	50%	140%
1,1,1,2-Tetrachloroethane	1035936		< 0.04	< 0.04	NA	< 0.04	104%	50%	140%	100%	60%	130%	112%	50%	140%
Chlorobenzene	1035936		< 0.05	< 0.05	NA	< 0.05	116%	50%	140%	119%	60%	130%	84%	50%	140%
Ethylbenzene	1035936		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	110%	60%	130%	106%	50%	140%
m & p-Xylene	1035936		< 0.05	< 0.05	NA	< 0.05	110%	50%	140%	107%	60%	130%	96%	50%	140%
Bromoform	1035936		< 0.05	< 0.05	NA	< 0.05	90%	50%	140%	81%	60%	130%	100%	50%	140%
Styrene	1035936		< 0.05	< 0.05	NA	< 0.05	96%	50%	140%	104%	60%	130%	70%	50%	140%
•															140%
1,1,2,2-Tetrachloroethane	1035936		< 0.05	< 0.05	NA	< 0.05	94%	50%	140%	103%	60%	130%	86%	50%	140%
o-Xylene 1,3-Dichlorobenzene	1035936 1035936		< 0.05 < 0.05	< 0.05 < 0.05	NA NA	< 0.05 < 0.05	112% 97%	50% 50%	140% 140%	113% 109%	60% 60%	130% 130%	79% 105%	50% 50%	140%
1,4-Dichlorobenzene	1035936		< 0.05	4 O OF	NA	< 0.05	93%	50%	140%	105%	60%	130%	94%	50%	1400/
•				< 0.05											140%
1,2-Dichlorobenzene	1035936		< 0.05	< 0.05	NA	< 0.05	82%		140%	88%		130%	89%		140%
1,3-Dichloropropene (Cis + Trans) n-Hexane	1035936 1035936		< 0.04 < 0.05	< 0.04 < 0.05	NA NA	< 0.04 < 0.05	102% 91%	50% 50%	140% 140%	108% 94%		130% 130%	89% 103%		140% 140%
O. Reg. 153(511) - PHCs F1 - F4 (- F1 (C6 to C10)	·BTEX) (So 1037345	11)	< 5	< 5	NA	< 5	96%	60%	140%	101%	60%	140%	104%	60%	140%
F2 (C10 to C16)	1037345		< 10				108%		140%	99%		140%	104%		140%
F3 (C16 to C34)				< 10	NA NA	< 10									140%
	1033535		< 50	< 50	NA NA	< 50	103%		140%	94%	60%	140%	101%		
F4 (C34 to C50)	1033535		< 50	< 50	NA	< 50	90%	00%	140%	91%	0 U%	140%	113%	%00	140%

AGAT QUALITY ASSURANCE REPORT (V2)

Page 13 of 22

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: EXP Services Inc AGAT WORK ORDER: 20T586006
PROJECT: MRK-00258896-A0 ATTENTION TO: Corey Ferguson

SAMPLING SITE: SAMPLED BY:

Trace Organics Analysis (Continued)															
RPT Date: Mar 26, 2020			С	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER Batch Sample			Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits Recovery		Acceptable Limits		Recovery	Acceptable Limits	
		ld					Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Jung

QA Violation

CLIENT NAME: EXP Services Inc AGAT WORK ORDER: 20T586006
PROJECT: MRK-00258896-A0 ATTENTION TO: Corey Ferguson

RPT Date: Mar 26, 2020			REFEREN	ICE MATERIA	L METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Sample Id	Sample Description	Measured	Acceptable Limits	Recovery	Lin	ptable nits	Recovery	Lin	ptable nits
			Value	Lower Uppe	r	Lower	Upper		Lower	Upper

O. Reg. 153(511) - Metals & Inorganics (Soil)

Antimony 1036314 BH3-SS1 146% 70% 130% 99% 80% 120% 87% 70% 130%

Comments: NA signifies Not Applicable.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated. pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Antimony Reference recovery is outside method's acceptance limit by more than an absolute maximum of 10% however, all other QCs i.e. duplicate, blank, blank spike and matrix spike are within method's QC acceptance criteria.

Method Summary

CLIENT NAME: EXP Services Inc PROJECT: MRK-00258896-A0

AGAT WORK ORDER: 20T586006 ATTENTION TO: Corey Ferguson

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE		
Soil Analysis					
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Boron (Hot Water Extractable)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES		
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Zinc	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER		
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015 and SM 4500-CN- I	TECHNICON AUTO ANALYZER		
Mercury	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS		
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER		
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-846 6010C	ICP/OES		
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER		

Method Summary

CLIENT NAME: EXP Services Inc PROJECT: MRK-00258896-A0

SAMPLING SITE:

AGAT WORK ORDER: 20T586006
ATTENTION TO: Corey Ferguson

SAMPLING SITE:		SAMPLED BT:	T
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis			
Hexachloroethane	ORG-91-5113	modified from EPA SW-846 3541,3620 & 8081	
Gamma-Hexachlorocyclohexane	ORG-91-5113	modified from EPA SW-846 3541,3620 & 8081	
Heptachlor	ORG-91-5113	modified from EPA SW-846 3541,3620 & 8081	
Aldrin	ORG-91-5113	modified from EPA SW-846 3541,3620 & 8081	
Heptachlor Epoxide	ORG-91-5113	modified from EPA SW-846 3541,3620 & 8081	
Endosulfan	ORG-91-5113	modified from EPA SW-846 3541,3620 & 8081	
Chlordane	ORG-91-5113	modified from EPA SW-846 3541,3620 & 8081	
DDE	ORG-91-5113	modified from EPA SW-846 3541,3620 & 8081	
DDD	ORG-91-5113	modified from EPA SW-846 3541,3620 & 8081	
DDT	ORG-91-5113	modified from EPA SW-846 3541,3620 & 8081	
Dieldrin	ORG-91-5113	modified from EPA SW-846 3541,3620 & 8081	
Endrin	ORG-91-5113	modified from EPA SW-846 3541,3620 & 8081	
Methoxychlor	ORG-91-5113	modified from EPA SW-846 3541,3620 & 8081	
Hexachlorobenzene	ORG-91-5113	modified from EPA SW-846 3541,3620 & 8081	
Hexachlorobutadiene	ORG-91-5113	modified from EPA SW-846 3541,3620 & 8081	
тсмх	ORG-91-5112	modified from EPA SW-846 3541,3620 & 8081	
Decachlorobiphenyl	ORG-91-5113	modified from EPA SW-846 3541,3620 & 8081	GC/ECD
Moisture Content		MOE E3139	BALANCE
Naphthalene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Benz(a)anthracene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS

Method Summary

CLIENT NAME: EXP Services Inc
PROJECT: MRK-00258896-A0

SAMPLING SITE:

AGAT WORK ORDER: 20T586006 ATTENTION TO: Corey Ferguson

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Moisture Content	ORG-91-5106	Tier 1 Method	BALANCE
Naphthalene-d8	ORG-91-5106	modified from EPA SW-846 3541 & 8270E50	GC/MS
Acenaphthene-d10	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Chrysene-d12	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method, SW846 5035	P&T GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method, SW846 5035	P&T GC/FID
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	P&T GC/FID
F2 (C10 to C16) minus Naphthalene	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: EXP Services Inc PROJECT: MRK-00258896-A0

SAMPLING SITE:

AGAT WORK ORDER: 20T586006 ATTENTION TO: Corey Ferguson

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: EXP Services Inc AGAT WORK ORDER: 20T586006
PROJECT: MRK-00258896-A0 ATTENTION TO: Corey Ferguson

SAMPLING SITE: SAMPLED BY:

OAIIII EIIIO OITE.		OAIIII EED D1.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Xylenes (Total)	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS

Calculation Laboratories

Ph: 905.71

5835 Coopers Avenue	Laboratory Use Only
Mississauga, Ontario L4Z 1Y2 12.5100 Fax: 905.712.5122	Work Order #: 20 7586006
webearth.agatlabs.com	Cooler Quantity:
r consumed by humans)	Arrival Temperatures:
Regulatory Requirement	Custody Seal Intact: Yes No Notes:
Regulation 558	

chain of Custody Record If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans)									,	Arrival	Tem	perat	ures:	1	. 0		.0	(An				
Report Information: Company: Exp Services Inc.					Regulatory Requirements:		No R	egula	tory Red	uire	nent		Custoo Notes	-	al Int	act:	Ē]Yes		□No	1]N/A
Contact: Address: Phone: Reports to be sent to: 1. Email: Corcy Fergy	son @	cham exp.c	on	_	Regulation 153/04 Table	iltary			Regulation CCME Prov. Water Objectives (Qualit		T		rou ar T	AT Rush S	iurchar		5 to 7	equine Busine	ess Days	lext Bus	siness
2. Email: andrea. fer	nande.	s (eg	b. COM	1	☐Fine ☐MISA		Indicate One					OR	Date	Requ	ired (Rush S	urcharg	es May Ap	oply):			
Project Information: Project: Site Location: Sampled By: Project Information: AF	58896	- Ao			Is this submission for a Record of Site Condition? Yes X No		Cer		Guidelin te of Ana					*TAT	is ex	clusiv	e of v	eeken	ds and :	n for rush statutory i	holidays	
AGAT Quote #: Please note: If quotation number Invoice Information: Company: Contact: Address: Email:	- Ten	Bill To Same:	Yes No		Sample Matrix Legend B Biota GW Ground Water O Oil P Paint S Soil SD Sediment SW Surface Water	Field Filtered - Metals, Hg, CrVI	s and Inorganics	retals 153 Metals (excl. Hydrides) .o	ORPs: □В+НWS □С! □СN 577 □Сr²· □ЕС □ГОС □Нg	Full Metals Scan	Regulation/Custom Metals Nutrients: ☐ TP ☐ NH, ☐ TKN	Volatiles: X voc □ BTEX □ THM				☐ Total ☐ Aroclors	Organochlorine Pesticides	☐M&I ☐ VOCS ☐ ABNS ☐ B(a)P ☐PCBS	uro E-s			ally Hazardous or High Concentration (Y/N)
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		Y/N	Metals	□ All N	ORPS	Full N	Regu Nutric	Volati	PHCs	ABNs	PAHS	PCBs:	Organ	TCLP:				Potent
BH3-551	16/3/20	AIM	3	.5			X								X		X					
BH3-553			2	-								X	X								ni	
BH2-551			3	-			X			_			1.0		X		X				1007	
BH2-SS2			2	\vdash		4						X	X									
BH4-551		PM	5	-			100						-		X		X					-
BHI-SS2			1				X				4						-					
BH1-554	1- (n)	^ -	2							-		X	X									
BH8-551	17/3/20	AM	3				X								X		X	110				
BH8-555			2				5			-	_	X	X								В	
BH 4-551 BH4-555	1		3	1			X					>	X		X		X		120	MAR	8 5	5:11
amples Robinquished by (Print Name and Sign): Andrea Fern andes < amples Relinquished By (Print Name and Sign):	Andrust	> 181	3/20	5:10	Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):	8	_				Date Date			lime								

arranca let rancies Albanas	1012	120 3.101	m) 0/1/1/2/1/2			
amples Relinquished By (Print Name and Sign):	Dirto	Time	Samples Received By (Print Name and Sign):	Disto	Time	Page of
amples Relinquished By (Print Name and Sign).	Date	Time	Samples Received By (Print Name and Sign):	Date	Time	Nº: T 101192

2. Email: **Project**

Chain of Custody Record

Sample Identification

SPI-1-20cm SP2-3-0.5-0.7m

Laboratories

Ph: 905.

