FUNCTIONAL SERVICING REPORT

INFRASTRUCTURE ONTARIO

PROVINCIAL LANDS EAST AND WEST OF TRAFALGAR ROAD, TOWN OF OAKVILLE

Project No.: 2022-0019-10

April 13, 2022

INFRASTRUCTURE ONTARIO

FUNCTIONAL SERVICING REPORT

Provincial Lands East and West of Trafalgar Road, Town of Oakville

Table of Contents

			Page
1.0	INTR	ODUCTION	1
	1.1	Reference Reports	1
2.0	EXIST	FING SITE CONDITIONs	2
	2.1	Existing Topography, Soils, and Hydrogeology	2
	2.2	Water, Sanitary, and Storm Servicing	2
		2.2.1 Sanitary Servicing	2
		2.2.2 Water Servicing	2
		2.2.3 Storm Servicing	3
		2.2.4 Hydro, Gas, and Other Utilities	3
3.0	REVI	EW AGENCIES	3
	3.1	Town of Oakville	3
	3.2	Region of Halton	3
	3.3	Conservation Halton	3
	3.4	Ministry of Transportation Ontario (MTO)	3
4.0	SITE	SERVICING AND GRADING	3
	4.1	Sanitary Services	3
	4.2	Municipal Water	6
		4.2.1 Domestic Demands	6
		4.2.2 Fire Flow Demands	7
	4.3	Storm	7
	4.4	Stormwater Management	7
	4.5	Other Services	8
	4.6	Surface Grading and Drainage	8
	4.7	Erosion and Sediment Control	8
5.0	CON	CLUSIONS	9

FIGURES

APPENDICES

Appendix A - General Background Information

Appendix B - Sanitary Sewer Information

Appendix C - Water Servicing Information

Appendix D – Storm Drainage and SWM Information

1.0 INTRODUCTION

WalterFedy was retained by Infrastructure Ontario to prepare the following Functional Servicing Report (Report) to review potential servicing constraints and opportunities for two parcels of land located on the eastern and western sides of Trafalgar Road, south of Highway 407. This Report has been prepared in support of a proposed Official Plan Amendment application to add Residential land uses to the mix of uses permitted in the Trafalgar Urban Core Area 1 land use designation in the North Oakville East Secondary Plan applicable to the portions of the Provincial Lands proximate to Trafalgar Road. The subject Lands have a total area of approximately 53.4 ha (33.0 ha east + 20.4 ha west) and are currently vacant land used for agricultural purposes. See Figure 1.0 for a Site Location Plan.

Two Illustrative Development Concepts were prepared by GSP Group Inc. identifying two development scenarios for the Lands. Scenario A would see the Trafalgar Corridor Lands developed with 70% residential development and 30% employment development, while Scenario B would be equally split between residential and employment land use. No Site Plans or Draft Plan of Subdivision applications have been developed at this time, only conceptual sketches and estimated population/employment densities. See Appendix A for a conceptual figure showing the built-out form of the Subject Lands as presented in the GSP documents.

The purpose of this Report is to review the existing background information, as well information that is currently in the design process, and to provide a general overview of the of the servicing requirements for the subject Lands to support the requested Official Plan Amendment to the North Oakville East Secondary Plan. Of particular interest is the sanitary sewer drainage and downstream sanitary sewer capacity as it relates to the proposed development scenarios indicated above.

1.1 Reference Reports

In the preparation of this functional servicing report, the following reports/drawings were referenced:

- 1. North Oakville Creeks Subwatershed Study (NOCSS), Town of Oakville, August 2006.
- 2. North Oakville Creeks Subwatershed Study Addendum, Town of Oakville, September 5, 2007
- Official Plan Amendment Number 272, North Oakville East Secondary Plan, February 2008.
- 4. <u>North Oakville East Secondary Plan Area Servicing Plan, Oakville Ontario, MMM Group Limited, April 2011.</u>
- 5. <u>Trafalgar Road Corridor Improvements EA, Cornwall Road to Highway 407 Stormwater Management Report</u>, AECOM, April 2015.
- 6. 407/Trafalgar Illustrative Concept Plans, GSP Group, April 2020.
- 7. <u>Technical Memorandum Trafalgar Road (Phase 2) Hays Boulevard to William Halton Parkway Sanitary Sewer Design</u>, R.V. Anderson Associates Limited, November 8, 2021.
- 8. <u>600mm Sanitary Sewer Trafalgar Road (Reg. Rd. 3) Plan Profile Dwgs. 36-42 (Rev.1, 60% Review)</u>, R.V. Anderson Associates Limited, November 8, 2021.
- 9. <u>Green Ginger Subdivision Stages 1 & 2 Plan Profile Dwgs for Wheat Boom Drive and Ernest Appelbe Boulevard (As-Constructed)</u>, DSEL, various dates.
- 10. Correspondence from DSEL regarding Sanitary Sewer Population, DSEL (late 2021).
- 11. Water and Wastewater Linear Design Manual, Regional Municipality of Halton, April 2019.

2.0 EXISTING SITE CONDITIONS

The subject Lands are located on the eastern and western sides of Trafalgar Road, south of Highway 407. The eastern property is located north of William Halton Parkway and is bound by the Highway 407 right-of-way to the north, Trafalgar Road to the west, and agricultural lands to the east and south. The western property is bisected by William Halton Parkway and bound by an existing commuter parking lot to the north, Trafalgar Road to the east, agricultural lands to the west, and agricultural lands and an existing Region of Halton water tower to the south. Refer to Figure 1.0 for a Site Location Plan.

2.1 Existing Topography, Soils, and Hydrogeology

The subject Lands are located in the northwest headwaters of the Joshua's Creek subwatershed and are predominantly used for agricultural row crops. The western property drains in a southeasterly direction at a slope of 1.5% to 2.0% towards roadside ditches on the western side of the Trafalgar Road right-of-way. Four existing culvert crossings convey surface runoff to the eastern side of Trafalgar Road. The property on the eastern side of Trafalgar Road flows in a southerly direction overland and via intermittent agricultural swales/drains towards existing culvert crossings under William Halton Parkway.

A site-specific geotechnical investigation for the subject Lands will be completed during the future re-zoning or detailed design stage. However, based on the Ministry of Agriculture, Food and Rural Affairs AgMaps website, and the Trafalgar Road SWM report the subsurface soils generally consist of Chinguacousy clay loam and Oneida clay loam. These soils are characteristic of Hydrologic Soil Groups C and D, respectively.

The subject Lands fall within the jurisdiction of Conservation Halton, but it does not appear that the lands are located with the authority's regulation limit. Moreover, the site is not located in a source water protection area.

There are no significant natural heritage features within the subject Lands. Two low-constraint, intermittent watercourses containing no habitat were identified crossing the eastern property in the NOCSS.

2.2 Water, Sanitary, and Storm Servicing

Existing servicing infrastructure information was provided by the Region of Halton, the Town of Oakville, and Conservation Halton. Existing utilities information was obtained from utility drawings prepared as part of the Trafalgar Road study.

2.2.1 Sanitary Servicing

There is no existing sanitary sewer infrastructure on Trafalgar Road or William Halton Parkway adjacent to the Subject Lands.

2.2.2 Water Servicing

An existing 750-mm-diameter watermain is located on Trafalgar Road that runs between Dundas Street and the elevated water tower located south of the western property. An existing 1200 mm transmission watermain is located on the Burnhamthorpe Road (west of Trafalgar Road) that runs north along Trafalgar Road. See Appendix C for Area Servicing Plan Report. The subject Lands are located wholly within Halton Pressure Zone 4.

2.2.3 Storm Servicing

Trafalgar Road is a mix of urbanized and unimproved/rural road cross-sections. Trafalgar Road drains to roadside ditches from Burnhamthorpe Road to south of William Halton Parkway, where it turns into an urbanized cross-section for approximately 230 m north, at which point the road section reverts back to an unimproved/rural cross-section at the commuter parking lot entrance. Within the urbanized cross-section areas, localized storm sewers drain the right-of-way and outlet flows to the eastern side of Trafalgar Road where surface runoff is collected by tributaries of Joshua's Creek. Within the unimproved sections, Trafalgar Road drains southerly in roadside ditches to culvert crossings under Trafalgar Road.

2.2.4 Hydro, Gas, and Other Utilities

Overhead hydro lines are located on the eastern side of Trafalgar Road. Subsurface utility locate drawings prepared for the Trafalgar Road study indicate a buried Bell service on the western side of Trafalgar Road, north of Burnhamthorpe Road. No information related to natural gas or other telecommunications is available at this time. The availability of services/utilities in proximity to the subject Lands will be confirmed as part of future engineering design works.

3.0 REVIEW AGENCIES

3.1 Town of Oakville

The Town of Oakville will be responsible for the review and approval of development applications associated with the site.

3.2 Region of Halton

The Region of Halton will also provide review services associated with any development applications for the subject Lands related to sanitary and water servicing. In addition, both Trafalgar Road and William Halton Parkway are Regional Roads. All associated road works or service connections will require review, approval, and permitting by the Region of Halton.

3.3 Conservation Halton

The subject Lands are located within the jurisdiction of Conservation Halton. It does not appear that the lands are located with the authority's regulated area, but any future storm runoff will be directed to tributaries of Joshua's Creek, which is regulated by Conservation Halton.

3.4 Ministry of Transportation Ontario (MTO)

The subject Lands are located within MTO's Permit Control Area to Highway 407 and will require MTO approval. The eastern property, being located closer to Highway 407 is impacted more than the western property, based on MTO's Highway Corridor Management online mapping.

4.0 SITE SERVICING AND GRADING

Using the background information reference above, the general servicing design concept for the subject Lands is described below.

4.1 Sanitary Services

Based on the Area Servicing Plan, future sanitary drainage from the subject Lands will be directed to two outlets. Sanitary effluent from the eastern property is proposed to be conveyed southeast to a trunk sanitary

sewer on William Cutmore Boulevard. Sanitary effluent from the western property is proposed to outlet to the future trunk sanitary sewer on Trafalgar Road that will carry the sanitary flow south to Dundas Street. Within the subject Lands, a local sanitary sewer system will be constructed to service the buildings. The routing of the local sewer mains to the outlet on Trafalgar Road will be determined during the functional design stage as part of development of the Future Draft Plans of Subdivision and Site Plans.

R.V. Anderson is currently designing a 600-mm-diameter (at 0.55% slope) sanitary sewer on Trafalgar Road from Burnhamthorpe Road, south to the future Wheat Boom Drive right-of-way on the western side of Trafalgar Road. A future sanitary sewer on West Boom Drive between Trafalgar Road and East Morrison Creek will be constructed that will connect to the existing 600-mm-diameter sanitary sewer on West Boom Drive within the Green Ginger Subdivision. The existing sanitary sewer flows west to Ernest Appelbe Boulevard where it connects to an existing 675-mm-diameter sewer that flows south connecting to the existing trunk sewer on Dundas Street. See Figure 2.0 for a schematic of the sanitary sewer outlet for the subject Lands. Table 4.1 summarizes the trunk sanitary sewer capacities for the future and existing sewers that will be the ultimate outlet for the western side of the subject Lands. For reference, the table also includes the sewer capacity at 70% of full flow capacity, which is the Region target flow capacity for sanitary sewers greater than 450-mm-diameter.