Certificate of Analysis

O. Reg 153

☐ No

Yes

Mississauga, Ontario L4Z 1Y2 712.5100 Fax: 905.712.5122	Work Order #:	207586006
webearth.agatlabs.com		

Laboratory Use Only

Cooler Quantity:			
Arrival Temperatures:	2-1	12.2	4
		1 (OTV	lue
Custody Seal Intact:	□Yes	□No	□N/A
Notes:			

Chain of Custody Record If this is a Drinking Water samp	le, please use Drinking Water Chain of Custody Form (potable w	rater consumed by humans)
Report Information: Company: EXP Service S Inc.	Regulatory Requirements: N	lo Regulatory Requ
Contact: Corey Ferguson Address: 220 Commerce Valley Dr 1	Regulation 153/04 Sewer Use	Regulation 5
Saile 110, Markham	Table Indicate One Sanitary	ССМЕ
Phone: 905-695-3217 Fax:	Res/Park Storm	Prov. Water Q
1. Email: Lorey tergy Son @exp. Cor	Soil Texture (Check One) Region	Other
2. Email: andrea fernande s @ exp. ce	TFine DMISA	

(Please check all applicable boxe		o Regulatory Requirement
Regulation 153/04	Sewer Use	Regulation 558
Table Indicate One	Sanitary	ССМЕ
Res/Park Agriculture	□Storm	Prov. Water Quality Objectives (PWOO)
Soil Texture (Check One)	Region	Other
Fine	MISA	Indicate One
Is this submission	on for a	Report Guldeline on

Metals, Hg, CrVI

Turnaroun	Time (TAT) Required:
Regular TA1	5 to 7 Business Days
Rush TAT (Rus	Surcharges Apply)
3 Busi Days OR Da	ess
*TAT is	se provide prior notification for rush TAT sclusive of weekends and statutory holidays sy' analysis, please contact your AGAT CPM
HM.	B(a)P □PCBs

Project Inform	mation:
Project:	MRK-00258896-AD
Site Location:	
Sampled By:	AF + CF
AGAT Quote #:	-PO;
	Please note: If quotation number is not provided, client will be billed full price for analysis

Date

Sampled

17/3/20

Time

Sampled

PM

pm

of

Containers

5

5

S

Please note: If quotation number	er is not provided, client will be billed full price for analysis
Invoice Information:	Bill To Same: Yes No □
Company:	
Contact:	
Address:	The second secon
Email:	

	_	•		
	Re	this subr cord of SI Yes		lition?
	San	nple Matr	ix Lege	nd
	В	Biota		
	GW	Ground Wa	ater	
	0	Oil		
= 1	Р	Paint		
- 1	S	Soil		
- 0	SD	Sediment		
	sw	Surface Wa	ater	
Samp	ole	Co	omments,	/
Matr	ix	Specia	al Instruct	tions

> Field Filtered -	Metals and Inorganics	☐ All Metals ☐ 153 Metals (☐ Hydride Metals ☐ 153 Met	ORPs: □B-HWS □CI □Cr ⁶⁺ □EC □FOC □	Full Metals Scan	Regulation/Custom Me	Nutrients: ☐ TP ☐ NH ₃ ☐ NO ₂ ☐ NO ₃ +N	Volatiles: X voc □ BT	PHCs F1 - F4	ABNS	PAHS	PCBs: ☐ Total ☐ Aroclo	Organochlorine Pesticic	TCLP: ☐ M&I ☐ VOCs ☐ A	Sewer Use				Potentially Hazardous or Hig
	X						X	X		X		X						
	X						×	X		X		X						
	- 10						971											
	1=						iri									= 10	Tes	
																		_

Samples Relinquished By (Print Name and Sign): Andra Ferwande S Samples Relinquished By (Print Native and Sign):	Andread	18/3/20	540pm	Samples Received By (Print Name and Sign):	Date	Time	'20MAR18 5:11
Samples Relinquished By (Print Natmu and Sign).		Diste	Time	Samples Redelived (by (Print Name and Sign).	Date	Time	Page 2 of 2
Samples Perinquished By (Print Name and Sign):		Date	Time	Samples Roccived By (Print Name and Sign):	Date	Time	№: T 101186

CLIENT NAME: EXP Services Inc

220 Commerce Valley Drive West, Suite 500

Markham, ON, ON L3T0A8

(905) 695-3217

ATTENTION TO: Corey Ferguson

PROJECT: MRK-00258896-A0

AGAT WORK ORDER: 20T586007

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Inga Kuzmina, Trace Organics Lab Manager

DATE REPORTED: Mar 26, 2020

PAGES (INCLUDING COVER): 13 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This report shall not be reproduced or distributed, in whole or in part, without the prior written consent of AGAT Laboratories.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the information
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 13

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 20T586007 PROJECT: MRK-00258896-A0 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP Services Inc

SAMPLING SITE:

ATTENTION TO: Corey Ferguson

SAMPLED BY:

O. Reg. 153	(511) -	Metals	&	Inorganics ((Soil)

DATE RECEIVED: 2020-03-18						DATE REPORTED: 2020-03-26
Parameter	S		CRIPTION: PLE TYPE: SAMPLED: RDL	SED 1 Sediment 2020-03-18 1036282	SED 2 Sediment 2020-03-18 1036283	
Antimony	µg/g	NV	0.8	<0.8	<0.8	
Arsenic	μg/g	6	1	6	5	
Barium	μg/g	NV	2	67	36	
Beryllium	μg/g	NV	0.5	0.8	0.9	
Boron	μg/g	NV	5	13	17	
Boron (Hot Water Extractable)	μg/g	NA	0.10	0.64	0.61	
Cadmium	µg/g	0.6	0.5	<0.5	<0.5	
Chromium	µg/g	26	5	23	25	
Cobalt	μg/g	50	0.5	13.3	13.4	
Copper	μg/g	16	1	29	31	
₋ead	μg/g	31	1	14	7	
Molybdenum	μg/g	NV	0.5	<0.5	<0.5	
Nickel	μg/g	16	1	28	30	
Selenium	μg/g	NV	0.4	<0.4	<0.4	
Silver	μg/g	0.5	0.2	<0.2	<0.2	
Гhallium	μg/g	NV	0.4	<0.4	<0.4	
Jranium	μg/g	NV	0.5	0.6	0.7	
/anadium	μg/g	NV	1	32	33	
Zinc	μg/g	120	5	80	92	
Chromium, Hexavalent	μg/g	NV	0.2	<0.2	<0.2	
Cyanide, Free	μg/g	0.1	0.040	<0.040	<0.040	
Mercury	μg/g	0.2	0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	NA	0.005	0.508	1.46	
Sodium Adsorption Ratio	NA	NA	NA	3.22	20.8	
pH, 2:1 CaCl2 Extraction	pH Units		NA	7.71	7.62	

AGAT WORK ORDER: 20T586007

PROJECT: MRK-00258896-A0

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

CLIENT NAME: EXP Services Inc ATTENTION TO: Corey Ferguson

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2020-03-18 DATE REPORTED: 2020-03-26

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Sediment -All Types of Property Uses

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1036282-1036283 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE:

AGAT WORK ORDER: 20T586007 PROJECT: MRK-00258896-A0

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP Services Inc

SAMPLING SITE:

ATTENTION TO: Corey Ferguson

SAMPLED BY:

O. Reg. 153(511) - OC Pesticides (Soil)

						•
DATE RECEIVED: 2020-03-18						DATE REPORTED: 2020-03-26
		SAMPLE DES	CRIPTION:	SED 1	SED 2	
		SAM	PLE TYPE:	Sediment	Sediment	
		DATE	SAMPLED:	2020-03-18	2020-03-18	
Parameter	Unit	G/S	RDL	1036282	1036283	
Hexachloroethane	μg/g		0.01	<0.01	<0.01	
Gamma-Hexachlorocyclohexane	μg/g		0.005	< 0.005	< 0.005	
Heptachlor	μg/g		0.005	<0.005	< 0.005	
Aldrin	μg/g	0.002	0.002	< 0.002	< 0.002	
Heptachlor Epoxide	μg/g	0.005	0.005	<0.005	< 0.005	
Endosulfan	μg/g		0.005	< 0.005	< 0.005	
Chlordane	μg/g	0.007	0.007	< 0.007	< 0.007	
DDE	μg/g	0.005	0.005	< 0.005	<0.005	
DDD	μg/g	0.008	0.007	< 0.007	< 0.007	
DDT	μg/g	0.007	0.007	< 0.007	< 0.007	
Dieldrin	μg/g	0.002	0.002	< 0.002	< 0.002	
Endrin	μg/g	0.003	0.003	< 0.003	< 0.003	
Methoxychlor	μg/g		0.005	<0.005	<0.005	
Hexachlorobenzene	μg/g	0.02	0.002	< 0.002	<0.002	
Hexachlorobutadiene	μg/g		0.01	<0.01	<0.01	
Moisture Content	%		0.1	17.2	16.7	
Surrogate	Unit	Acceptab	le Limits			
TCMX	%	50-	140	98	90	
Decachlorobiphenyl	%	50-	140	101	97	

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Sediment -Comments:

All Types of Property Uses

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1036282-1036283 Results are based on the dry weight of the soil.

DDT total is a calculated parameter. The calculated value is the sum of op'DDT and pp'DDT. DDD total is a calculated parameter. The calculated value is the sum of op'DDD and pp'DDD. DDE total is a calculated parameter. The calculated value is the sum of op'DDE and pp'DDE.

Endosulfan total is a calculated parameter. The calculated value is the sum of Endosulfan I and Endosulfan II.

Chlordane total is a calculated parameter. The calculated value is the sum of Alpha-Chlordane and Gamma-Chlordane.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 20T586007 PROJECT: MRK-00258896-A0

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP Services Inc

SAMPLING SITE:

ATTENTION TO: Corey Ferguson

SAMPLED BY:

O. Rea.	153	(511)	- PAHs	(Soil)	
---------	-----	-------	--------	--------	--

DATE RECEIVED: 2020-03-18						DATE REPORTED: 2020-03-26
	5	_	CRIPTION: PLE TYPE: SAMPLED:	SED 1 Sediment 2020-03-18	SED 2 Sediment 2020-03-18	
Parameter	Unit	G/S	RDL	1036282	1036283	
Naphthalene	μg/g	NV	0.05	<0.05	<0.05	
Acenaphthylene	μg/g	NV	0.05	< 0.05	< 0.05	
Acenaphthene	μg/g	NV	0.05	< 0.05	<0.05	
Fluorene	μg/g	0.19	0.05	< 0.05	<0.05	
Phenanthrene	μg/g	0.56	0.05	0.07	0.13	
Anthracene	μg/g	0.22	0.05	< 0.05	< 0.05	
Fluoranthene	μg/g	0.75	0.05	0.15	0.24	
Pyrene	μg/g	0.49	0.05	0.11	0.20	
Benz(a)anthracene	μg/g	0.32	0.05	0.05	0.08	
Chrysene	μg/g	0.34	0.05	0.08	0.12	
Benzo(b)fluoranthene	μg/g	NV	0.05	0.06	0.11	
Benzo(k)fluoranthene	μg/g	0.24	0.05	0.06	0.11	
Benzo(a)pyrene	μg/g	0.37	0.05	0.05	0.08	
Indeno(1,2,3-cd)pyrene	μg/g	0.2	0.05	< 0.05	< 0.05	
Dibenz(a,h)anthracene	μg/g	0.06	0.05	< 0.05	< 0.05	
Benzo(g,h,i)perylene	μg/g	0.17	0.05	< 0.05	<0.05	
2-and 1-methyl Naphthalene	μg/g	NV	0.05	< 0.05	<0.05	
Moisture Content	%		0.1	17.2	16.7	
Surrogate	Unit	Acceptab	le Limits			
Naphthalene-d8	%	50-1	40	101	109	
Acenaphthene-d10	%	50-1	40	113	111	
Chrysene-d12	%	50-1	40	112	114	

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Sediment -Comments: All Types of Property Uses

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1036282-1036283 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Guideline Violation

AGAT WORK ORDER: 20T586007 PROJECT: MRK-00258896-A0 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP Services Inc ATTENTION TO: Corey Ferguson

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
1036282	SED 1	ON T8 SD	O. Reg. 153(511) - Metals & Inorganics (Soil)	Copper	μg/g	16	29
1036282	SED 1	ON T8 SD	O. Reg. 153(511) - Metals & Inorganics (Soil)	Nickel	μg/g	16	28
1036283	SED 2	ON T8 SD	O. Reg. 153(511) - Metals & Inorganics (Soil)	Copper	μg/g	16	31
1036283	SED 2	ON T8 SD	O. Reg. 153(511) - Metals & Inorganics (Soil)	Nickel	μg/g	16	30

Quality Assurance

CLIENT NAME: EXP Services Inc AGAT WORK ORDER: 20T586007
PROJECT: MRK-00258896-A0 ATTENTION TO: Corey Ferguson

SAMPLING SITE: SAMPLED BY:

Soil Analysis															
RPT Date: Mar 26, 2020				UPLICATE	.		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	Lin	ptable nits	Recovery		ptable nits
		ld					Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inor	rganics (Soil)														
Antimony	1036314		<0.8	<0.8	NA	< 0.8	146%	70%	130%	99%	80%	120%	87%	70%	130%
Arsenic	1036314		7	7	1.9%	< 1	113%	70%	130%	105%	80%	120%	101%	70%	130%
Barium	1036314		80	82	2.7%	< 2	113%	70%	130%	104%	80%	120%	96%	70%	130%
Beryllium	1036314		0.7	0.7	NA	< 0.5	101%	70%	130%	94%	80%	120%	93%	70%	130%
Boron	1036314		12	12	NA	< 5	99%	70%	130%	105%	80%	120%	100%	70%	130%
Boron (Hot Water Extractable)	1036314		0.39	0.39	NA	< 0.10	96%	60%	140%	97%	70%	130%	94%	60%	140%
Cadmium	1036314		<0.5	<0.5	NA	< 0.5	109%	70%	130%	99%	80%	120%	96%	70%	130%
Chromium	1036314		22	23	NA	< 5	106%	70%	130%	98%	80%	120%	95%	70%	130%
Cobalt	1036314		12.1	12.1	0.0%	< 0.5	96%	70%	130%	101%	80%	120%	93%	70%	130%
Copper	1036314		36	36	0.7%	< 1	90%	70%	130%	99%	80%	120%	80%	70%	130%
Lead	1036314		10	10	3.3%	< 1	108%	70%	130%	90%	80%	120%	86%	70%	130%
Molybdenum	1036314		8.0	0.8	NA	< 0.5	97%	70%	130%	101%	80%	120%	97%	70%	130%
Nickel	1036314		25	25	0.4%	< 1	96%	70%	130%	103%	80%	120%	91%	70%	130%
Selenium	1036314		< 0.4	<0.4	NA	< 0.4	97%	70%	130%	102%	80%	120%	97%	70%	130%
Silver	1036314		<0.2	<0.2	NA	< 0.2	106%	70%	130%	101%	80%	120%	91%	70%	130%
Thallium	1036314		<0.4	<0.4	NA	< 0.4	93%	70%	130%	99%	80%	120%	94%	70%	130%
Uranium	1036314		< 0.5	< 0.5	NA	< 0.5	99%	70%	130%	101%	80%	120%	101%	70%	130%
Vanadium	1036314		32	32	0.4%	< 1	105%	70%	130%	102%	80%	120%	100%	70%	130%
Zinc	1036314		64	65	0.7%	< 5	101%	70%	130%	104%	80%	120%	95%	70%	130%
Chromium, Hexavalent	1035803		< 0.2	< 0.2	NA	< 0.2	89%	70%	130%	89%	80%	120%	82%	70%	130%
Cyanide, Free	1035801		<0.040	<0.040	NA	< 0.040	87%	70%	130%	103%	80%	120%	97%	70%	130%
Mercury	1036314		<0.10	<0.10	NA	< 0.10	112%	70%	130%	100%	80%	120%	104%	70%	130%
Electrical Conductivity (2:1)	1036314		0.994	0.986	0.9%	< 0.005	116%	80%	120%						
Sodium Adsorption Ratio	1036314		2.14	2.15	0.2%	NA									
pH, 2:1 CaCl2 Extraction	1037342		7.51	7.48	0.4%	NA	101%	80%	120%						

Comments: NA signifies Not Applicable.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Antimony Reference recovery is outside method's acceptance limit by more than an absolute maximum of 10% however, all other QCs i.e. duplicate, blank, blank spike and matrix spike are within method's QC acceptance criteria.

Certified By:

Page 7 of 13

Quality Assurance

CLIENT NAME: EXP Services Inc AGAT WORK ORDER: 20T586007
PROJECT: MRK-00258896-A0 ATTENTION TO: Corey Ferguson
SAMPLING SITE: SAMPLED BY:

SAMPLED BY:

Trace Organics Analysis															
RPT Date: Mar 26, 2020	RPT Date: Mar 26, 2020 DUPLICATE REFERENCE MATERIAL METHOD BLANK SPIKE MATRIX SPIKE														KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery	Lie	ptable nits	Recovery		ptable nits
		ld					Value	Lower	Upper	,	Lower	Upper	,	Lower	Upper
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	1035907		< 0.05	< 0.05	NA	< 0.05	115%	50%	140%	107%	50%	140%	118%	50%	140%
Acenaphthylene	1035907		< 0.05	< 0.05	NA	< 0.05	119%	50%	140%	104%	50%	140%	116%	50%	140%
Acenaphthene	1035907		< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	102%	50%	140%	115%	50%	140%
Fluorene	1035907		< 0.05	< 0.05	NA	< 0.05	106%	50%	140%	102%	50%	140%	114%	50%	140%
Phenanthrene	1035907		< 0.05	< 0.05	NA	< 0.05	117%	50%	140%	107%	50%	140%	108%	50%	140%
Anthracene	1035907		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	99%	50%	140%	94%	50%	140%
Fluoranthene	1035907		< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	102%	50%	140%	113%	50%	140%
Pyrene	1035907		< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	102%	50%	140%	112%	50%	140%
Benz(a)anthracene	1035907		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	94%	50%	140%	110%	50%	140%
Chrysene	1035907		< 0.05	< 0.05	NA	< 0.05	102%	50%	140%	103%	50%	140%	110%	50%	140%
Benzo(b)fluoranthene	1035907		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	94%	50%	140%	79%	50%	140%
Benzo(k)fluoranthene	1035907		< 0.05	< 0.05	NA	< 0.05	80%	50%	140%	99%	50%	140%	105%	50%	140%
Benzo(a)pyrene	1035907		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	101%	50%	140%	113%	50%	140%
Indeno(1,2,3-cd)pyrene	1035907		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	75%	50%	140%	80%	50%	140%
Dibenz(a,h)anthracene	1035907		< 0.05	< 0.05	NA	< 0.05	118%	50%	140%	86%	50%	140%	84%	50%	140%
Benzo(g,h,i)perylene	1035907		< 0.05	< 0.05	NA	< 0.05	89%	50%	140%	77%	50%	140%	74%	50%	140%
O. Reg. 153(511) - OC Pesticides	(Soil)														
Hexachloroethane	1032618		< 0.01	< 0.01	NA	< 0.01	94%	50%	140%	90%	50%	140%	86%	50%	140%
Gamma-Hexachlorocyclohexane	1032618		< 0.005	< 0.005	NA	< 0.005	95%	50%	140%	92%	50%	140%	99%	50%	140%
Heptachlor	1032618		< 0.005	< 0.005	NA	< 0.005	102%	50%	140%	107%	50%	140%	104%	50%	140%
Aldrin	1032618		< 0.005	< 0.005	NA	< 0.005	102%	50%	140%	98%	50%	140%	90%	50%	140%
Heptachlor Epoxide	1032618		< 0.005	< 0.005	NA	< 0.005	105%	50%	140%	93%	50%	140%	104%	50%	140%
Endosulfan	1032618		< 0.005	< 0.005	NA	< 0.005	103%	50%	140%	97%	50%	140%	102%	50%	140%
Chlordane	1032618		< 0.007	< 0.007	NA	< 0.007	98%	50%	140%	99%	50%	140%	98%	50%	140%
DDE	1032618		< 0.007	< 0.007	NA	< 0.007	104%	50%	140%	102%	50%	140%	105%	50%	140%
DDD	1032618		< 0.007	< 0.007	NA	< 0.007	103%	50%	140%	89%	50%	140%	96%	50%	140%
DDT	1032618		< 0.007	< 0.007	NA	< 0.007	92%	50%	140%	95%	50%	140%	96%	50%	140%
Dieldrin	1032618		< 0.005	< 0.005	NA	< 0.005	101%	50%	140%	98%	50%	140%	97%	50%	140%
Endrin	1032618		< 0.005	< 0.005	NA	< 0.005	105%	50%	140%	97%	50%	140%	107%	50%	140%
Methoxychlor	1032618		< 0.005	< 0.005	NA	< 0.005	90%	50%	140%	98%	50%	140%	102%	50%	140%
Hexachlorobenzene	1032618		< 0.005	< 0.005	NA	< 0.005	106%	50%	140%	90%	50%	140%	90%	50%	140%
Hexachlorobutadiene	1032618		< 0.01	< 0.01	NA	< 0.01	98%	50%	140%	95%	50%	140%	89%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Certified By:

Aff.

AGAT QUALITY ASSURANCE REPORT (V1)

Page 8 of 13

QA Violation

CLIENT NAME: EXP Services Inc AGAT WORK ORDER: 20T586007
PROJECT: MRK-00258896-A0 ATTENTION TO: Corey Ferguson

RPT Date: Mar 26, 2020			REFEREN	ICE MATERIA	L METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Sample Id	Sample Description	Measured	Acceptable Limits	Recovery	Acceptable Limits		Recovery	Acceptable Limits	
			Value	Lower Uppe	r	Lower	Upper	,	Lower	Upper

O. Reg. 153(511) - Metals & Inorganics (Soil)

Antimony SED 1 146% 70% 130% 99% 80% 120% 87% 70% 130%

Comments: NA signifies Not Applicable.

If the RPD value is NA, the results of the duplicates are under 5X the RDL and will not be calculated. pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Antimony Reference recovery is outside method's acceptance limit by more than an absolute maximum of 10% however, all other QCs i.e. duplicate, blank, blank spike and matrix spike are within method's QC acceptance criteria.

Method Summary

CLIENT NAME: EXP Services Inc PROJECT: MRK-00258896-A0

SAMPLING SITE:

AGAT WORK ORDER: 20T586007 ATTENTION TO: Corey Ferguson

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Extractable)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015 and SM 4500-CN- I	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER
Sodium Adsorption Ratio	INOR-93-6007	McKeague 4.12 & 3.26 & EPA SW-846 6010C	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER

Method Summary

CLIENT NAME: EXP Services Inc PROJECT: MRK-00258896-A0

SAMPLING SITE:

AGAT WORK ORDER: 20T586007 ATTENTION TO: Corey Ferguson

SAMPLED BY:

T	SAMPLED BY:				
AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE			
ORG-91-5113	α 000 I				
ORG-91-5113	α 000 I				
ORG-91-5113	& 8081				
ORG-91-5113	& 8081				
ORG-91-5113	& 000 I				
ORG-91-5113	& 8081				
ORG-91-5113	α 000 I				
ORG-91-5113	& 8081				
ORG-91-5113	α 000 I				
ORG-91-5113	& 000 I				
ORG-91-5113	α 000 I				
ORG-91-5113	α 000 I				
ORG-91-5113	& 8081				
ORG-91-5113	α 000 I				
ORG-91-5113	& 000 I				
ORG-91-5112	& 000 I				
ORG-91-5113	modified from EPA SW-846 3541,3620 & 8081	GC/ECD			
	MOE E3139	BALANCE			
ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS			
ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS			
ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS			
ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS			
ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS			
ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS			
ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS			
ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS			
ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS			
ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS			
	ORG-91-5113 ORG-91-5116 ORG-91-5106	ORG-91-5113			

Method Summary

CLIENT NAME: EXP Services Inc
PROJECT: MRK-00258896-A0

SAMPLING SITE:

AGAT WORK ORDER: 20T586007 ATTENTION TO: Corey Ferguson

SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
2-and 1-methyl Naphthalene	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Moisture Content	ORG-91-5106	Tier 1 Method	BALANCE
Naphthalene-d8	ORG-91-5106	modified from EPA SW-846 3541 & 8270E50	GC/MS
Acenaphthene-d10	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS
Chrysene-d12	ORG-91-5106	modified from EPA SW-846 3541 & 8270E	GC/MS

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 **Laboratory Use Only**

Cooler Quantity:

Work Order #: 207586007

Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com

Chain of Custody Rec	ord If this is a	a Drinking Wa	ter sample,	please use [Drinking Water Chain of Custody Form (p	otable	water consu	med by huma	ans)			Ar	rrival	Temp	eratı	ıres:	5.	6	15	71	ue	7
Report Information: Company: EXP Ser	vices 1	nc.		(P	Regulatory Requirements: Please check all applicable boxes)		No Regu	latory R	equir	eme	nt		ustod	y Sea	l Inta	act:	□Y	′es	9/1	INO		N/A
Contact: Address: Phone: Reports to be sent to: 1. Email: Correy. Ference of the corresponding to the corresponding	PINARK	ham			Regulation 153/04	tary n		Regulation CCME Prov. Wat Objective Other	er Qua s (PW0	ılity		Re	gula sh T	AT (R 3 Bus Days	T ush Su sines	ircharg	ges Apply)	5 to 7 0 2 Busi Days		ss Days	,	iness
Project Information: Project: MKK - 60 Site Location: Sampled By: AF + CF					Is this submission for a Record of Site Condition? Yes No			t Guidel ate of A		sls				TAT is	s exc	lusive	e of wee	ekend	s and s	for rush tatutory h	olidays	
AGAT Quote #: Please note: If quotation num Invoice Information: Company: Contact: Address: Email:		ill be billed full price		B G O P S S	GW Ground Water O Oil Paint	Field Filtered - Metals, Hg, CrVI	xcl Hydrides)	ORPS: DB-HWS OCI ON EST OF OCI	Is Scan	Regulation/Custom Metals	Nutrlents: ☐ TP ☐ NH3 ☐ TKN ☐ NO3 ☐ NO3 ☐ NO3+NO2	□ VOC □ BTEX □ THM	- F4			Total 🛮 Aroclors	Organochlorine Pesticides TCLP: □ M&! □ VOCs □ ABNs □ B(a)P □ PCBs	Gelal Colonia	5			Hazardous or High Concentration (Y/N)
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals a	ORPs:	Eull Metals Scan	Regulatio	Nutrlents	Volatiles:	PHCs F1 - F4	ABNs	PAHs	PCBs: □	Organoch	Sewer Use	OCP			Potentially
SED1	18/3/20	FM	3	SD			×					110		\rightarrow	X				X			Г
SED 2	<u> </u>	¥	\ \ \	V			×								X				X		uh	
																				N C		
															+			-			1017	-
Samples Relinquished By (Print Name and Stan): Andrea Fernande's Samples Relinquished By (Print Name and Sign):	Andred	> Date S 3	120	100 P	Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):	8				Date				me me	-4					R 18		.1 p
Samples P inquished By (Print Name and Sign). Document ID: Doys / 8 1511,016		Date	Tir	me	Samples Received By (Print Name and Sign):			Pink	Conv	Date		llow (me - ACAT	г / У	ιλ/h i+α	Nº:	Т1	01	19	1	VO15

CLIENT NAME: EXP SERVICES INC

220 Commerce Valley Drive West, Suite 500

Markham, ON, ON L3T0A8

(905) 695-3217

ATTENTION TO: Amanda Catenaro

PROJECT: GTR-00258896-E0

AGAT WORK ORDER: 21T817791

SOIL ANALYSIS REVIEWED BY: Jacky Zhu, Spectroscopy Technician

TRACE ORGANICS REVIEWED BY: Oksana Gushyla, Trace Organics Lab Supervisor

WATER ANALYSIS REVIEWED BY: Amanjot Bhela, Inorganic Lab Manager

DATE REPORTED: Oct 25, 2021

PAGES (INCLUDING COVER): 17 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days after receipt unless a Long Term Storage Agreement is signed and returned. Some specialty analysis may
 be exempt, please contact your Client Project Manager for details.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 17

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

AGAT WORK ORDER: 21T817791 PROJECT: GTR-00258896-E0 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Amanda Catenaro SAMPLED BY:M.L. 722-772 Winston Churchill Blvd, Oakville

O. Reg. 153(511)	- Metals	(Including H	ydrides) (Soil)
------------------	----------	--------------	-----------------

DATE RECEIVED: 2021-10-19								DATE REPORTED: 2021-10-25
		_	CRIPTION: PLE TYPE: SAMPLED:	SED 101 Sediment 2021-10-19	SED 102 Sediment 2021-10-19	SED 102-0 Sediment 2021-10-19	SED 103 Sediment 2021-10-19	
Parameter	Unit	G/S	RDL	09:30 3106279	08:45 3106281	08:45 3106282	08:15 3106294	
Antimony	μg/g	1.3	0.8	<0.8	<0.8	<0.8	<0.8	
Arsenic	μg/g	18	1	6	18	19	6	
Barium	μg/g	220	2.0	48.6	53.0	53.3	63.0	
Beryllium	μg/g	2.5	0.4	1.0	<0.4	0.4	0.8	
Boron	μg/g	36	5	14	<5	5	13	
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	
Chromium	μg/g	70	5	22	17	16	23	
Cobalt	μg/g	22	0.5	12.0	4.0	4.4	11.1	
Copper	μg/g	92	1.0	33.2	22.2	22.1	29.2	
_ead	μg/g	120	1	13	79	72	16	
Molybdenum	μg/g	2	0.5	<0.5	<0.5	<0.5	0.7	
Nickel	μg/g	82	1	28	10	10	26	
Selenium	μg/g	1.5	0.8	<0.8	0.8	<0.8	<0.8	
Silver	μg/g	0.5	0.5	<0.5	<0.5	<0.5	<0.5	
Thallium	μg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	
Jranium	μg/g	2.5	0.50	0.57	0.57	0.50	0.66	
Vanadium	μg/g	86	0.4	29.6	20.8	21.7	31.0	
Zinc	μg/g	290	5	77	48	47	120	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

Analysis performed at AGAT Toronto (unless marked by *)

By:

AGAT WORK ORDER: 21T817791 PROJECT: GTR-00258896-E0

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Amanda Catenaro

SAMPLED BY:M.L. 722-772 Winston Churchill Blvd, Oakville

DATE RECEIVED: 2021-10-19						DATE REPORTED: 2021-10-25
	SAMPLE DESCRIPTION:	GS1	GS1-0	GS2	GS3	

O. Reg. 153(511) - OC Pesticides (Soil)

DATE RECEIVED: 2021-10-19								DATE REPORTED: 2021-10-25
		SAMPLE DESC	CRIPTION:	GS1	GS1-0	GS2	GS3	
		SAMF	PLE TYPE:	Soil	Soil	Soil	Soil	
		DATE S	SAMPLED:	2021-10-19 10:15	2021-10-19 10:15	2021-10-19 11:00	2021-10-19 10:00	
Parameter	Unit	G/S	RDL	3106243	3106246	3106249	3106250	
Hexachloroethane	μg/g	0.01	0.01	<0.01	<0.01	<0.01	<0.01	
Gamma-Hexachlorocyclohexane	μg/g	0.01	0.005	< 0.005	< 0.005	< 0.005	<0.005	
Heptachlor	μg/g	0.05	0.005	<0.005	<0.005	<0.005	<0.005	
Aldrin	μg/g	0.05	0.005	<0.005	< 0.005	< 0.005	<0.005	
Heptachlor Epoxide	μg/g	0.05	0.005	< 0.005	<0.005	< 0.005	<0.005	
Endosulfan I	μg/g		0.005	< 0.005	< 0.005	< 0.005	<0.005	
Endosulfan II	μg/g		0.005	< 0.005	< 0.005	< 0.005	<0.005	
Endosulfan	μg/g	0.04	0.005	<0.005	< 0.005	< 0.005	<0.005	
Alpha-Chlordane	μg/g		0.005	<0.005	<0.005	<0.005	<0.005	
gamma-Chlordane	μg/g		0.005	< 0.005	< 0.005	< 0.005	<0.005	
Chlordane	μg/g	0.05	0.007	<0.007	< 0.007	< 0.007	<0.007	
op'-DDE	ug/g		0.005	< 0.005	< 0.005	< 0.005	< 0.005	
pp'-DDE	μg/g		0.005	0.145	0.193	0.007	<0.005	
DDE	μg/g	0.05	0.007	0.145	0.193	0.007	<0.007	
op'-DDD	μg/g		0.005	0.006	0.005	< 0.005	< 0.005	
pp'-DDD	μg/g		0.005	0.017	0.022	< 0.005	<0.005	
DDD	μg/g	0.05	0.007	0.023	0.027	< 0.007	<0.007	
op'-DDT	μg/g		0.005	0.011	0.014	< 0.005	<0.005	
pp'-DDT	μg/g		0.005	0.056	0.074	0.005	< 0.005	
DDT (Total)	μg/g	1.4	0.007	0.067	0.088	< 0.007	<0.007	
Dieldrin	μg/g	0.05	0.005	< 0.005	< 0.005	< 0.005	< 0.005	
Endrin	μg/g	0.04	0.005	< 0.005	< 0.005	< 0.005	< 0.005	
Methoxychlor	μg/g	0.05	0.005	< 0.005	<0.005	< 0.005	<0.005	
Hexachlorobenzene	μg/g	0.02	0.005	<0.005	< 0.005	< 0.005	<0.005	
Hexachlorobutadiene	μg/g	0.01	0.01	<0.01	<0.01	<0.01	<0.01	
Moisture Content	%		0.1	16.2	17.3	16.3	13.4	
wet weight OC	g		0.01	10.67	10.85	10.76	10.80	

AGAT WORK ORDER: 21T817791 PROJECT: GTR-00258896-E0 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Amanda Catenaro SAMPLED BY:M.L. 722-772 Winston Churchill Blvd, Oakville

O. Neg. 133(311) - OC Festicides (3011)	
	DATE REPORTED: 202

DATE RECEIVED: 2021-10-19							DATE REPORTED: 2021-10-25
		SAMPLE DESCRIPTION:	GS1	GS1-0	GS2	GS3	
		SAMPLE TYPE:	Soil	Soil	Soil	Soil	
		DATE SAMPLED:	2021-10-19 10:15	2021-10-19 10:15	2021-10-19 11:00	2021-10-19 10:00	
Surrogate	Unit	Acceptable Limits	3106243	3106246	3106249	3106250	
TCMX	%	50-140	96	108	75	92	
Decachlorobiphenyl	%	50-140	115	109	92	97	

O Pag 153/511) - OC Posticidos (Soil)

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3106243-3106250 Results are based on the dry weight of the soil.

DDT total is a calculated parameter. The calculated value is the sum of op'DDT and pp'DDT. DDD total is a calculated parameter. The calculated value is the sum of op'DDD and pp'DDD.

DDE total is a calculated parameter. The calculated value is the sum of op DDE and pp DDE.

Endosulfan total is a calculated parameter. The calculated value is the sum of Endosulfan I and Endosulfan II.

Chlordane total is a calculated parameter. The calculated value is the sum of Alpha-Chlordane and Gamma-Chlordane.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 21T817791 PROJECT: GTR-00258896-E0 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Amanda Catenaro

SAMPLED BY:M.L. 722-772 Winston Churchill Blvd, Oakville

SAMPLING SITE.							1.W.L. 122-112 Willston Churchin Biva, Oakv				
O. Reg. 153(511) - OC Pesticides (Water)											
DATE RECEIVED: 2021-10-19							DATE REPORTED: 2021-10-25				
			LE TYPE:	MW 103 Water	MW 1030 Water						
		DATES	AMPLED:	2021-10-19 12:00	2021-10-19 12:00						
Parameter	Unit	G/S	RDL	3106300	3106302						
Gamma-Hexachlorocyclohexane	μg/L	0.95	0.01	<0.01	<0.01						
Heptachlor	μg/L	0.038	0.01	<0.01	<0.01						
Aldrin	μg/L	0.35	0.01	<0.01	<0.01						
Heptachlor Epoxide	μg/L	0.038	0.01	<0.01	<0.01						
Endosulfan I	μg/L		0.05	< 0.05	<0.05						
Endosulfan II	μg/L		0.05	< 0.05	<0.05						
Endosulfan	μg/L	0.56	0.05	<0.05	< 0.05						
alpha - chlordane	μg/L		0.04	<0.04	<0.04						
gamma-Chlordane	μg/L		0.04	<0.04	<0.04						
Chlordane	μg/L	0.06	0.04	<0.04	<0.04						
pp'-DDE	μg/L		0.01	<0.01	<0.01						
pp'-DDE	μg/L		0.01	<0.01	<0.01						
DDE	μg/L	10	0.01	<0.01	<0.01						
pp'-DDD	μg/L		0.05	< 0.05	<0.05						
pp'-DDD	μg/L		0.05	< 0.05	<0.05						
DDD	μg/L	1.8	0.05	< 0.05	<0.05						
pp'-DDT	μg/L		0.04	<0.04	<0.04						
op'-DDT	μg/L		0.05	<0.05	<0.05						
DDT	μg/L	0.05	0.04	<0.04	<0.04						
Dieldrin	μg/L	0.35	0.02	<0.02	<0.02						
Endrin	μg/L	0.36	0.05	<0.05	<0.05						
Methoxychlor	μg/L	0.3	0.04	< 0.04	<0.04						
Hexachlorobenzene	ug/L	1	0.01	<0.01	<0.01						
Hexachlorobutadiene	ug/L	0.44	0.01	<0.01	<0.01						
Hexachloroethane	ug/L	2.1	0.01	<0.01	<0.01						
Surrogate	Unit	Acceptabl	e Limits								
TCMX	%	50-1		88	85						
Decachlorobiphenyl	%	60-1	40	112	115						

AGAT WORK ORDER: 21T817791 PROJECT: GTR-00258896-E0

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Amanda Catenaro

SAMPLED BY:M.L. 722-772 Winston Churchill Blvd, Oakville

O. Reg. 153(511) - OC Pesticides (Water)

DATE REPORTED: 2021-10-25 DATE RECEIVED: 2021-10-19

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Ground

Water - All Types of Property Uses

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3106300-3106302 DDT total is a calculated parameter. The calculated value is the sum of op'DDT and pp'DDT.

DDD total is a calculated parameter. The calculated value is the sum of op'DDD and pp'DDD. DDE total is a calculated parameter. The calculated value is the sum of op'DDE and pp'DDE.

Endosulfan total is a calculated parameter. The calculated value is the sum of Endosulfan I and Endosulfan II.