Table 4.1 – Existing and Future Sanitary Sewer Characteristics and Capacities														
Trunk Sanitary Sewer Location	Approx. Length (m)	Diameter (mm) (Actual ID)	Slope	Full Flow Capacity (I/s)	70% Full Flow ³ Capacity (I/s)									
Trafalgar Road – proposed by R.V. Anderson (Burnhamthorpe Road to Wheat Boom Drive)	1695	600 (610) ¹	0.55%	476	333									
Existing Wheat Boom Drive (west of East Morrison Creek) ²	229	600 (610)	0.28% to 0.32%	340 - 363	238 - 254									
Existing Ernest Appelbe Boulevard (Wheat Boom Drive to Dundas Street)	351	675 (686)	0.22% to 0.35%	417 - 519	292 - 363									

¹ The R.V. Anderson analysis used an actual diameter of 625 mm. A review of various pre-casters literature indicated an ID of 610 mm for nominal 600-mm-diameter concrete pipe.

A sanitary sewer design sheet was prepared (Appendix B) that was used to estimate the sanitary peak flow resulting from the different development scenarios for residential and employment lands proposed for the IO lands. The methodology is outlined on each design sheet. As part of the R.V. Anderson analysis (Appendix B), the Region of Halton provided a design sheet which provided a breakdown of areas for the different land uses (townhouse, apartment, and light commercial) for the general area around Burnhamthorpe Road and lands north. This information was used to adjust the population for the two IO scenarios. For reference, the original Regional analysis is comprised of 47% residential and 53% light commercial. This assumption is similar to the contemplated IO Scenario B of an equal distribution of uses. The IO scenarios will result in the following additional flows compared to the R.V. Anderson calculated flows:

- A 70% residential and 30% employment land use (Scenario A) on the western property will increase the sanitary sewage flow by 13 l/s.
- A 50% residential and 50% employment land use (Scenario B) on the western property will increase
 the sanitary sewage flow by 7 l/s.

² The section of trunk sanitary sewer on Wheat Boom Drive from Trafalgar Road to western side of East Morrison Creek (including the creek crossing) has not been constructed yet.

³ Halton Region design criteria for sanitary sewers greater than 450 mm is to target maximum 70% full flow capacity.

Table 4.2 summarizes the sanitary flows calculated as part of the original R.V. Anderson analysis, as well as the IO scenarios and the capacity utilization within the existing Wheat Boom Drive sanitary sewer. The table shows that, based on the analysis prepared by R.V. Anderson, the sewer would be operating at 79% to 84% of full flow capacity. The scenarios proposed for the IO lands could potentially increase that utilization by an additional 3% to 4%. The Region of Halton design criteria states that sanitary mains larger than 450 mm should be sized to operate at a maximum 70% of full flow capacity and be triggered for upsizing if capacity reaches 80%. Therefore, per the Region criteria, upsizing of the sanitary sewer on Wheat Boom Drive would be considered necessary to support this development approach.

Ernest Appelbe Boulevard from Wheat Boom Drive to Dundas Street collects sanitary flow from an eastern branch (Trafalgar Road) and a western branch (residential lands north and west). Information provided by DSEL (see figure in Appendix D) indicates that the western branch currently has a population that is 8,000 people greater than the original Area Study estimate, and the sewers on Ernest Appelbe Boulevard would be operating at full-flow capacity (if not greater, based on the as-built slopes) without any population intensification within the lands along Trafalgar Road, which include the IO lands.

Based on the discussion above, the Wheat Boom Drive sanitary sewer is operating below full flow capacity, but at a greater capacity than prescribed by the Region of Halton. The Ernest Appelbe Boulevard sanitary sewer is essentially operating at capacity under current conditions (existing development plus original population estimates from the Area Study). As such, based on the Region criteria and engineering practice, both these sanitary sewers would be candidates for upsizing or twinning to create additional capacity. However, upsizing or twinning the existing sanitary sewers using an open cut method is not feasible. The existing trunk sanitary sewers on Ernest Appelbe Boulevard and Wheat Boom Drive are located between 8 m and 9 m below grade in the existing roads within a shale formation. Along much of Ernest Appelbe Boulevard and Wheat Boom Drive the existing subdivision design incorporates a shallow local sanitary sewer system located above the trunk sanitary in addition to the storm sewer system and watermain. Therefore, any proposed works may be prohibitively disruptive to the existing residents and the existing infrastructure.

One potential option to understand the operation of the sanitary sewer system is a dynamic (wet weather/dry weather) sanitary sewer model that will account for temporal affects of the flow and characterize the degree of surcharge hourly throughout the day that the trunk sewer might experience for various upstream population densities and intensification and to better understand if there is additional utilized capacity within the system. Since the trunk sewer is deep (greater than 4m below the local sanitary sewer), the affects of overcapacity sewers or minor surcharging will likely not adversely affect operation and functionality of the shallow local sanitary sewer system.

While open cut construction methods are not considered feasible, another consideration for increasing sanitary capacity might be the use of trenchless technologies. Directional drilling represents an effective construction method that may be utilized to twin the existing sanitary sewer system along Wheat Boom Drive and Ernest Appelbe Boulevard. The feasibility of this approach would require further review and consideration because costs tend to be higher than traditional open cut construction methodologies, but it would limit disturbances within the existing rights-of-way to localized areas (beginning/end of pipe runs, turns in the sewer). The twin pipes would share common manhole structures to allow incoming sanitary sewer flows to utilize the capacity of both pipes

Given the number of years since the original Area Servicing Study was completed, it is recommended that the future purchaser of the IO lands and the other landowner groups consider undertaking an update to the Area Study that incorporates current market trends and land use needs based on their preferred land usage/intensification to be determined at the Zoning By-Law and Site Plan stage to provide a more fulsome assessment of the anticipated sanitary flows from the sewershed and the impacts on the downstream system. Alternative options can be explored to address the downstream capacity issues and the routing of sanitary flows in consultation with the agency stakeholders.

Preparation of an Area Servicing Plan will require time to undertake and implement. In the interim, as a landowner in the sewershed, the IO lands on the west side of Trafalgar Road represent approximately 20.6% of the sewershed area north of Burnhamthorpe Road (total area is approximately 90 ha). Therefore 20.6%, or

approximately 26.1 l/s of the total 126.74 l/s peak flow from this area is allocated to the IO lands. The IO lands should therefore be entitled to that capacity allocation to support construction of initial phases of the envisioned development on the lands regardless of land use.

Table 4.2 - Wheat Boom Drive Sanitary Sewer Utilization														
	Existing Wheat Boom Drive													
Development Scenario	Flow (I/s)	Full Flow Capacity (I/s)		Actual Utilization (%)										
Original Analysis (R.V. Anderson)	285.90			79 - 84										
IO Scenario A With IO Trafalgar lands (western side) at 70% Res. + 50% Employment	298.90	340 - 363	238 - 254	82 - 88										
IO Scenario B With IO Trafalgar lands (western side) at 50% Res. + 50% Employment	292.92			81 - 86										

4.2 Municipal Water

The primary source of municipal water for the subject Lands will be the existing 1200-mm-diameter transmission watermain on Trafalgar Road. The Area Servicing Plan undertook hydraulic modeling of existing and proposed watermains 300 mm in diameter and greater. See the figure in Appendix C showing watermain layout from the Area Servicing Plan. It is proposed to connect 300 mm watermains from the existing 1200 mm transmission watermain on Trafalgar Road into the eastern and western properties of the subject Lands, creating a looped watermain system within the internal roads. The sizing of additional watermain interconnections within the local streets will be determined during detailed engineering for individual sites/blocks.

The Area Servicing Plan modeling determined that there will be adequate flow and pressure at all Pressure Zone 4 nodes during the maximum day and peak hour demand scenarios. The Area Servicing Plan (see figure in Appendix C) determined that maximum day pressures at nodes within the subject Lands could range from 58 psi to 72 psi. In addition, the Area Servicing Plan undertook maximum day + fire flow modelling to confirm that the water distribution could meet the Region's requirements of 5,000 l/min (92 l/s) for residential development and 15,000 l/min (250 l/s) for commercial, industrial, and institutional land uses. The analysis was performed targeting a minimum allowable pressure of 30 psi (versus the typical 20 psi) to account for additional system head losses that may occur when smaller diameter watermains infill within the final Site Plans and development blocks.

4.2.1 Domestic Demands

An estimate of the domestic water demand for the two development scenarios is provided in Appendix C. To be conservative, it was assumed that the future residential developments would be in the form of apartment/condo type units which carry a higher population density. Scenario A (70% Res + 30% Employment) generates a population that is 2083 people greater than Scenario B (50% Res + 50% Employment). As a result, the Scenario A domestic demands for the average day, maximum day, and peak hour will be 6.6 l/s, 14.9 l/s, and 31.9 l/s greater than the Scenario B demands, respectively. Demands from any of the scenarios will be evenly distributed throughout the proposed development area and, if the future water system is sufficiently looped, the additional domestic demand would not be expected to adversely impact the water distribution system.

4.2.2 Fire Flow Demands

Fire flow demands for any future developments will be subject to the methodology outlined in the <u>Water Supply for Public Fire Protection</u> document published by Fire Underwriters Survey (FUS, 1999). During the detailed design stage, the Site Plan(s) and architectural building plans will be used to calculate the required FUS fire flows for each building. If the system is able to supply 15,000 l/min (250 l/s) as indicated in the Area Servicing Plan, then sufficient flow will be available to satisfy the fire flow requirements regardless of the development scenario and ultimate residential/employment land split as the building forms will be similar.

4.3 Storm

There is no existing storm sewer infrastructure suitable to service the subject Lands at this time. As part of the future development, it will be necessary to design and construct a storm sewer system to collect and convey surface runoff to a downstream stormwater management (SWM) facility designed consistent with the recommendations of the NOCSS. Future storm sewers will be designed to provide capacity to convey the surface runoff during a 5-year storm event per the Town of Oakville requirements. Any future storm sewer design will also need to take into consideration flows from external areas entering the IO property, as well as the downstream routing of flows to the eastern side of Trafalgar Road.

4.4 Stormwater Management

The NOCSS and the Secondary Plan (see figure in Appendix A) identified areas to be used for potential SWM facilities. For the property on the western side of Trafalgar Road, a future SWM facility is proposed on the IO lands immediately east of the existing water tower. It is noted that incorporation of this into the future detailed design, could reduce the sanitary sewer and water demands associated with future development applications. On the eastern side of Trafalgar Road, the secondary plan proposes two SWM facilities on the northern side of Burnhamthorpe Road on either side of the existing watercourse - see Figure 3.0 for SWM facility locations with respect to the subject Lands.