Chlordane total is a calculated parameter. The calculated value is the sum of Alpha-Chlordane and Gamma-Chlordane.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 21T817791 PROJECT: GTR-00258896-E0 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

SAMPLING SITE:

ATTENTION TO: Amanda Catenaro

SAMPLED BY:M.L. 722-772 Winston Churchill Blvd, Oakville

O. Reg. 153(511) - Metals	(Including H	ydrides)	(Water)
-----------------	------------	--------------	----------	---------

DATE RECEIVED: 2021-10-19						DATE REPORTED: 2021-10-25
		SAMPLE DES		MW 103	MW 1030	
		SAM	PLE TYPE:	Water	Water	
		DATE	SAMPLED:	2021-10-19 12:00	2021-10-19 12:00	
Parameter	Unit	G/S	RDL	3106300	3106302	
Dissolved Antimony	μg/L	6	1.0	<1.0	<1.0	
Dissolved Arsenic	μg/L	25	1.0	1.9	1.9	
Dissolved Barium	μg/L	1000	2.0	92.1	90.9	
Dissolved Beryllium	μg/L	4	0.50	< 0.50	<0.50	
Dissolved Boron	μg/L	5000	10.0	338	341	
Dissolved Cadmium	μg/L	2.1	0.20	<0.20	<0.20	
Dissolved Chromium	μg/L	50	2.0	4.8	4.9	
Dissolved Cobalt	μg/L	3.8	0.50	0.85	0.92	
Dissolved Copper	μg/L	69	1.0	1.5	1.5	
Dissolved Lead	μg/L	10	0.50	2.20	1.30	
Dissolved Molybdenum	μg/L	70	0.50	<0.50	<0.50	
Dissolved Nickel	μg/L	100	3.0	<3.0	<3.0	
Dissolved Selenium	μg/L	10	1.0	2.9	2.4	
Dissolved Silver	μg/L	1.2	0.20	<0.20	<0.20	
Dissolved Thallium	μg/L	2	0.30	< 0.30	<0.30	
Dissolved Uranium	μg/L	20	0.50	1.67	1.70	
Dissolved Vanadium	μg/L	6.2	0.40	<0.40	<0.40	
Dissolved Zinc	μg/L	890	5.0	6.0	<5.0	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 8: Generic Site Condition Standards for Use within 30 m of a Water Body in a Potable Ground Water Condition - Ground Water - All Types of Property Uses

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

3106300-3106302 Metals analysis completed on a filtered sample.

Analysis performed at AGAT Toronto (unless marked by *)

AMANJOT BHELD & AMANJOT BHELD & CHEMIST OF

Exceedance Summary

AGAT WORK ORDER: 21T817791

PROJECT: GTR-00258896-E0

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: EXP SERVICES INC

ATTENTION TO: Amanda Catenaro

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
3106243	GS1	ON T8 S RPI/ICC	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	µg/g	0.05	0.145
3106246	GS1-0	ON T8 S RPI/ICC	O. Reg. 153(511) - OC Pesticides (Soil)	DDE	μg/g	0.05	0.193
3106282	SED 102-0	ON T8 S RPI/ICC	O. Reg. 153(511) - Metals (Including Hydrides) (Soil)	Arsenic	μg/g	18	19

Quality Assurance

CLIENT NAME: EXP SERVICES INC PROJECT: GTR-00258896-E0

AGAT WORK ORDER: 21T817791
ATTENTION TO: Amanda Catenaro

SAMPLING SITE:

SAMPLED BY:M.L. 722-772 Winston Churchill

SAMPLING SITE:							•	AIVIF	LED B	Y:IVI.L. /	22-11/	2 VVIII	Ston Cn	urciiii	
				Soi	l Ana	alysis	5								
RPT Date: Oct 25, 2021				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1 1 1 1 1	ptable nits	Recovery	1 1 1 1 1	ptable nits
. ,		ld	,				Value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals (Inc	luding Hydrides	s) (Soil)													
Antimony	3102764		<0.8	<0.8	NA	< 0.8	130%	70%	130%	107%	80%	120%	107%	70%	130%
Arsenic	3102764		1	1	NA	< 1	113%	70%	130%	111%	80%	120%	111%	70%	130%
Barium	3102764		8.9	9.0	NA	< 2.0	98%	70%	130%	104%	80%	120%	93%	70%	130%
Beryllium	3102764		<0.4	<0.4	NA	< 0.4	116%	70%	130%	105%	80%	120%	109%	70%	130%
Boron	3102764		<5	<5	NA	< 5	83%	70%	130%	100%	80%	120%	98%	70%	130%
Cadmium	3102764		<0.5	<0.5	NA	< 0.5	115%	70%	130%	104%	80%	120%	110%	70%	130%
Chromium	3102764		<5	<5	NA	< 5	104%	70%	130%	98%	80%	120%	99%	70%	130%
Cobalt	3102764		1.7	1.7	NA	< 0.5	91%	70%	130%	100%	80%	120%	92%	70%	130%
Copper	3102764		6.7	6.9	1.8%	< 1.0	100%	70%	130%	100%	80%	120%	87%	70%	130%
Lead	3102764		2	2	NA	< 1	110%	70%	130%	97%	80%	120%	93%	70%	130%
Molybdenum	3102764		<0.5	<0.5	NA	< 0.5	109%	70%	130%	116%	80%	120%	116%	70%	130%
Nickel	3102764		2	2	NA	< 1	100%	70%	130%	110%	80%	120%	99%	70%	130%
Selenium	3102764		<0.8	<0.8	NA	< 0.8	125%	70%	130%	108%	80%	120%	104%	70%	130%
Silver	3102764		<0.5	<0.5	NA	< 0.5	97%	70%	130%	100%	80%	120%	99%	70%	130%
Thallium	3102764		<0.5	<0.5	NA	< 0.5	95%	70%	130%	113%	80%	120%	108%	70%	130%
Uranium	3102764		<0.50	<0.50	NA	< 0.50	99%	70%	130%	101%	80%	120%	99%	70%	130%
Vanadium	3102764		11.5	12.7	9.7%	< 0.4	96%	70%	130%	96%	80%	120%	99%	70%	130%
Zinc	3102764		9	9	NA	< 5	98%	70%	130%	98%	80%	120%	98%	70%	130%

Comments: NA Signifies Not Applicable.

Duplicate NA: results are under 5X the RDL and will not be calculated.

CHARTENED S ONEMIST O

Quality Assurance

CLIENT NAME: EXP SERVICES INC PROJECT: GTR-00258896-E0

AGAT WORK ORDER: 21T817791
ATTENTION TO: Amanda Catenaro

SAMPLING SITE:

SAMPLED BY:M.L. 722-772 Winston Churchill

			Trac	e Org	ganio	s Ar	alysi	S							
RPT Date: Oct 25, 2021			С	UPLICATI	Ε		REFEREN	ICE MA	TERIAL	METHOD	BLAN	(SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1 1:-	eptable mits	Recovery	1 1 1	ptable nits
		ld	·	·			Value	Lower	Upper		Lower	Upper		Lower	Uppe
O. Reg. 153(511) - OC Pesticides	(Soil)														
Hexachloroethane	3106075		< 0.01	< 0.01	NA	< 0.01	81%	50%	140%	101%	50%	140%	81%	50%	1409
Gamma-Hexachlorocyclohexane	3106075		< 0.005	< 0.005	NA	< 0.005	93%	50%	140%	83%	50%	140%	92%	50%	1409
Heptachlor	3106075		< 0.005	< 0.005	NA	< 0.005	83%	50%	140%	102%	50%	140%	108%	50%	140
Aldrin	3106075		< 0.005	< 0.005	NA	< 0.005	93%	50%	140%	102%	50%	140%	84%	50%	140
Heptachlor Epoxide	3106075		< 0.005	< 0.005	NA	< 0.005	94%	50%	140%	104%	50%	140%	87%	50%	1409
Endosulfan I	3106075		< 0.005	< 0.005	NA	< 0.005	92%	50%	140%	96%	50%	140%	80%	50%	1409
Endosulfan II	3106075		< 0.005	< 0.005	NA	< 0.005	94%	50%	140%	99%	50%	140%	82%	50%	1409
Alpha-Chlordane	3106075		< 0.005	< 0.005	NA	< 0.005	92%	50%	140%	101%	50%	140%	85%	50%	1409
gamma-Chlordane	3106075		< 0.005	< 0.005	NA	< 0.005	90%	50%	140%	99%	50%	140%	83%	50%	1409
op'-DDE	3106075		< 0.005	< 0.005	NA	< 0.005	87%	50%	140%	102%	50%	140%	87%	50%	140%
pp'-DDE	3106075		0.106	0.089	17.4%	< 0.005	91%	50%	140%	109%	50%	140%	82%	50%	1409
op'-DDD	3106075		< 0.005	< 0.005	NA	< 0.005	101%	50%	140%	114%	50%	140%	99%	50%	1409
op'-DDD	3106075		< 0.005	< 0.005	NA	< 0.005	109%	50%	140%	110%	50%	140%	106%	50%	1409
op'-DDT	3106075		< 0.005	< 0.005	NA	< 0.005	97%	50%	140%	109%	50%	140%	101%	50%	1409
pp'-DDT	3106075		0.030	0.025	18.2%	< 0.005	85%	50%	140%	106%	50%	140%	107%	50%	
Dieldrin	3106075		< 0.005	< 0.005	NA	< 0.005	91%	50%	140%	104%	50%	140%	85%	50%	1409
Endrin	3106075		< 0.005	< 0.005	NA	< 0.005	85%	50%	140%	104%	50%	140%	108%	50%	1409
Methoxychlor	3106075		< 0.005	< 0.005	NA	< 0.005	81%	50%	140%	116%	50%	140%	104%	50%	1409
Hexachlorobenzene	3106075		< 0.005	< 0.005	NA	< 0.005	99%	50%	140%	95%	50%	140%	86%	50%	1409
Hexachlorobutadiene	3106075		< 0.00	< 0.00	NA	< 0.01	96%	50%	140%	98%	50%	140%	82%	50%	1409
Comments: When the average of th	e sample and	duplicate	results is	less than 5	x the RDL	, the Rela	ive Percer	nt Diffe	rence (F	RPD) will b	oe indic	ated as	Not Appli	cable (N	NA).
O. Reg. 153(511) - OC Pesticides	(Water)														
Gamma-Hexachlorocyclohexane	3096062		< 0.01	< 0.01	NA	< 0.01	92%	50%	140%	81%	50%	140%	75%	50%	1409
Heptachlor	3096062		< 0.01	< 0.01	NA	< 0.01	83%	50%	140%	108%	50%	140%	109%	50%	1409
Aldrin	3096062		< 0.01	< 0.01	NA	< 0.01	93%	50%	140%	104%	50%	140%	92%	50%	1409
Heptachlor Epoxide	3096062		< 0.01	< 0.01	NA	< 0.01	94%	50%	140%	107%	50%	140%	96%	50%	1409
Endosulfan I	3096062		< 0.05	< 0.05	NA	< 0.05	92%	50%	140%	96%	50%	140%	91%	50%	1409
Endosulfan II	3096062		< 0.05	< 0.05	NA	< 0.05	94%	50%	140%	102%	50%	140%	93%	50%	140
alpha - chlordane	3096062		< 0.1	< 0.1	NA	< 0.04	90%	50%	140%	102%	50%	140%	97%	50%	140
gamma-Chlordane	3096062		< 0.2	< 0.2	NA	< 0.04	91%	50%	140%	99%	50%	140%	94%	50%	1409
op'-DDE	3096062		< 0.01	< 0.01	NA	< 0.01	87%		140%	100%		140%	95%	50%	1409
pp'-DDE	3096062		< 0.01	< 0.01	NA	< 0.01	91%		140%	108%		140%	104%	50%	1409
op'-DDD	3096062		< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	107%	50%	140%	109%	50%	140°
op'-DDD	3096062		< 0.05	< 0.05	NA	< 0.05	109%		140%	105%		140%	112%	50%	
op'-DDT	3096062		< 0.04	< 0.04	NA	< 0.04	85%		140%	101%		140%	105%	50%	
op'-DDT	3096062		< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	104%		140%	99%	50%	
() T T T				3.00				7 7 3	, 3	, 0	- 5,5		, -	, 5	,

AGAT QUALITY ASSURANCE REPORT (V1)

3096062

< 0.05

< 0.05

Endrin

Page 10 of 17

50% 140%

106%

50% 140% 101%

50% 140%

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

NA

< 0.05

85%

Quality Assurance

CLIENT NAME: EXP SERVICES INC

PROJECT: GTR-00258896-E0

AGAT WORK ORDER: 21T817791

ATTENTION TO: Amanda Catenaro

SAMPLING SITE: SAMPLED BY:M.L. 722-772 Winston Churchill

Trace Organics Analysis (Continued)																	
RPT Date: Oct 25, 2021 DUPLICATE							REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE		
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Blank Measured		Blank Measured		ptable nits	Recovery	Lin	ptable nits	Recovery	Lie	ptable nits
. ,		Id Dup#1 Dup#2 RFD			Value	Lower	Upper		Lower			Upper					
Methoxychlor	3096062		< 0.04	< 0.04	NA	< 0.04	82%	50%	140%	109%	50%	140%	105%	50%	140%		
Hexachlorobenzene	3096062		< 0.01	< 0.01	NA	< 0.01	99%	50%	140%	96%	50%	140%	89%	50%	140%		
Hexachlorobutadiene	3096062		< 0.01	< 0.01	NA	< 0.01	96%	50%	140%	108%	50%	140%	103%	50%	140%		
Hexachloroethane	3096062		< 0.01	< 0.01	NA	< 0.01	82%	50%	140%	93%	50%	140%	83%	50%	140%		

Certified By:

Jung

Quality Assurance

CLIENT NAME: EXP SERVICES INC PROJECT: GTR-00258896-E0

AGAT WORK ORDER: 21T817791
ATTENTION TO: Amanda Catenaro

SAMPLING SITE:

SAMPLED BY:M.L. 722-772 Winston Churchill

SAMPLING SITE:							•	DAIVIP	LED B	T:IVI.L. /	22-11	2 VVIII	ston Cn	arcmin		
				Wate	er Ar	nalys	is									
RPT Date: Oct 25, 2021				UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery	1 1 1 1 1	ptable nits	Recovery	Lin	Acceptable Limits	
		ld					Value	Lower	Upper		Lower	Upper	1	Lower	Upper	
O. Reg. 153(511) - Metals (Inc	luding Hydride	s) (Water))													
Dissolved Antimony	3104953		<1.0	<1.0	NA	< 1.0	97%	70%	130%	100%	80%	120%	99%	70%	130%	
Dissolved Arsenic	3104953		3.0	2.8	NA	< 1.0	97%	70%	130%	98%	80%	120%	106%	70%	130%	
Dissolved Barium	3104953		44.5	45.2	1.6%	< 2.0	100%	70%	130%	98%	80%	120%	98%	70%	130%	
Dissolved Beryllium	3104953		<0.50	< 0.50	NA	< 0.50	99%	70%	130%	98%	80%	120%	103%	70%	130%	
Dissolved Boron	3104953		171	175	2.3%	< 10.0	101%	70%	130%	102%	80%	120%	108%	70%	130%	
Dissolved Cadmium	3104953		<0.20	<0.20	NA	< 0.20	99%	70%	130%	102%	80%	120%	102%	70%	130%	
Dissolved Chromium	3104953		<2.0	<2.0	NA	< 2.0	100%	70%	130%	98%	80%	120%	103%	70%	130%	
Dissolved Cobalt	3104953		< 0.50	< 0.50	NA	< 0.50	93%	70%	130%	97%	80%	120%	103%	70%	130%	
Dissolved Copper	3104953		1.5	1.4	NA	< 1.0	99%	70%	130%	100%	80%	120%	104%	70%	130%	
Dissolved Lead	3104953		<0.50	<0.50	NA	< 0.50	92%	70%	130%	97%	80%	120%	96%	70%	130%	
Dissolved Molybdenum	3104953		2.40	2.50	NA	< 0.50	98%	70%	130%	98%	80%	120%	103%	70%	130%	
Dissolved Nickel	3104953		<3.0	<3.0	NA	< 3.0	99%	70%	130%	101%	80%	120%	106%	70%	130%	
Dissolved Selenium	3104953		1.1	<1.0	NA	< 1.0	96%	70%	130%	92%	80%	120%	100%	70%	130%	
Dissolved Silver	3104953		<0.20	< 0.20	NA	< 0.20	97%	70%	130%	100%	80%	120%	105%	70%	130%	
Dissolved Thallium	3104953		<0.30	<0.30	NA	< 0.30	96%	70%	130%	102%	80%	120%	103%	70%	130%	
Dissolved Uranium	3104953		0.65	0.60	NA	< 0.50	94%	70%	130%	95%	80%	120%	96%	70%	130%	
Dissolved Vanadium	3104953		<0.40	< 0.40	NA	< 0.40	93%	70%	130%	96%	80%	120%	99%	70%	130%	
Dissolved Zinc	3104953		<5.0	<5.0	NA	< 5.0	99%	70%	130%	102%	80%	120%	109%	70%	130%	

Comments: NA Signifies Not Applicable

Duplicate NA: results are under 5X the RDL and will not be calculated.

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: GTR-00258896-E0

AGAT WORK ORDER: 21T817791
ATTENTION TO: Amanda Catenaro

SAMPLING SITE:

SAMPLED BY:M.L. 722-772 Winston Churchill

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis	'		
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: GTR-00258896-E0

AGAT WORK ORDER: 21T817791
ATTENTION TO: Amanda Catenaro

SAMPLING SITE:

SAMPLED BY:M.L. 722-772 Winston Churchill

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE	
Trace Organics Analysis				
Hexachloroethane	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD	
Gamma-Hexachlorocyclohexane	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD	
Heptachlor	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD	
Aldrin	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD	
Heptachlor Epoxide	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD	
Endosulfan I	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD	
Endosulfan II	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD	
Endosulfan	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	CALCULATION	
Alpha-Chlordane	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD	
gamma-Chlordane	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD	
Chlordane	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	CALCULATION	
op'-DDE	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD	
pp'-DDE	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD	
DDE	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD	
op'-DDD	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD	
pp'-DDD	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD	
DDD	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	CALCULATION	
op'-DDT	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD	
pp'-DDT	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD	
DDT (Total)	ORG-91-5113	modified from EPA 3570, 3620C & 8081B	CALCULATION	
Dieldrin	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD	
Endrin	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD	
Methoxychlor	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD	
Hexachlorobenzene	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD	
Hexachlorobutadiene	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD	
тсмх	ORG-91-5112	modified from EPA 3570 & 3620C & GC/ECD 8081B		
Decachlorobiphenyl	ORG-91-5113	modified from EPA 3570 & 3620C & 8081B	GC/ECD	
Moisture Content	VOL-91-5009	CCME Tier 1 Method	BALANCE	

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: GTR-00258896-E0

AGAT WORK ORDER: 21T817791
ATTENTION TO: Amanda Catenaro

SAMPLING SITE: SAMPLED BY:M.L. 722-772 Winston Churchill

	101-00-		ANALYTICAL TECHNICAL
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
wet weight OC	ORG-91-5113		BALANCE
Gamma-Hexachlorocyclohexane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Heptachlor	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Aldrin	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Heptachlor Epoxide	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Endosulfan I	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Endosulfan II	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Endosulfan	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION
alpha - chlordane	ORG-91-5112	modified from EPA SW846 3510C & 8081B	GC/ECD
gamma-Chlordane	ORG-91-5112	modified from EPA SW846 3510C & 8081B	GC/ECD
Chlordane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION
op'-DDE	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
pp'-DDE	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
DDE	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION
op'-DDD	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
pp'-DDD	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
DDD	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION
op'-DDT	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
pp'-DDT	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
DDT	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	CALCULATION
Dieldrin	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Endrin	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Methoxychlor	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Hexachlorobenzene	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Hexachlorobutadiene	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Hexachloroethane	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
тсмх	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD
Decachlorobiphenyl	ORG-91-5112	modified from EPA SW-846 3510C & 8081B	GC/ECD

Method Summary

CLIENT NAME: EXP SERVICES INC PROJECT: GTR-00258896-E0

SAMPLING SITE:

AGAT WORK ORDER: 21T817791
ATTENTION TO: Amanda Catenaro

SAMPLED BY:M.L. 722-772 Winston Churchill

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis	'	'	
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph 905.712.5100 Fax 905.712.5122 webearth agatlabs.com

Laboratory Use	Only
Work Order #: 21	7817791
Cooler Quantity: Arrival Temperatures:	8.319.618.8
Custody Seal Intact:	□Yes □No □N/A

Chain	of	Custody	Record

Chain of Custody Reco	rd If this is a	Drinking Water sample, plea	se use Drinki	ng Water Chain of Custody Form (potab	ole water o	consume	d by hu	mans)			ival Tem	peratures:	8	319	1.6 1	8.8
Report Information: Company: Exp Service	s Inc	7 m 4,7654 1	Regi	ulatory Requirements: heck all applicable boxes)								eal Intact:	Yes	,	□No	□N/A
Address: Amanda Cate Suite 110, Ma	e Valley Di	W	- Tabl	gulation 153/04 Excess Soils R4 e Indicate One nd/Com		Sew Sa	er Use initary Region	Storm	1	Tur		und Tim	e (TAT)) Requir		
Phone: 905 695 3217	Fax:			es/Park griculture Regulation 558	3 [Prov Obje	. Wate	r Quality (PWQO)		Rus	h TAT	(Rush Surchar	-			
1. Email: Amanda - Catenaro 2. Email:	Q exp.com	1		cture (Check One) loarse CCME	-	Othe	er Indicate	One			ل Day	Business ys I Date Requ	□ Da			Vext Busines Day .pply):
Project Information: Project: GTR - 00 2588 State Site Location: 722 - 772 Wind	16 - EO Hon Churchi	Il Blud, Oakville	Rec	this submission for a ord of Site Condition? Yes No	Cer	•	te of	eline or Analys	ls	F		Please pro T is exclusione Day' and	e of week	ends and s	statutory	holidays
Sampled By: AGAT Quote #:	PO:	XII II II		ple Matrix Legend	20	0.	Reg 15:	3	Wit-	0. Reg 558	0. Re	eg 406			1077	
Invoice Information: Company: Contact: Address: Email:		i be billed full price for analysis.	GW O P S SD	Biota Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered - Metals, Hg. CrVI, DOC	s & Inorganics	Metals - □ CrVI, □ Hg, □ HWSB	Analyze F4G if required 🗆 Yes 🗆 No PAHs		Landfill Disposal Characterization TCLP:	Soils SPLP Rainwater Le J Metals □ VOCs □ SVOCs	Soils Ch MS Meta	Ps			City Control of the C
Sample Identification	Date Sampled	Time # of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals	Analyz	PCBs	Landfi TCLP: [Excess SPLP:	Excess pH, ICP	Ö			
GSI	21/10/19	10:15 🕅 1	5011				2						X		100	
G51-0	1	10:15 PM 1							ᅰ			Lie iii	X			
G52		11:00 AM				000							X			
G53		10:00 9	1		16								X			
SEDIOI		9:30 8 1	Sediment				X									
SED 102		8:45 8 1	1		15.00	DVV	X									
SED 102-0		8 45 9 1					X	10377	110011	2811111		100000	gini	J	mad	
SED103		8:15 AM 1	1				X	31		5						
Mw103		12:00 AM 8	GW		Y	1000	X	22070	318	110100		8118//6	X	1110	100	81118
MW 103 0		172 · 00 & 8	GW		Ý	ione	X		11,150	.,			X	1511022		
Samples Relinquished By (Print Name and Sign): MKR LUGG Samples Relinquished By (Print Nam) and Sign):	>	Date , Time	3200	Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign):	1	A	A		Date Date	9/21	Time	.05		Page	of	
Samples Relinquished By (Print Name and Sign):		Date Time		Samples Received By (Print Name and Sign):					Date		Time		Net	11	L07	35

Appendix H – Phase Two Conceptual Site Model

Appendix H: Phase Two Conceptual Site Model

Figure 1: Locality Plan

Figure 2: Site Plan

Figure 3: Groundwater Contour Plan

Figure 4A: Soil Analytical Results – BTEX and PHC Fractions F1 to F4

Figure 4B: Soil Analytical Results - VOCs

Figure 4C: Soil Analytical Results - PAHs

Figure 4D: Soil Analytical Results – Metals, Hydride-Forming Metals

Figure 4E: Soil Analytical Results – OCs

Figure 5A: Groundwater Analytical Results – BTEX and PHC Fractions F1 to F4

Figure 5B: Groundwater Analytical Results - VOC

Figure 5C: Groundwater Analytical Results – Metals, Hydride-Forming Metals

Figure 5D: Groundwater Analytical Results - OCs

Figure 6A: Sediment Analytical Results - PAHs

Figure 6B: Sediment Analytical Results - Metals, Hydride-Forming Metals

Figure 6C: Sediment Analytical Results - OCs

Figure 7: Cross Section Plan

Figure 7A: Cross Section A-A' and B-B': Soil Analytical Results – PHCs and BTEX

Figure 7B: Cross Section A-A' and B-B': Soil Analytical Results – VOCs

Figure 7C: Cross Section A-A' and B-B': Soil Analytical Results – PAHs

Figure 7D: Cross Section A-A' and B-B': Soil Analytical Results – Metals (including hydride-forming metals)

Figure 7E: Cross Section A-A' and B-B': Soil Analytical Results – OCs

Figure 8A: Cross Section A-A' and B-B': Groundwater Analytical Results - PHCs and BTEX

Figure 8B: Cross Section A-A' and B-B': Groundwater Analytical Results – VOCs

Figure 8C: Cross Section A-A' and B-B': Groundwater Analytical Results – Metals (including hydride-forming metals)

Figure 8D: Cross Section A-A' and B-B': Groundwater Analytical Results – OCs

The Site is located on the west side of Winston Churchill Boulevard in Oakville, Ontario, as shown on Figure 1. The subject property measures approximately 15.7 hectares (38.8 acres) in area. The Site was first developed prior to 1939 for agricultural purposes. A farmstead residence was located in the northeast corner from the 1970s until the 2000s. Earthwork activities were undertaken at the Site in 2012, including the removal of surficial topsoil and weathered subgrade soil and construction of a storm

Project Name: Risk Assessment Pre-Submission Form

Site Address: Block 11 (Part 32 of 844 Don Mills Road and 1150 Eglinton Avenue East), Toronto, Ontario
Project Number: BRM-00248183-L0

Date: October 2021

water management pond (SWMP). Clearview Creek, which flowed centrally through the Site, was realigned to run along the west and south boundaries of the subject property. At the time of the Phase Two ESA, the Site was a vacant lot undergoing earthworks. The Phase Two Study Area included industrial properties to the northwest, vacant land to the east and south, and residential land to the west. The Phase Two Study Area and a Surrounding Land Use Plan are shown on Figure 2.