SWM criteria for the subject Lands is taken from the North Oakville Creeks Subwatershed Study (NOCSS) report and the NOCSS Addendum and the Ministry of the Environment, Conservation and Parks guidelines. The SWM requirements are as follows:

Water Quality Control

- o Total phosphorus (TP) loadings must not increase after development.
- A Normal (70% TSS removal) level of water quality protection is stipulated for Joshua's Creek; in order to achieve the TP removal criterion, an Enhanced (80% TSS removal) level of protection should be implemented.
- o A dissolved oxygen level of 6 mg/L is required for Joshua's Creek.
- Chlorides The Town of Oakville adopted a Salt Management Plan. The requirement for salt management should be reviewed during the detailed design stage.

• Peak Flow Control

- Post-development peak flows for the 2-year to 100-year storm events and the Regional Storm are to be controlled based on target unit flow rates (m³/s/ha) as outlined in Table 7.4.1 in the NOCSS Addendum (Appendix D). These targets are based on maintaining existing condition flow rates.
- Provide infiltration if possible.

The subject Lands are located within subcatchments JC7 and JC8 as identified in Figure 7.4.7 of the NOCSS. Surface drainage crosses under Burnhamthorpe Road at culverts JC-B10 and JC-B9, respectively. Drainage from both subcatchments ultimately drains to culvert JC-D1 at Dundas Street. Table 4.3 summarizes the unit area target flow rates from the NOCSS Addendum.

Table 4.3 – Target Unit Flow Rates												
Storm Event Target Flow (m³/s/ha) 2-year 0.007												
10-year	0.013											
25-year	0.017											
50-year	0.019											
100-year	0.021											
Regional	0.052											

Based on the criteria outlined above and the ultimate drainage areas, the SWM facilities will be MECP wet pond facilities complete with a permanent pool and forebay for quality control. The ponds will include an active storage component that will provide erosion and quantity (peak flow) control via an outlet control structure.

For the western property, the SWM facility location identified on the Secondary Plan (see Appendix A and Figure 3.0) is located within the IO lands. Depending on the timing of the proposed development and the upstream development lands, this location can be used to provide a temporary SWM facility or the ultimate SWM facility.

For the eastern property, unless the ultimate SWM facilities are constructed north of Burnhamthorpe Road, temporary on-site facility(ies) will be required within the IO lands to provide interim stormwater management until such time as the municipal facility is constructed.

4.5 Other Services

Gas servicing for the site would need to be coordinated with Enbridge during detailed design. Oakville Hydro lines bound the site and could readily provide service. Coordination would be required during detailed design. Coordination with Bell and other telecommunications services would be required during detailed design.

4.6 Surface Grading and Drainage

As indicated previously, the existing lands drain in a southeasterly direction with an ultimate storm water outlet to Joshua's Creek on the eastern side of Trafalgar Road. It is expected that proposed grading schemes for any future developments will direct underground (piped) and surface runoff (major overland flow) in the same general direction.

4.7 Erosion and Sediment Control

Erosion and sediment controls must be implemented during construction. At a minimum, any sediment that is tracked onto the roadway during the course of construction will be cleaned by the Contractor at the end of each day. Temporary siltation protection in the form of silt sacks will be installed on all existing and new catchbasins on the Site and within the immediately adjacent rights-of-way. Sediment control fence will be required around the perimeter of the active work area and to protect the interior wetland. In addition, depending on the size of area stripped for any future works, temporary sediment and erosion control ponds will be constructed.

5.0 CONCLUSIONS

Based on a review of the existing background information, the IO lands on Trafalgar Road can be serviced as follows:

- Sanitary servicing for the eastern property will be via a sanitary sewer system that will drain east through the future development to William Cutmore Boulevard. Sanitary runoff from the western property will be directed to a future Trafalgar Road sanitary sewer that will drain south to Wheat Boom Drive and Ernest Appelbe Boulevard. It appears that the downstream sanitary sewers will be operating at full capacity or greater based on the original Area Study. Land uses that intensify the population by IO or other proponents will exacerbate the capacity issue. Due to the depth of the downstream trunk sanitary sewer, consideration might be given to the preparation of a dynamic wastewater model to characterize and understand the impacts of sanitary flow that exceeds the free flow capacity of the system. The feasibility of trenchless technologies to construct the infrastructure necessary to achieve additional capacity exist and should be considered. In the interim, the capacity allocation for the IO lands, and while not capable of supporting full build-out, should be available for use and support initial phases of development.
- A future water distribution system will need to be extended from the existing watermain on Trafalgar Road and looped through the subject Lands to provide domestic and fire water supply for the future developments.
- The NOCSS will require that future developments drain to SWM facilities that will provide the requisite controls. The Secondary Plan identified a SWM facility at the southeastern corner of the western property adjacent to the existing water tower. Depending on the timing of developments in the area, a temporary ultimate SWM facility can be constructed at this location to the service the Lands. For the eastern property, the ultimate SWM facilities servicing the property are located downstream on the northern side of Burnhamthorpe Road. If these facilities are not constructed at the time of site development, then a temporary facility(ies) can be constructed within the IO lands as an interim measure.
- It is anticipated that future development applications will require detailed servicing studies/plans to identify existing and necessary infrastructure to support future development of the subject Lands. These would be subject to review and approval by the Town of Oakville, Region of Halton, and other circulated review agencies.

All of which is respectfully submitted,

WALTERFEDY

Brian Verspager

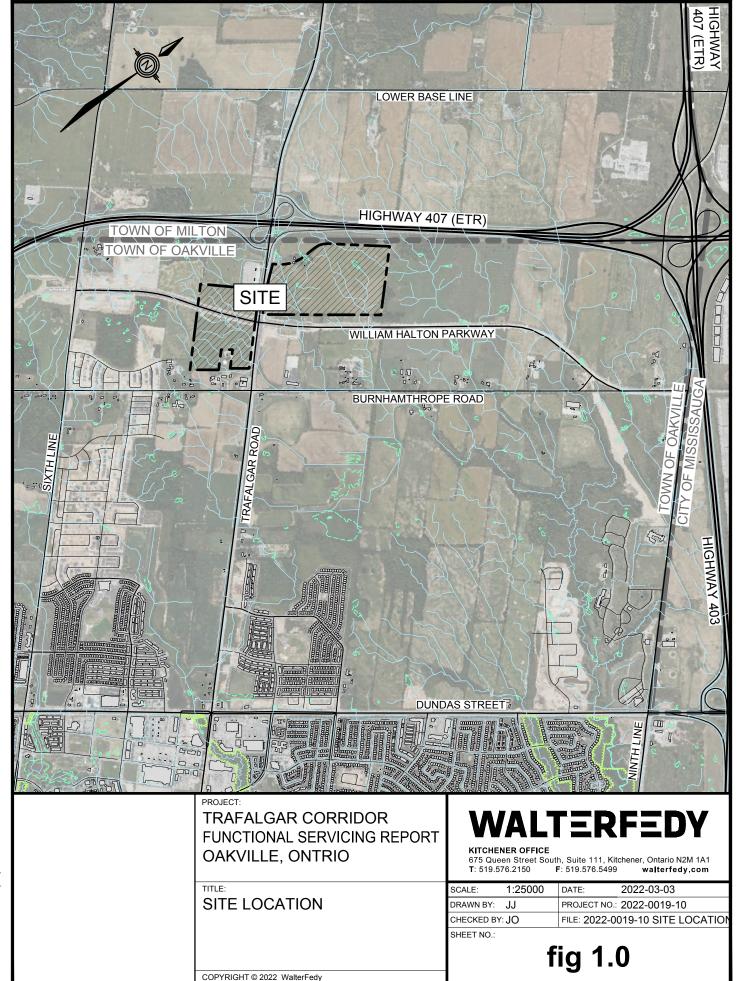
Brian Verspagen, M.Sc., P.E., P.Eng. Practice Lead, Water Resources, Civil

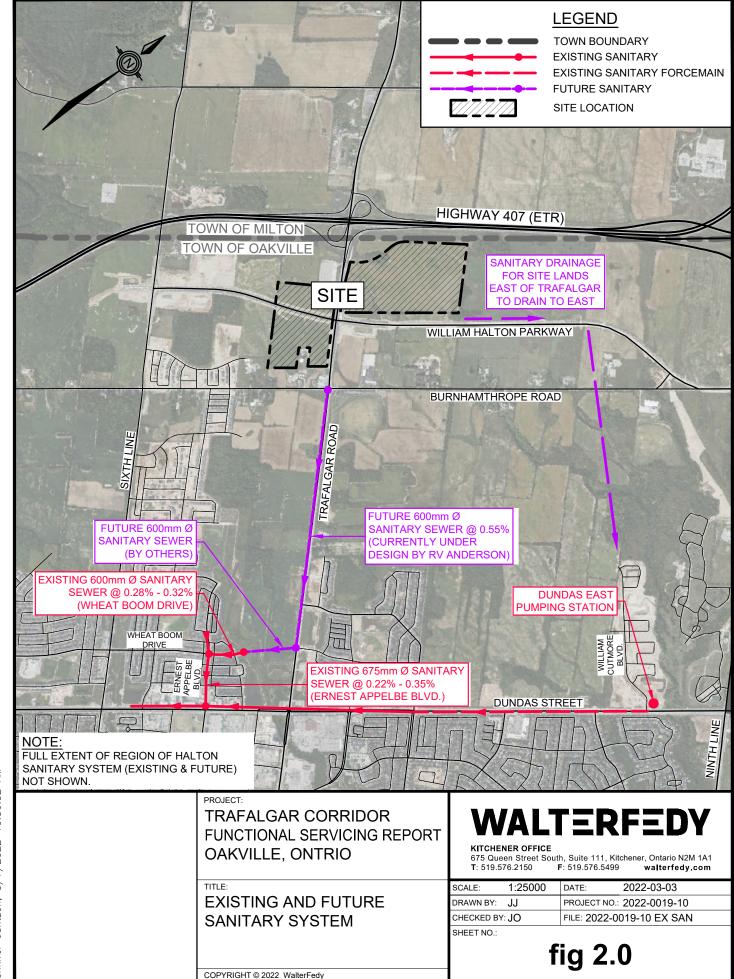
Partner

bverspagen@walterfedy.com 519.576.2150 Ext. 331

/ajw

John Oreskovic, P.Eng.