A Phase Two conceptual site model (CSM) was developed for the site using information collected during previous Phase I and II Environmental Site Assessments (ESA) and Phase Two ESA investigations. The CSM is a simplification of reality, which aims to identify the potentially contaminating activities (PCAs), areas of potential environmental concern (APECs), contaminant transport and exposure pathways, and receptors. The CSM is a compilation of narrative description, diagrams and figures illustrating the current condition of the Phase Two property as well as the intended future use.

1. Potentially Contaminating Activities and Areas of Potential Environmental Concern

According to the historical records, the Site was first developed prior to 1939 for agricultural purposes. A farmstead residence was located in the northeast corner from the 1970s until the 2000s. Earthwork activities were undertaken at the Site in 2012, including the removal of surficial topsoil and weathered subgrade soil and construction of a storm water management pond (SWMP). Clearview Creek, which flowed centrally through the Site, was realigned to run along the west and south boundaries of the subject property. At the time of the Phase Two ESA, the Site was a vacant lot undergoing earthworks.

The potential for each off-site PCA to result in an area of potential environmental concern (APEC) was evaluated based on proximity to the site and on its location relative to the calculated south groundwater flow direction. PCAs at properties located cross-gradient and upgradient of the site were considered to result in APECs at the Phase One property.

The potential contaminants of concern (PCOCs) in the media associated with the PCA were assessed, as summarized below:

Table 1a: PCAs resulting in APECs on-site

Area of Potential Environmental Concern (APEC)	Location of APEC on Phase One Property	rotelitially of rea		Contaminants of Potential Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
A1	Southwestern Corner of Site	Stockpile 1 - Fill of Unknown Quality	On-site	PHCs, VOCs, PAHs, Metals, OCs	Soil
A2	Northwestern corner of Site	Stockpile 2 - Fill of Unknown Quality	On-site	PHCs, VOCs, PAHs, Metals, OCs	Soil
A3	Majority of Site	Fill of Unknown Quality	On-site	PHCs, VOCs, PAHs, Metals, OCs	Soil
В	Majority of site	Historical Orchards	On-site	OCs	Soil
С	North and Northwestern Portion of the site	Various Industrial Activities	Off-site	PHCs and VOCs	Groundwater Sediment

Client: Don Mills (ARH) Homes Ltd. Project Name: Risk Assessment Pre-Submission Form

Site Address: Block 11 (Part 32 of 844 Don Mills Road and 1150 Eglinton Avenue East), Toronto, Ontario Project Number: BRM-00248183-L0

Date: October 2021

PHCs – Petroleum hydrocarbons; VOC – volatile organic compounds; PAH – polycyclic aromatic hydrocarbons; OCs – **Organochlorine Pesticides**

Subsurface Structures and Utilities 2.

The utilities and services were identified at the site based on information provided in environmental records, relevant utility infrastructure observed during the site reconnaissance, and public and private locates completed at the site. Given the depth of the static groundwater table, ranging from 0.249 to 1.222 mbgs, it possible for groundwater flow conditions to be influenced by the underground utilities at the site.

Utility	Source	Location	Site Entry		
Natural Gas	Enbridge Gas	Unknown	Unknown		
Sanitary Sewer	City of Oakville	Unknown	Unknown		
Storm Sewer	City of Oakville	Unknown	Unknown		
Water	City of Oakville	Unknown	Unknown		
Electricity	HydroOne	Hydro is present along the northeastern to southeastern Site Boundary, along Winston Churchill Boulevard	The electricity utility does not appear to enter the Site		

3. **Physical Setting**

3.1 Stratigraphy

The Site is located in a transition zone between the physiographic regions known as the Iroquois Plan and Shale Plains. The native surficial soils in this region are predominately composed of older glacial lake deposits, typically silty clay to silt till (Chapman and Putnam, 1984). The subject property is located in the Halton Till (Ontario-Erie lobe) quaternary region, which is an area with a silt to silty clay matrix, high in carbonate content and clast poor (Ontario Geological Survey, 2000).

According to the Geological Survey of Canada map of the area, the underlying geology comprises the Queenston Formation. Bedrock at the Site consists upper Ordovician shale, limestone, dolostone and siltstone (Ontario Geological Survey, 1991).

The topography in the vicinity of the Site is relatively flat with a gradual slope towards the south. Clearview Creek flows onto the subject property at the northwest corner of the Site. Clearview Creek was realigned to run south along the west boundary and east along the south boundary of the Site in 2012. A SWMP was also constructed at the southeast corner of the subject property, at this time.

3.2 Hydrogeological Characteristics

The monitoring well network advanced as part of this Phase Two ESA consisted of four (4) pre-exiting monitoring wells, installed in 2016. Screen depths ranged from approximately 0.89 to 3.89 mbgs at MW110, 1.48 to 4.48 mbgs at MW101, 1.44 to 4.44

Client: Don Mills (ARH) Homes Ltd.
Project Name: Risk Assessment Pre-Submission Form

Site Address: Block 11 (Part 32 of 844 Don Mills Road and 1150 Eglinton Avenue East), Toronto, Ontario

Project Number: BRM-00248183-L0

Date: October 2021

mbgs at MW102, and 0.99 to 3.99 mbgs at BH103. Groundwater levels were measured between 0.25 (MW102) to 1.22 (MW101) mbgs on March 18, 2020.

Based on the groundwater elevations measured across the Site, local groundwater flow direction was calculated in the shallow aquifer in the south to southeasterly direction.

The horizontal gradient was calculated based on groundwater contours, provided in Figure 3. Results of groundwater monitoring activities indicate a localized on-site horizontal hydraulic gradient of approximately 0.006 m/m to the south/southeast based on groundwater monitoring data from March 18, 2020. The regional horizontal hydraulic gradient is estimated to be approximately 0.001 m/m towards the south based on topography and surface water features in the region.

Table 1 summarizes the environmental setting and Site characteristics. Using 1 x 10-6 cm/s for the hydraulic conductivity of silt (Freeze and Cherry, 1979), a hydraulic gradient of 0.006 m/m (estimated based on topography), and an effective porosity of 20% (McWhorter and Sunada, 1977), Darcy's Law calculations were made to determine the potential groundwater flow velocity at the Site, as shown in Table 2. The groundwater flow velocity was calculated to be approximately 9.46 x 10^{-3} metres per year (0.95 centimetres/year) in the native silt.

3.3 Considerations With Respect to Section 35, Section 41 or 43.1 of the Regulation and Applicable Site Condition Standards

Section 35 of O. Reg. 153/04 dictates restrictions or requirement in application of non-potable site condition standards. The Site and all properties within 250 m of the Site may be serviced by potable water wells.

Section 41 of O. Reg. 153/04 dictates certain restrictions in application of Site Condition Standards (SCS) for environmentally sensitive areas. The site is not identified as an environmentally sensitive area and, therefore, the restrictions identified in Section 41 do not apply.

According to the Ministry of Natural Resources and Forestry's "Make a Map: Natural Heritage Areas", Clearview Creek, located on-Site, is identified as a "Natural Heritage System".

The Table 8 SCS criteria are applicable if soil pH is in the range of 5 to 9 for surface soil (less than 1.5 m below soil surface) and 5 to 11 for subsurface soil (greater than 1.5 m below soil surface). Surface soil samples were submitted for pH analysis and were measured within the acceptable range of 5 to 9. Subsurface soils were measured between the acceptable pH range of 5 and 11.

Section 43.1 of O. Reg. 153/04 defines the restrictions when using the SCS for a shallow soil property or a Site located near a water body. As bedrock is not found at a depth of less than 2 mbgs on-site, the site is not considered to be a shallow soil property.

The site contains a surface water body.

Based on the information provided above, the generic Standards for the site and Phase Two CSM were determined to be the MECP Table 8 Site Condition Standards for Residential/Parkland/Institutional land use with medium/fine textured soils (herein referred to as Table 8 SCS), as listed in the MECP technical document Soil, Groundwater and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act referenced by O. Reg. 153/04.

3.4 Areas where Soil Has Been Brought From Another Property

Fill material is typically brought to a property as a base for buildings and pavement areas. Fill can also be used to re-grade a property, and to backfill excavations.

Project Name: Risk Assessment Pre-Submission Form

Site Address: Block 11 (Part 32 of 844 Don Mills Road and 1150 Eglinton Avenue East), Toronto, Ontario Project Number: BRM-00248183-L0

Date: October 2021

Based on the Phase Two investigation, stockpiled fill was observed in two locations at the Site. Furthermore, previous investigations have identified fill across the majority of the Site.

3.5 Locations of Building and Structures

The site was vacant at the site of the Phase Two ESA. The Site is intended to be redeveloped for residential purposes. However, building design plans have not been completed, at this time.

4 Areas of Contamination and Distribution of Contaminants

Subsurface investigations were completed to assess the impact of the PCAs on soil and groundwater within APECs on the site. The screening of contaminants of concern (COC) was done by comparing the concentrations of PCOCs in soil and groundwater with the Table 8 SCS.

4.1 Soil

Soil was within the Table 8 SCS for all parameters analyzed, with the exception of EC at BH3-SS1 and OCs at SP2-3, GS1 and GS1-0

Given the proximity of BH3 to the adjacent roadway, elevated levels of EC in soil are deemed to be associated with the application of de-icing and salting substances along Winston Churchill Boulevard. As per Section 2 of Ontario Regulation 339 of the Revised Regulations of Ontario, 1990 (Classes of Contaminants – Exceptions) and section 48 (3) of Ontario Regulation 153/04, it is the QP's opinion that the applicable Table 8 Standard for EC at the Site was exceeded solely because salt was used for the purpose of keeping adjacent roadways safe for traffic under conditions of snow or ice or both. Therefore, this parameter is not considered a contaminant of concern (COC) and is deemed to not be an exceedance of the Table 8 Standards.

4.2 Groundwater

Groundwater was within the Table 8 SCS for all parameters analyzed.

Monitoring programs, including monitoring for the presence of light non-aqueous phase liquid (LNAPL), have been conducted at the Site. LNAPL has not been encountered at the site during any monitoring events.

4.3 Sediment

Sediment was within the Table 8 SCS for all parameters analyzed with the following exceptions:

- SED1
 - Copper at 29 ug/g versus the SCS of 16 ug/g and Nickel at 28 ug/g versus the SCS 16 ug/g;
- SED 2
 - Copper at 31 ug/g versus the SCS of 16 ug/g and Nickel at 30 ug/g versus the SCS 16 ug/g.
- SED101
 - Copper at 33.2 ug/g versus the SCS of 16 ug/g and Nickel at 28 ug/g versus the SCS 16 ug/g.

Project Name: Risk Assessment Pre-Submission Form

Site Address: Block 11 (Part 32 of 844 Don Mills Road and 1150 Eglinton Avenue East), Toronto, Ontario Project Number: BRM-00248183-L0

Date: October 2021

SED102

 Arsenic at Copper at 18 ug/g versus the SCS of 6 ug/g, Copper at 22.2 ug/g versus the SCS of 16 ug/g, and Lead at 79 ug/g versus the SCS 31 ug/g.

- SED102-0 (duplicate of SED102)
 - Arsenic at Copper at 19 ug/g versus the SCS of 6 ug/g, Copper at 22.1 ug/g versus the SCS of 16 ug/g, and Lead at 72 ug/g versus the SCS 31 ug/g.
- SED103
 - Copper at 29.2 ug/g versus the SCS of 16 ug/g and Nickel at 26 ug/g versus the SCS 16 ug/g.

4.3 Mechanism of Discharge of Contaminants

The Table below summarizes the COCs associated with the areas of contamination (AOCs).