John Och


Water Resources Engineer, Civil

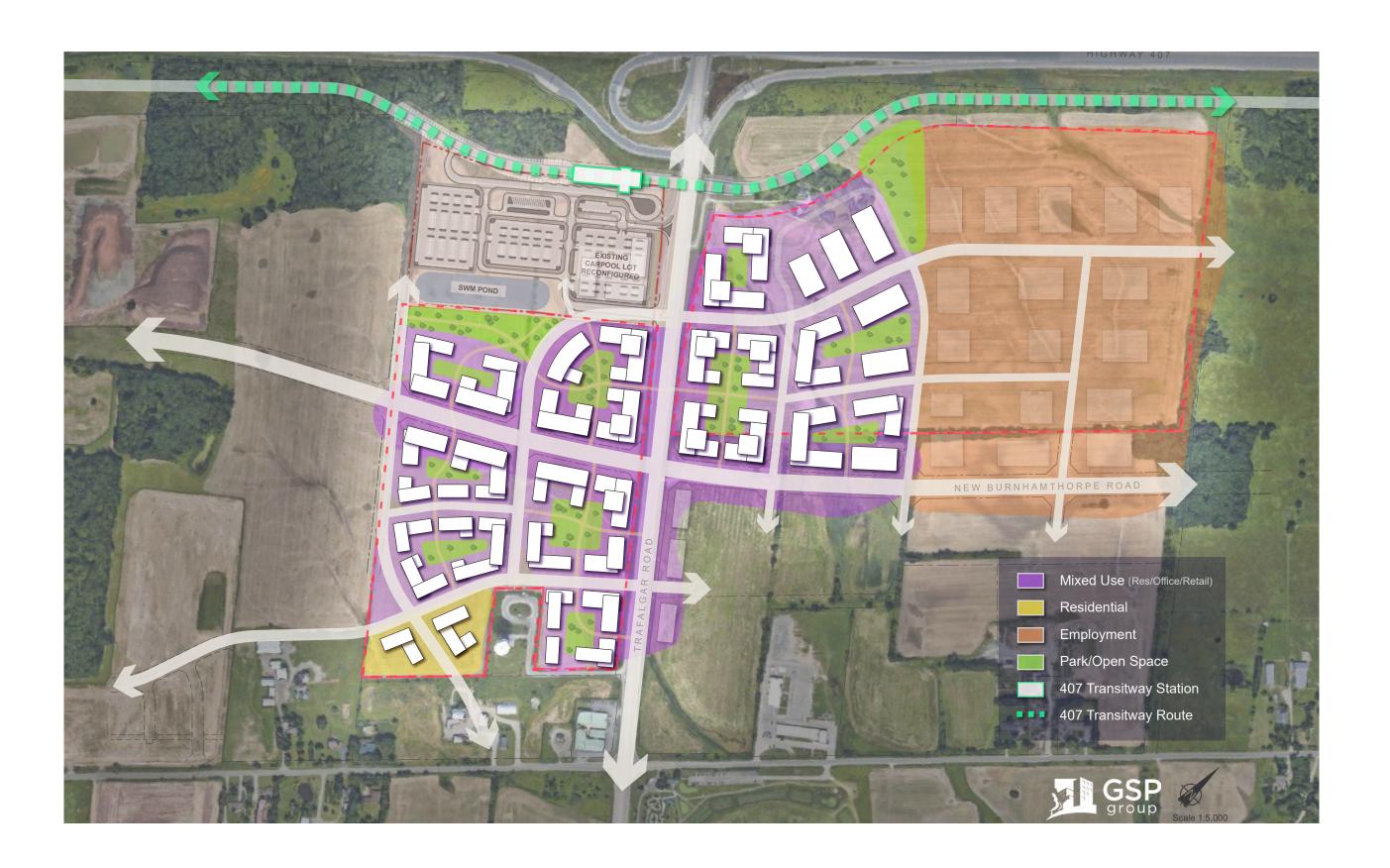
joreskovic@walterfedy.com

FIGURES

- 1. Site Location
- 2. Existing & Future Sanitary System
- 3. Existing & Future Storm System

APPENDIX A

General Background Information



SITE LOCATION

I.O. Trafalgar Corridor, Oakville

Scenario A: 70% Residential Focus

Site Statistics

Total Site Area (incl. Employment land) 53.4 ha (132 ac)

Developable Area (Blocks 1-11)

26.3 ha

Total Gross Floor Area

707,000 m² (7.61 million ft²)

Overall Floor Space Ratio

2.68

Residential GFA

494,900 m² (5.3 million ft²)

Approximate # of Units (70 m²)

5,660

Non-Residential GFA

212,100 m² (2.3 million ft²)

Approximate # of Jobs (1 per 20 m²)

8,450 (321 jobs/ha)

Block	Area (m²)	Gross Floor Area (m²)	FSR
1	45,087	118,380	2.6
2	29,290	105,492	3.6
3	29,540	134,596	4.6
4	23,772	63,440	2.7
5	21,833	47,308	2.2
6	27,701	70,728	2.6
7	14,928	42,047	2.8
8	18,731	40,955	2.2
9	18,655	39,081	2.1
10	19,167	30,453	1.6
11	14,654	14,531	1

These scenarios should be considered as hypothetical demonstration models that illustrate the development potential for the site. The developable area, number of units and floor areas are approximate and subject to detailed design and applicable planning approvals.

Scenario B: 50% Employment Focus

Site Statistics

Total Site Area (incl. Employment land) 53.4 ha (132 ac)

Developable Area (Blocks 1-11) 26.3 ha

Total Gross Floor Area 711,000 m² (7.6 million ft²)

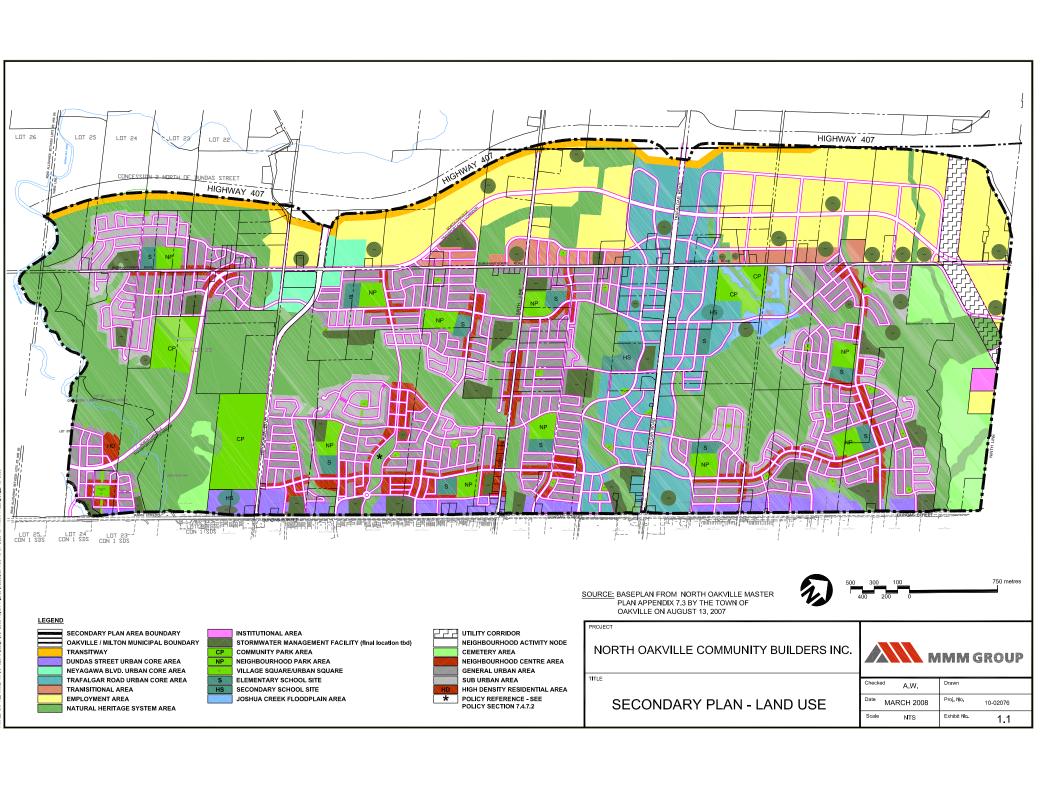
Overall Floor Space Ratio 2.70

Residential GFA 355,500 m² (3.8 million ft²)

Approximate # of Units (70 m²) 4,060

Non-Residential GFA 355,500 m² (3.8 million ft²)

Approximate # of Jobs (1 per 20 m²) 14,200 (540 jobs/ha)


Block	Area (m²)	Gross Floor Area (m²)	FSR
1	45,087	118,380	2.6
2	29,290	105,492	3.6
3	29,540	134,596	4.6
4	23,772	63,440	2.7
5	21,833	47,352	2.2
6	27,701	70,728	2.6
7	14,928	42,047	2.8
8	18,731	38,583	2.1
9	18,655	39,069	2.1
10	19,167	31,573	1.6
11	14,654	20,160	1.4

These scenarios should be considered as hypothetical demonstration models that illustrate the development potential for the site. The developable area, number of units and floor areas are approximate and subject to detailed design and applicable planning approvals.

INFRASTRUCTURE ONTARIO DRAFT

APPENDIX B

Sanitary Sewer Information

 Project No.
 2022-019-10

 Date:
 March 2022

TOWN OF OAKVILLE

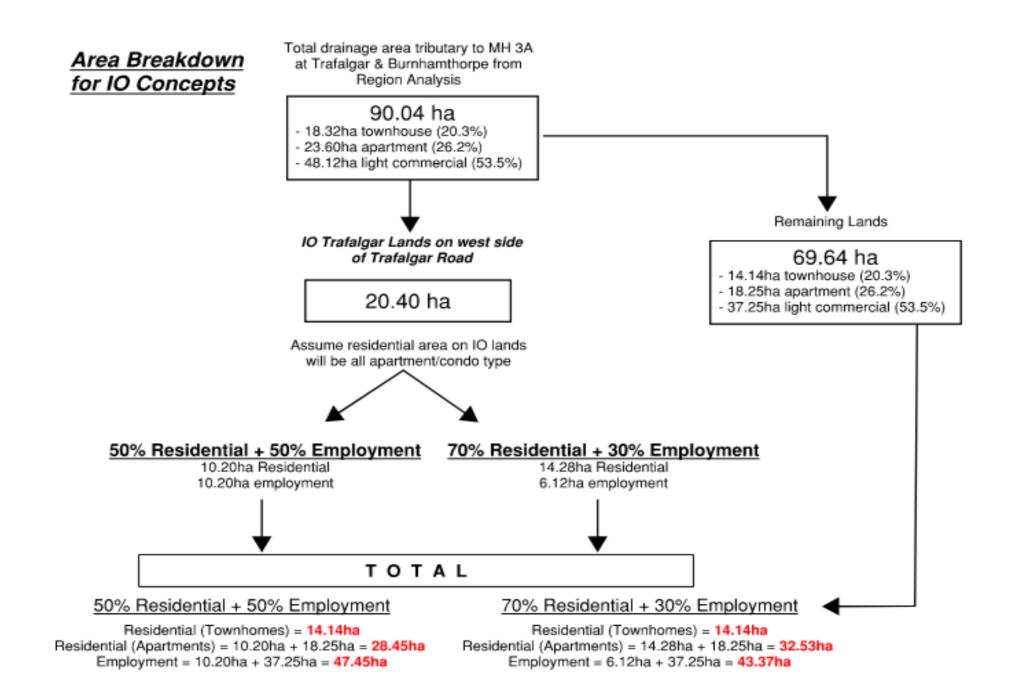
SANITARY SEWER DESIGN

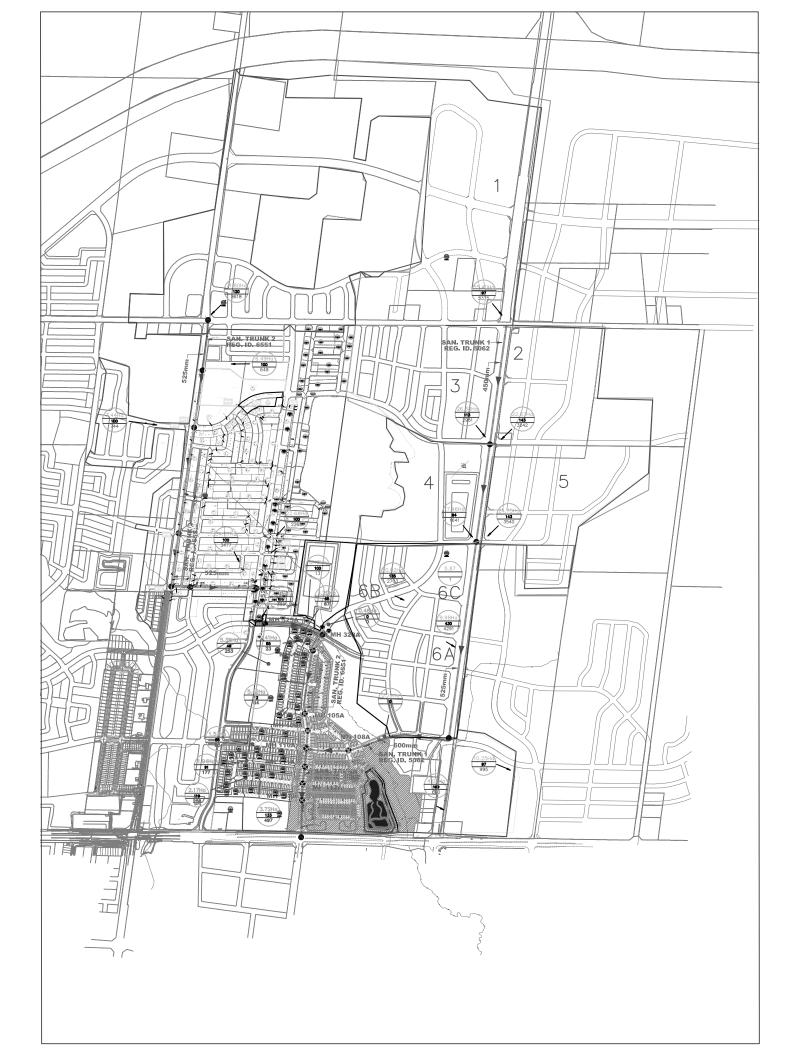
Project: IO TRAFALGAR ROAD

Peaking Factor (Res)=

1+[14/(4+(P/1000)^{0.5}))] 1+[14/(4+(P/1000)^{0.5}))] x 0.80

Peaking Factor (Comm)=


Dry Weather Flow =


275 l/c/d

Dry Weather Flow = Infiltration factor =

0.286 l/s/ha

															minitration ractor =		0.200 1/	G ,	
Area	Street Name				Areas (ha)		Total		Population	n	Total	Peakin	g Factor	Avera	age Flow		% Change		
No.				Townhouse	Apartment	Comm/Employ	Area	Townhouse	Apartment	Comm/Employ	Population	Residential	Comm/Employ	Residential	Comm/Employ	Residential	Comm/Employ	Total	in Flow
		People	per Hectare>	135	285	90	[ha]							l/s	l/s	l/s	I/s		
Trafalo	gar Rd Original Ar	nalysis		18.32	23.60	48.12	90.04	2473	6726	4331	13530	2.99	2.84	29.28	13.78	87.56	39.17	126.74	
IO Lar	nds - 50% Res & 50	0% Comm&En	nploy	14.14	28.45	47.45	90.04	1909	8108	4271	14288	2.95	2.85	31.88	13.59	94.18	38.69	132.87	4.8%
IO Lar	nds - 70% Res & 30	0% Comm&En	nploy	14.14	32.53	43.37	90.04	1909	9271	3903	15083	2.91	2.87	35.58	12.42	103.42	35.71	139.13	9.8%

TECHNICAL MEMORANDUM

TO: Alexander Andrenkov, P.Eng., PMP. RVA: 163269

FROM: Peter Cho, P.Eng., PMP.

DATE: November 8, 2021

SUBJECT: Trafalgar Road (Phase 2) - Hays Boulevard to William Halton Parkway

Sanitary Sewer Design (R2079-D)

1.0 PROJECT DESCRIPTION

Halton Region (Region) has retained RVA to provide the detailed design of road rehabilitation and widening for Trafalgar Road from Hays Boulevard to William Halton Parkway. This section of Trafalgar Road is proposed to be widened to accommodate 4.0m curb lane in each direction, as well as four (4) general purpose traffic lanes in accordance with recommendation of the Environmental Assessment Report (AECOM, 2015). A proposed multi-use trail and sidewalk will be provided along both sides of Trafalgar Road.

As part of this project, the Region has requested RVA to design a 2.2km sanitary sewer along Trafalgar Road to serve the future developments along the road corridor. This memo documents the design criteria and assumptions used for the design of the sanitary sewer.

2.0 SANITARY DESIGN

RVA reviewed the following background information provided by the Region:

- North Oakville East Secondary Plan Area Servicing Plan Oakville, Ontario (ASP 2011)
- Three updated sanitary sewer design sheets from the Region assessing the upper, lower, and average population estimates
- Green Ginger subdivision drawings

These background documents have been appended to this memo for reference.

The ASP 2011 study delineated the wastewater drainage boundaries in the North Oakville community, including Trafalgar Road. Based on the Ultimate Waster Drainage Plan in the study, the proposed alignment of the sanitary sewer runs along Trafalgar Road from Burnhamthorpe to Wheat Boom Drive, going through the future Green Ginger development and eventually connects to the forcemain on Dundas Street. Refer to **Appendix A** for the route of the sanitary sewer (3A to 3D). The plan shows north of Burnhamthorpe Road, the area west of Trafalgar Road will drain towards the new sewer (3A). Between Burnhamthorpe Road and Road 'C' areas east and west of Trafalgar will drain towards the new sewer (3B and 3C). Between Road 'C' and Wheatboom Drive, areas west of Trafalgar will drain towards to the new sewer.

Although the ASP 2011 delineated the drainage boundaries for the new sanitary sewer, the population density shown was outdated. It should be noted at the time of this design, the future developments along Trafalgar Road were at various stages of planning, some of which have yet to submit their application, so the future population numbers for the Trafalgar Road corridor have not been established. Since the future sanitary sewer capacity requirement is heavily dependent on projected population numbers, the Region has provided their future upper, lower, and average population estimates considering possible variation of land use in their updated sanitary sewer design sheets. For a conservative approach, this sanitary design is based on the upper population estimate. Refer to **Appendix B** for the updated sanitary sewer design sheet provided by the Region.

Using the information from above background documents, the total peak flow under the upper population estimate scenario was determined following the Halton Water and Wastewater Linear Design Manual (version 4.0 April 2019) guidelines. Refer to **Appendix C** for our sanitary sewer design sheet and sanitary drainage area plan. The total peak flow is the sum of infiltration flow within the Trafalgar Road right-of-way, and the equivalent residential flow and the equivalent commercial and industrial flows. This design assumes residential, and commercial and industrial will be the predominate future land use based on the few permit applications submitted to the City of Oakville to date. The areas used in the design sheet are the tributary drainage areas between the sanitary manholes within the Trafalgar Road right-of-way.

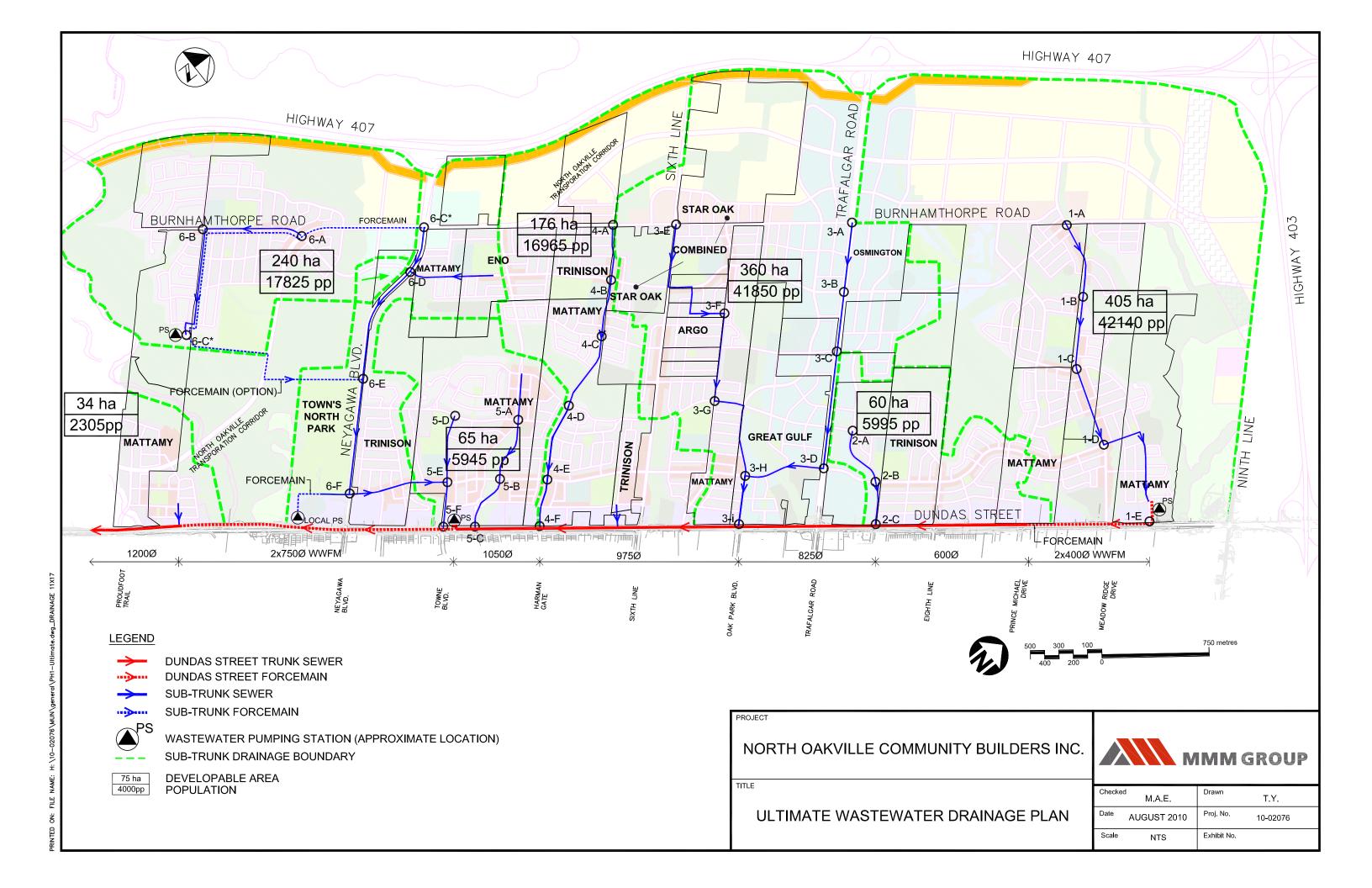
The proposed plan and profile layout of the new sanitary sewer was based on our review of the existing site conditions and constructability considerations. The proposed sanitary alignment will run adjacent to the west curb along Trafalgar Road from Wheatboom Drive to north of Road 'D' to minimize lane shutdowns for future maintenance purposes. From north of Road 'D' (at sanitary MH #22), the sanitary alignment will turn and run in the west boulevard area to avoid conflict with the existing 750mm dia. watermain crossing. This layout minimizes impact to the existing watermain on Trafalgar Road.