AOC	Location	COCs in Excess of Table 3 SCS	Medium
A2	Northwestern corner of Site	OCs (DDD and DDE)	Soil
В	Northern portion of Site	OCs (DDD and DDE)	Soil
С	North and Northwestern Portion of the site	Copper, Lead, Arsenic, Nickel	Sediment

It is noted that elevated levels of EC, present at BH3, are related to the application of salting and de-icing substances in the parking lot for the purpose of snow and ice removal during the winter months. As per Section 2 of Ontario Regulation 339 of the Revised Regulations of Ontario, 1990 (Classes of Contaminants – Exceptions), and Part IX, Subsection 49.1 of Ontario Regulation 153/04, the concentrations of EC are deemed not to be exceedances of the MECP Table 8 SCS.

4.4 Migration of Contaminants

No groundwater impacts were identified and thus no migration via this pathway is anticipated. The OC exceedances identified in soil are considered to be fairly immobile and are not anticipated to migrate off-site. The metal impacts identified in sediment are likely migrating from off-site and/or are representative of background conditions. Thus, it is not anticipated to act as a major source of contaminant migration.

4.5 Climatic and Meteorological Conditions Affecting Migration

No groundwater exceedances of the MECP Table 8 SCS were identified at the Site. Therefore, temporal variability in groundwater flow direction due to climatic and meteorological conditions is not expected to be a factor concerning the distribution and migration of contaminants.

Project Name: Risk Assessment Pre-Submission Form

Site Address: Block 11 (Part 32 of 844 Don Mills Road and 1150 Eglinton Avenue East), Toronto, Ontario Project Number: BRM-00248183-L0

Date: October 2021

4.6 Soil Vapour Intrusion

Given that there were no contaminants in exceedance of the MECP Table 8 SCS were identified in groundwater, soil vapour intrusion pathways are unlikely.

5 Receptors and Pathways

As a result of the identification of several exceedances of the Table 8 SCS in soil and sediment, a limited risk evaluation was completed to determine potential human health and ecological risks associated with leaving these impacts on-Site. Screening of the maximum concentrations of the COCs against the applicable MECP component values was completed. By way of background and context, as part of the derivation of the generic MECP SGWS Standards, the MECP has developed risk-based values deemed protective of the various human and ecological Site receptor/exposure pathway scenarios, which are referred to as component values. The various human receptors included in these scenarios include residential or commercial human receptors (e.g., property resident, indoor workers, construction workers etc.). The various ecological receptors include plants, soil invertebrates, representative mammals and birds and various aquatic species. Some of the exposure pathways included in the scenarios comprise the dermal contact, ingestion, vapour inhalation, and the groundwater migration to surface water. Each of these scenarios is evaluated separately by the MECP for each contaminant regulated under O. Reg. 153/04.

Given the intended future residential land use, the relevant human receptors include Site residents and property visitors. Construction workers are also anticipated to be on-Site during redevelopment. Ecological receptors include various terrestrial vegetation, soil invertebrates, small mammals and birds. In addition, given the presence of Clearview Creek on-Site, aquatic receptors (various species of fish, invertebrates, amphibians, aquatic plant species and aquatic and semi aquatic mammals and birds) may also be present.

Further discussion on the relevant exposure pathways applicable to the above-noted receptors and a limited risk evaluation are provided for each media in the sections below.

5.1 Soil

The soil COCs identified for the Site are DDD and DDE. Based on the identified soil impacts, the relevant exposure pathways (i.e., component values) applicable to these receptors based on the use of the site include:

- S1 human health soil dermal contact and incidental ingestion at a high frequency and high intensity in a residential/parkland/institutional setting.
- S3 human health soil dermal contact, incidental ingestion and soil particulate inhalation protective of workers undertaking excavation works.
- S-GW1 human health exposure pathway due to movement of a substance from the soil to groundwater then to a human receptor via drinking water.
- Plants & Soil Organisms ecological exposure pathway due to direct contact of terrestrial plants and soil invertebrates.
- Mammals & Birds ecological exposure pathway due to direct contact of terrestrial mammals and birds.
- S-GW3 ecological exposure pathway due to movement of a substance from soil to groundwater then to aquatic receptors in a surface water body.
- Sediment Quality Sediment quality guidelines for protection of sediment dwelling organisms, considered applicable to assess soil erosion/run-off pathway.

Project Name: Risk Assessment Pre-Submission Form

Site Address: Block 11 (Part 32 of 844 Don Mills Road and 1150 Eglinton Avenue East), Toronto, Ontario

Project Number: BRM-00248183-L0
Date: October 2021

Screening of the maximum concentrations against the applicable component values noted above is summarized in the Table, below:

	Maximum Concentration (μg/g)	Component Values¹ (μg/g)							
Parameter		S1	\$3	S-GW1	Plants and Soil Organisms	Mammals and Birds	S-GW3	Sediment Quality	
OCPs									
DDD	0.056	3.3	110	1,800	8.5	NV	38,000,000	0.008	
DDE	0.28	2.3	110	1,800	0.33	NV	350,000,000	0.005	

¹ Component values obtained from MECP Table 8 component values (MECP, 2016). Table 8 component values defer to Table 2 component values. Table 2 component values for residential land use, with medium to fine textured soils in a potable groundwater condition were applied, where applicable. The S3 component value was obtained from the Table 2 component values for an industrial/commercial/community use.

Bold = concentration is exceeded by maximum on-Site concentration.

NV = No Value.

The maximum concentrations of DDD and DDE are within all applicable human health and ecological component values with the exception of sediment quality. However, based on the sediment samples collected, sediment concentrations of DDD and DDE are below sediment SCS, therefore soil erosion/run-off is not considered to be significant.

No MECP component values are available for mammal and bird exposure to DDD and DDE. However, given that only two (2) of ten (10) sampling locations exceeded the Table 8 SCS for either DDD or DDE, and exceedances were limited to a portion of one of the stockpiles present on-site, it is considered unlikely that these elevated concentrations of DDD and DDE will pose a significant concern to the overall populations of mammals and birds that may frequent the Site.

While DDE is considered volatile based on MECP's definition of volatility (Henry's Law constant greater than 1x10-5 atm-m³/mol and/or the vapour pressure is greater than 1.0 Torr at the average groundwater temperature of 15 °C), no MECP component value is available for inhalation pathways. Vapour inhalation of DDE is likely to be insignificant given the following:

- DDE may be volatile in moist soils based on the Henry's Law constant (1.14E-05 atm-m³/mol), but it is not expected to volatilize from dry soils based on its low vapor pressure (6.00E-06 Tor) (US EPA, 2008a);
- DDE volatilization is expected to be attenuated by adsorption to carbon sources. Due to a high adsorption coefficient, DDE is expected to strongly sorb onto soil particles (US EPA, 2008a); and,
- The estimated half-life of DDE is only 17 hours to 2-days as it reacts with photochemically-produced hydroxy radicals (US EPA, 2008b).

Overall, DDD and DDE in soil are not anticipated to pose a concern to human and ecological receptors that may be present on-Site.

5.2 Groundwater

Given that the minimum depth to groundwater was reported to be 0.25 mbgs, the depth to groundwater on the Site is not consistent with the assumptions applied by the MECP in the evaluation of the indoor air vapour intrusion pathway under the Table 8 SCS. The depth to groundwater reflects the distance and opportunity for potential contaminant biodegradation and natural attenuation to occur, which are considered in the modelling of the groundwater to indoor air exposure pathway. As such, as part of the risk evaluation volatile groundwater parameters were also compared to the Table 6 SCS for all types of property use (herein referred to as the Table 6 SCS). The Table 6 SCS is representative of a shallow groundwater scenario as it was derived as a conservative scenario where biodegradation cannot be assured and where soil may not be present to provide attenuation. In keeping with the MECP, a groundwater parameter was considered sufficiently volatile if the parameter has a

Project Name: Risk Assessment Pre-Submission Form

Site Address: Block 11 (Part 32 of 844 Don Mills Road and 1150 Eglinton Avenue East), Toronto, Ontario
Project Number: BRM-00248183-L0

Date: October 2021

Henry's Law constant greater than 1x10-5 atm-m³/mol and/or the vapour pressure is greater than 1.0 Torr at the average groundwater temperature of 15 °C. Based on the comparison of chemical concentrations in groundwater to the Table 6 SCS, no exceedances were identified. As such, groundwater is not considered further in the risk evaluation.

5.3 Sediment

Exceedances of the MECP Table 1 SCS for sediment was identified for arsenic, copper, lead and nickel.

Where a sediment SCS was not available, the data were compared to the MECP Table 1 background Standards for soil. The Table 1 soil Standards are considered applicable as sediment concentrations would be influenced by erosion of adjacent soil by wind/run-off and are based on Ontario background concentrations. All parameters without sediment SCS were within the Table 1 soil SCS. Therefore, no further consideration was given to these parameters.

As per Health Canada (2017), in the absence of applicable human health-based sediment guidelines, sediment concentrations may be screened against available human health-based residential/parkland soil quality guidelines (or criteria) for scenarios where only direct contact of contaminants from sediment is expected. Based on the above, and also taking into consideration ecological receptors, the relevant exposure pathways (i.e., component values) applicable to human and ecological receptors based on the intended residential use of the site include:

- S1 human health soil dermal contact and incidental ingestion at a high frequency and high intensity in a residential/parkland/institutional setting.
- S3 human health soil dermal contact, incidental ingestion and soil particulate inhalation protective of workers undertaking excavation works.
- Sediment Quality Sediment quality guidelines for protection of sediment dwelling organisms, considered applicable to assess soil erosion/run-off pathway.

Consideration was also given to background sediment concentrations and sediment Severe Effect Levels (SELs) as provided by MECP (2008). The SEL indicates a level of contamination that is expected to be detrimental to the majority of sediment dwelling organisms. It is noted that the MECP Lowest Effect Level (LEL), that is, the level of contamination that can be tolerated by the majority of sediment-dwelling organisms are equivalent to the Sediment Quality values provided by MECP (2016).

Screening of the maximum concentrations against the applicable component values noted above is summarized in the Table, below:

		Coi	mponent Values1	MECP (2008)	MECP (2008)		
Parameter	Maximum Concentration (μg/g)	S1	S 3	Sediment Quality	Background Sediment Concentrations (μg/g)	Severe Effect Level (SEL) (µg/g)	
Metals							
Arsenic	19	0.15	7.4	6	4	33	
Copper	33.2	200	1,900	16	25	110	
Lead	79	120	1,000	31	23	250	
Nickel	30	46	310	16	31	75	

¹ Component values obtained from MECP Table 8 component values (MECP, 2016). Table 8 component values defer to Table 2 component values. Table 2 component values for residential land use, with medium to fine textured soils in a potable groundwater condition were applied, where applicable. The S3 component value was obtained from the Table 2 component values for an industrial/commercial/community use. **Bold** = concentration is exceeded by maximum on-Site concentration.

Client: Don Mills (ARH) Homes Ltd.
Project Name: Risk Assessment Pre-Submission Form

Site Address: Block 11 (Part 32 of 844 Don Mills Road and 1150 Eglinton Avenue East), Toronto, Ontario

Project Number: BRM-00248183-L0

Date: October 2021

NV = No Value.

The maximum concentration of arsenic exceeds the relevant component values applicable to human and ecological health. The elevated levels of arsenic were identified at one (1) location in sediment (SED 102). The concentration of arsenic identified in sediment is almost equivalent to the background concentration in soil (18 μ g/g). It is noted that the field duplicate sample collected from the location of the maximum concentration returned a concentration of 18 μ g/g. As such, concentrations of arsenic in sediment are attributed to background levels in soil and is considered unlikely to pose a concern to users of the Site. From an ecological perspective, it is further noted that the maximum concentration is within the SEL, which would indicate heavy contamination.

The maximum concentrations of copper, lead and nickel in sediment are within the relevant human health component criteria (i.e. S1 and S2), however exceed the sediment quality component value, considered protective of aquatic life.

It is noted that the maximum concentration of nickel is below typical background sediment concentrations, as such unacceptable risk to sediment-dwelling organisms as a result of the nickel identified on-site is considered low. It is further noted that similar concentrations of nickel were identified in the upgradient sediment sample (SED 101), indicating the sources other than on-Site are responsible for the elevated concentrations or are typical background concentrations for the area.

While concentrations of copper and lead exceed typical sediment concentrations, the maximum concentrations are well below the SELs. Furthermore, the concentrations identified in sediment are well below soil background concentrations of 92 μ g/g and 120 μ g/g for copper and lead, respectively. For copper, it is additionally noted that similar concentrations were identified in upgradient sediment sample (SED 101). Therefore, concentrations are attributed to background levels in soil and is unlikely to significantly affect aquatic life.

Overall, the elevated levels of select metals in sediment on-Site are not anticipated to pose a concern to human and ecological receptors that may be present on-Site.