The proposed sanitary profile was determined based on the existing sanitary manhole invert elevation on Wheatboom Drive within the Green Ginger subdivision – refer to **Appendix D**. Our design approach was to maximize the buried depth of the proposed sanitary sewer at Burnhamthorpe Road to provide greater flexibility for future developments to tie into their service connections. Due to the existing 750mm dia. watermain at Wheatboom Drive intersection, the section of sanitary sewer along Wheatboom Drive had to be steepened to 1% to meet the minimum vertical clearance. Along Trafalgar Road a 0.55% slope was selected for the proposed sanitary profile and the resulting invert elevation at Burnhamthorpe Road is 5.2m below the proposed road profile. This is the maximum buried depth achievable at Burnhamthorpe Road intersection to minimize the impact to the existing watermain on Trafalgar Road and for the new sanitary sewer to be able to tie back into the existing sanitary manhole within the Green Ginger subdivision.

Refer to **Appendix E** for proposed sanitary sewer plan and profile drawings and Sanitary Drainage drawings.

Based on the calculated total peak flow, a 600mm dia. PVC sanitary at 0.55% slope will meet the future drainage capacity requirements along Trafalgar Road under the upper population estimate. This results in a full flow velocity of 1.65m/s which is within the allowable range per Halton Water and Wastewater Linear Design Manual.

3.0 SUMMARY


The road rehabilitation and widening on Trafalgar Road provides a good opportunity for the Region to install the new sanitary sewer as planned in the Region's ASP 2011 study in anticipation of the future developments. Since most of the developments have yet to submit their applications, this sanitary design was done based on reasonable assumptions made based on information provided by the Region and previous planning studies. Our finding that a 600mm dia. PVC sanitary sewer should provide sufficient drainage capacity for the projected population estimate under the conservative scenario coincides with the Region's findings in their updated sanitary sewer design sheet. Should more information on the future developments become available, the total peak flow in the area should be revisited to confirm that this sanitary sewer still meets the required drainage capacity and full flow velocity.

Peter Cho, P.Eng., PMP Project Manager

R:\2016\163269 - Trafalgar Road Widening\ProjectData\Submission\20211108 - 60% Design\Sanitary Memo\20211108 -163269 - Trafalgar Road Sanitary Memo.docx

Halton Region RVA 163269
November 8, 2021 DRAFT

APPENDIX A ULTIMATE SANITARY DRAINAGE PLAN

APPENDIX B

SANITARY POPULATION HIGH DENSITY CHECK

PROJECT NO & TITLE: ID7523 - Design Basis for Sewer Design (50% more apartments) - PRELIMINARY

LOCATION: North Oakville East DRAINAGE:

Manning's n: 0.013 Accuracy level (1=normal; 2=moderate; 3=best): 1

THE REGIONAL MUNICIPALITY OF HALTON

Calculation Period

DATE:
DESIGNED BY:
CHECKED BY:

October 20, 2020 K. Connell

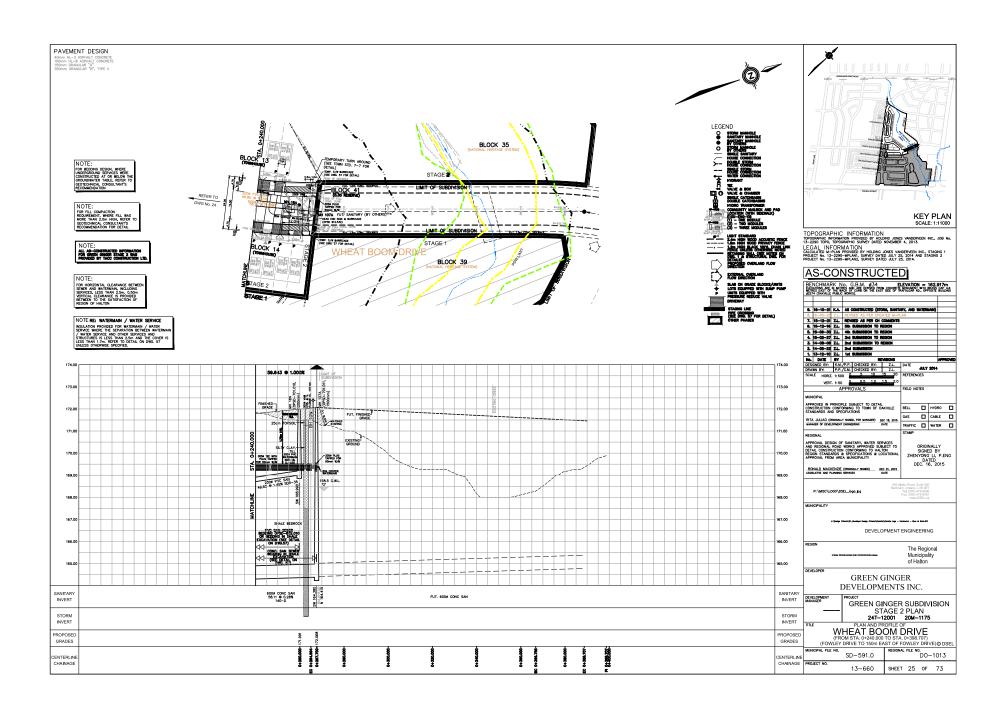
	LOCATION: NORTH CARVING East DRAINAGE:																						Calculation Period						NED BY:	K					
	Manning's n: 0.013 Accuracy level (1=normal; 2=moderate; 3=best): 1												SANITARY SEWER DESIGN SHEET CHECKED BY:																						
	MAN	HOLE					TRIB	UTARY A	REA (ha.)			POPULATION TRIBUTARY					RY	DRY										SEWER PROPERTIES					PI	PE	
					TYPE OF				ON DENS		PR		Inits al Beds=4; i = 0)	LAND USE			TOTAL	WEATH ER FLOW	AVERAGE DRY WEATHE R FLOW	FACTOR	MAX DRY	RDII Rate	ROW	MAX	System	SIZE (Diameter)	SLOPE		Actual		relocity (V n m/s)	V Depth Ratio (%)			Remarks
	FROM	то	LENGTH	Community Services	Single Family	Duplex	Townhouse	Apartment	Light Commercial	Light Industrial	Industrial	TOTAL AREA		Residential & Community	Commercial	Industrial	POPULAT ION		per Sub- system cummulati		FLOW	0.286	INFILTRA TION	D FLOW	(200	0.2%	Full flow capacity	Flow Rate (Q)	Full	Actual	30%	TYPE	TYPE CLASS Clear	Clear
(Leave no blanks within a system)			(m)	40	55.0	100	135	285	90	105	125	(ha)	0	RES'L	COMM'L	IND'L	(PE)	(L/s)	(L/s)	Design	(L/s)	(L/ha/s)	(L/s)	(L/s)		(mm)	%	(L/s)	(L/s)	0.6	2.5				
Subtrunk 3A	3A	3B	450.00				18.32	23.60	48.12			90.04		9,198	4,331	-	13,529	43.1	43.1	2.82	121.6	0.286	25.8	147.3	- 1	450	0.60	230.4		1.40					
Subtrunk 3B	3B	3C	450.00				12.08	5.10	24.48			41.66		3,084	2,203		5,288	16.8	59.9	2.68	160.4	0.286	11.9	198.1	1	525	0.60	347.5		1.56					
Subtrunk 3C	3C	3D	850.00				9.18	9.45	18.14			36.77		3,933	1,633		5,565	17.7	77.6	2.57	199.2	0.286	10.5	247.3	1	525	0.60	347.5		1.56	7				
														-	-																				
														-																					

APPENDIX C SANITARY DESIGN SHEET

PARAMETERS

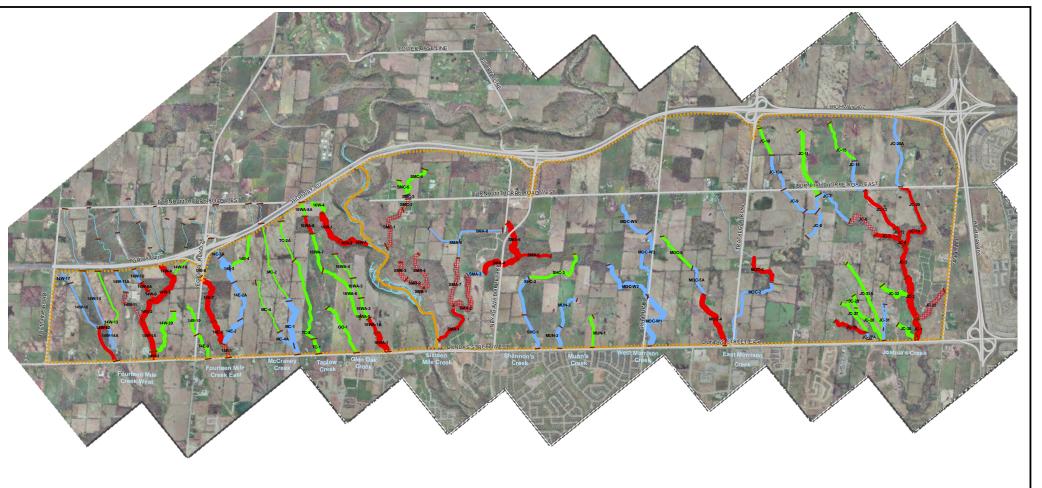
Peaking Factors - Residential 1+[14./Peaking Factors - Commercial and Industrial Land Use 0.8 x {1+[14./Peaking Factors - Commercial and Industrial Land Use 0.8 x {1+[14./Peaking Factors - Commercial/Industrial Dry Weather Flow Inflow/ Infiltration Allowance = SOURCE: Halton Water and Wastewater Linear Design Manual (version 4.0 April 2019)

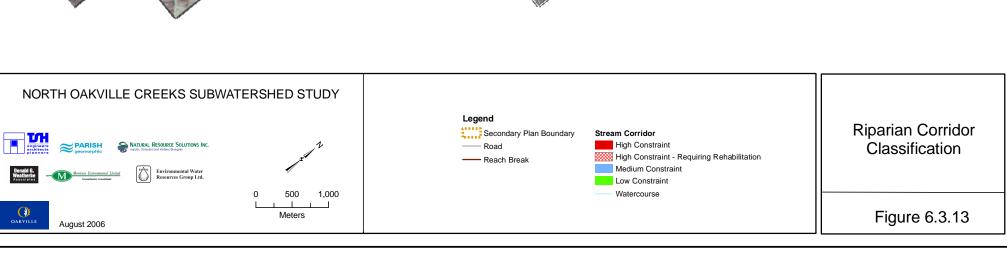
1+[14/(4+(P/1000)^{(0.5}))] 0.8 x {1+[14/(4+(P/1000)^{(0.5}))]} 275 L/C/D 275 L/C/D 0.286 L/s/ha

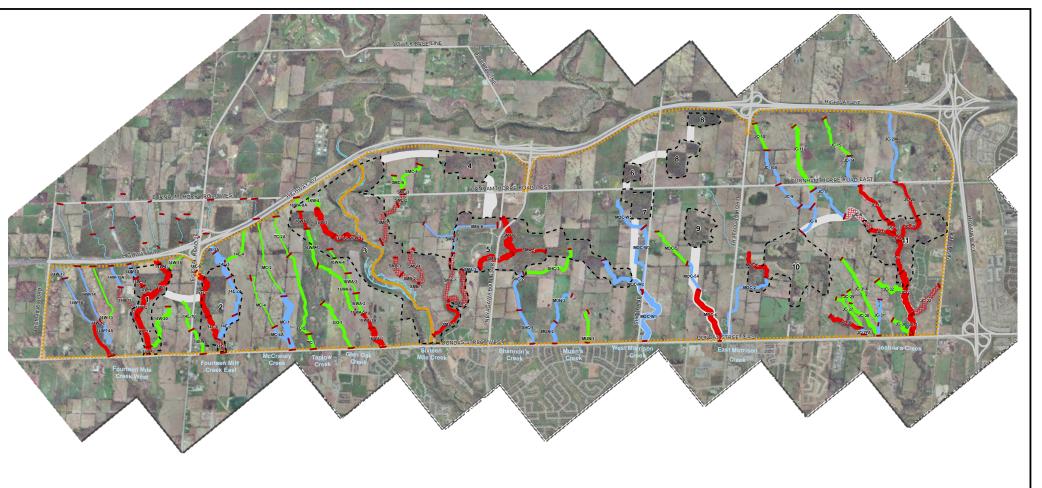

SANITARY SEWER DESIGN SHEET

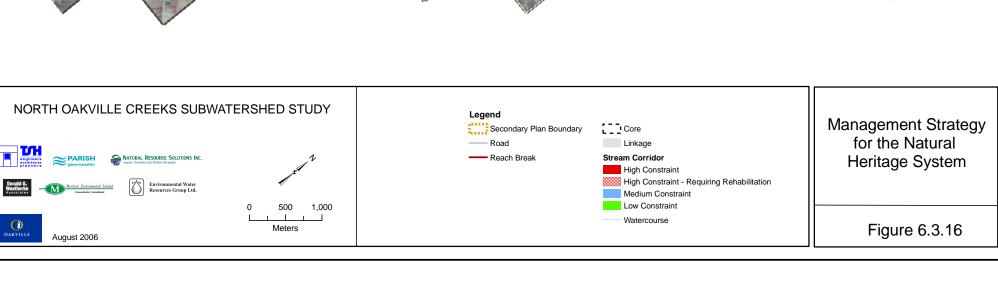
SHEET 1 OF 1

PROJECT: Trafalgar Road Widening (Region of Halton)


	MAN	IHOLE			POPULATION			AREA	S (ha)		FLOW (L/S)						SEWER DATA								Flow			1
STREET	FROM	TO	EXISTING RESIDENTIAL	RESIDENTIAL	AND	TOTAL RESIDENTIAL	TOTAL COMMERCIAL	AREA	TOTAL AREA	PEAKING	COMMERCIAL PEAKING	EQUIVALENT RESIDENTIAL	EQUIVALENT COMMERCIAL	INFILTRATION	TOTAL PEAK FLOW (L/s)	TOTAL CUMULATIVE	NOMINAL DIAMETER	ACTUAL DIAMETER	SLOPE (%)	LENGTH (m)	TYPE OF PIPE		FULL FLOW	FULL FLOW VELOCITY	UNUSED CAPACITY	U/S INVERT ELEV. (m)	D/S INVERT ELEV. (m)	FALL IN SEWE (m)
					INDUSTRIAL	POPULATION	AND INDUSTRIAL POP			FACTOR	FACTOR	FLOW	AND INDUSTRIAL FLOW			PEAK FLOW (L/s)	(mm)	(mm)				n	CAPACITY (I/s)	(m/s)	(l/s)			
Burnhamthorpe Road	MH 26	MH 19	0	9198	4331	9198	4331	90.000	90.000	2.99	3.30	87.55	45.52	25.74	158.82	158.82	600.00	610.00	0.55		PVC	0.013	475.88	1.63	317.07			1
Road D	MH 19	MH 13	0	3084	2203	3084	2203	42.000	42.000	3.43	3.55	33.69	24.91	12.01	70.61	70.61	600.00	610.00	0.55		PVC	0.013	475.88	1.63	405.27			
									L																			
Road C	MH 13	MH 2	0	3933	1633	3933	1633	37.000	37.000	3.34	3.65	41.81	18.98	10.58	71.38	71.38	600.00	610.00	0.55		PVC	0.013	475.88	1.63	404.51			
Trafalgar Road	MH26	MH25	0	0	0	9198	4331	0.120	0.120	2.99	0.00	87.55	0.00	0.03	165.59	165.59	600.00	610.00	0.55	23.27	PVC	0.013	475.88	1.63	310.29	178.903	178.775	0.128
Trafalgar Road	MH25	MH24	0	0	0	9198	4331	0.910	1.030	2.99	0.00	87.55	0.00	0.03	165.85	165.85	600.00	610.00	0.55	150.00	PVC	0.013	475.88	1.63	310.03	178.745	177.917	0.128
Trafalgar Road	MH24	MH23	0	0	0	9198	4331	0.910	1.940	2.99	0.00	87.55	0.00	0.55	166.11	166.11	600.00	610.00	0.55	150.00	PVC	0.013	475.88	1.63	309.77	177.887	177.062	0.825
Trafalgar Road	MH23	MH22	0	0	0	9198	4331	0.100	2.040	2.99	2.64	87.55	36.42	0.58	202.56	202.56	600.00	610.00	0.55	17.40	PVC	0.013	475.88	1.63	273.33	177.032	176.936	0.096
Trafalgar Road	MH22	MH19	0	0	0	9198	4331	0.840	2.880	2.99	2.64	87.55	36.42	0.82	202.80	202.80	600.00	610.00	0.55	140.03	PVC	0.013	475.88	1.63	273.09	176.906	176.136	0.770
Trafalgar Road	MH19	MH18	0	0	0	12282	6534	0.490	3.370	2.87	2.51	112.02	52.17	0.96	243.15	243.15	600.00	610.00	0.55	81.85	PVC	0.013	475.88	1.63	232.74	176.106	175.656	0.450
Trafalgar Road	MH18	MH17	0	0	0	12282	6534	0.540	3.910	2.87	2.51	112.02	52.17	1.12	243.30	243.30	600.00	610.00	0.55	90.06	PVC	0.013	475.88	1.63	232.58	175.626	175.131	0.495
Trafalgar Road	MH17	MH16	0	0	0	12282	6534	0.540	4.450	2.87	2.51	112.02	52.17	1.27	243.46	243.46	600.00	610.00	0.55	90.84	PVC	0.013	475.88	1.63	232.43	175.101	174.601	0.500
Trafalgar Road	MH16	MH13	0	0	0	12282	6534	0.780	5.230	2.87	2.51	112.02	52.17	1.50	243.68	243.68	600.00	610.00	0.55	121.63	PVC	0.013	475.88	1.63	232.20	174.571	173.902	0.669
Trafalgar Road	MH13	MH11	0	0	0	16215	8167	0.820	6.050	2.74	2.43	141.63	63.25	1.73	284.61	284.61	600.00	610.00	0.55	128.30	PVC	0.013	475.88	1.63	191.28	173.872	173.166	0.706
Trafalgar Road	MH11	MH10	0	0	0	16215	8167	0.730	6.780	2.74	2.43	141.63	63.25	1.94	284.82	284.82	600.00	610.00	0.55	120.00	PVC	0.013	475.88	1.63	191.07	173.136	172.476	0.660
Trafalgar Road	MH10	MH9	0	0	0	16215	8167	0.560	7.340	2.74	2.43	141.63	63.25	2.10	284.98	284.98	600.00	610.00	0.55	90.98	PVC	0.013	475.88	1.63	190.91	172.446	171.946	0.500
Trafalgar Road	MH9	MH8	0	0	0	16215	8167	0.370	7.710	2.74	2.43	141.63 141.63	63.25	2.21	285.08	285.08	600.00	610.00	0.55	60.04	PVC	0.013	475.88	1.63	190.80	171.916	171.586	0.330
Trafalgar Road Trafalgar Road	MH8 MH7	MH7 MH5	0	0	0	16215 16215	8167 8167	0.540	8.250 8.710	2.74	2.43	141.63	63.25 63.25	2.36	285.24 285.37	285.24 285.37	600.00	610.00	0.55	71.72	PVC PVC	0.013	475.88 475.88	1.63	190.65 190.52	171.556 171.036	171.066 170.642	0.490
Trafalgar Road	MH5	MH4	0	0	0	16215	8167	0.460	9.650	2.74	2.43	141.63	63.25	2.49	285.64	285.64	600.00	610.00	0.55	145.00	PVC	0.013	475.88	1.63	190.52	171.036	169.814	0.394
Trafalgar Road	MH4	MH3	0	0	0	16215	8167	0.830	10.480	2.74	2.43	141.63	63.25	3.00	285.87	285.87	600.00	610.00	0.55	128.04	PVC	0.013	475.88	1.63	190.23	169.784	169.080	0.798
Trafalgar Road	MH3	MH2	0	0	0	16215	8167	0.100	10.580	2.74	2.43	141.63	63.25	3.03	285.90	285.90	600.00	610.00	0.55	17.28	PVC	0.013	475.88	1.63	189.98	169.020	168.934	0.086


APPENDIX D WHEAT BOOM DRIVE DRAWING




APPENDIX E

TRAFALGAR ROAD SANITARY DRAWINGS

APPENDIX C

Water Servicing Information

Estimate of Domestic Water Demand for IO Trafalgar Lands

Total IO Area 53.4 ha (east and west side)

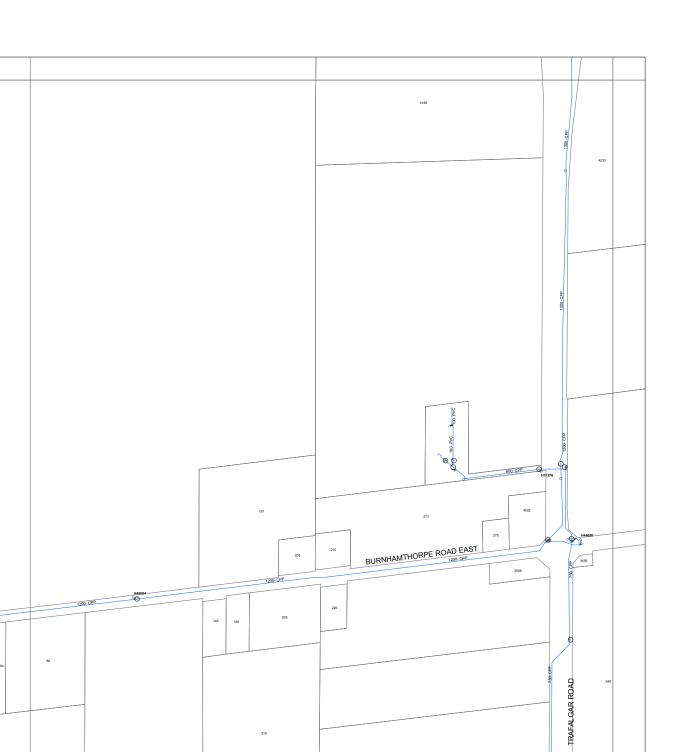
Per captia Flow 275 I/c/d

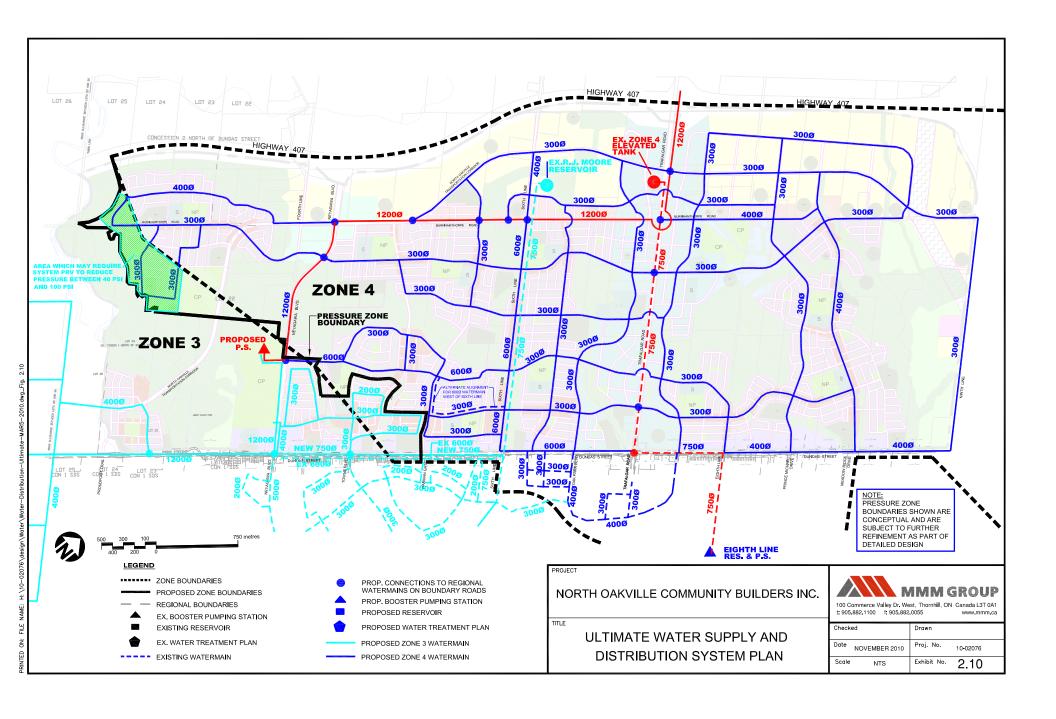
Population Densities

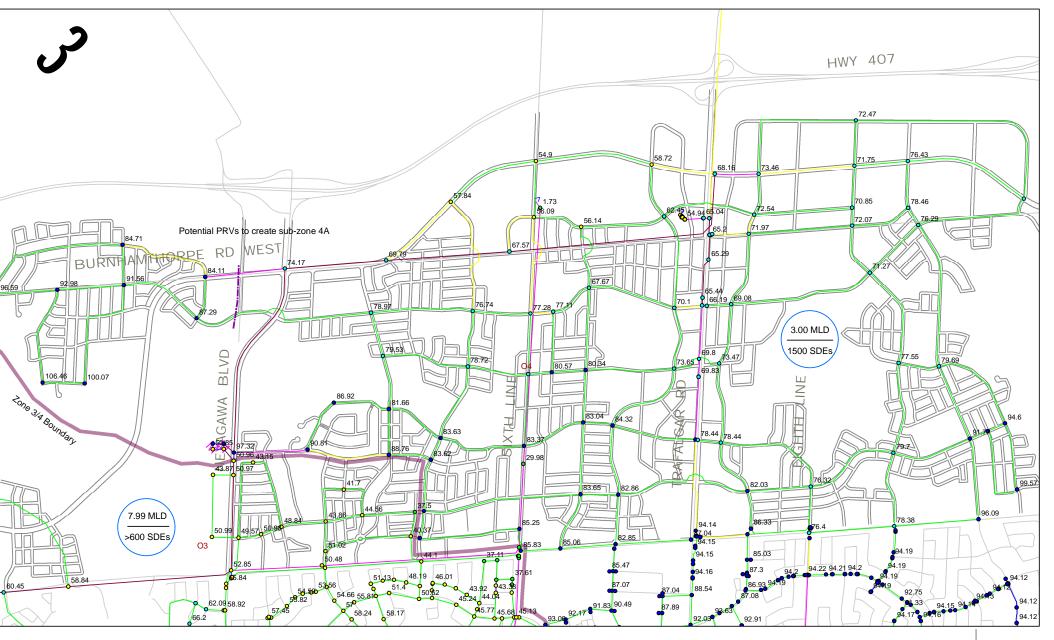
Residential (apartment) 285 people/ha (assume all residential is apartment/condo style)

Employment 90 people/ha

Peaking Factors

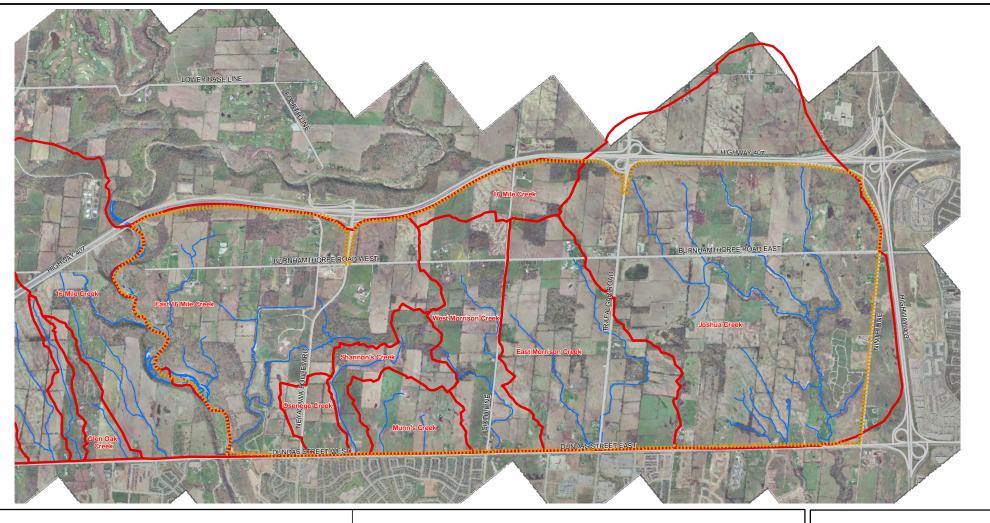

 Max. Day =
 2.25

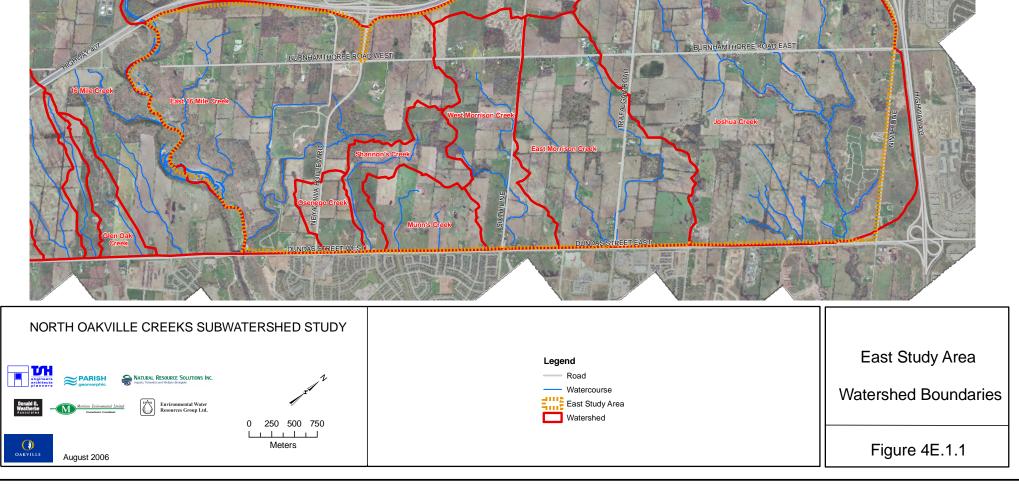

 Peak Hr. (Res.)
 4.00

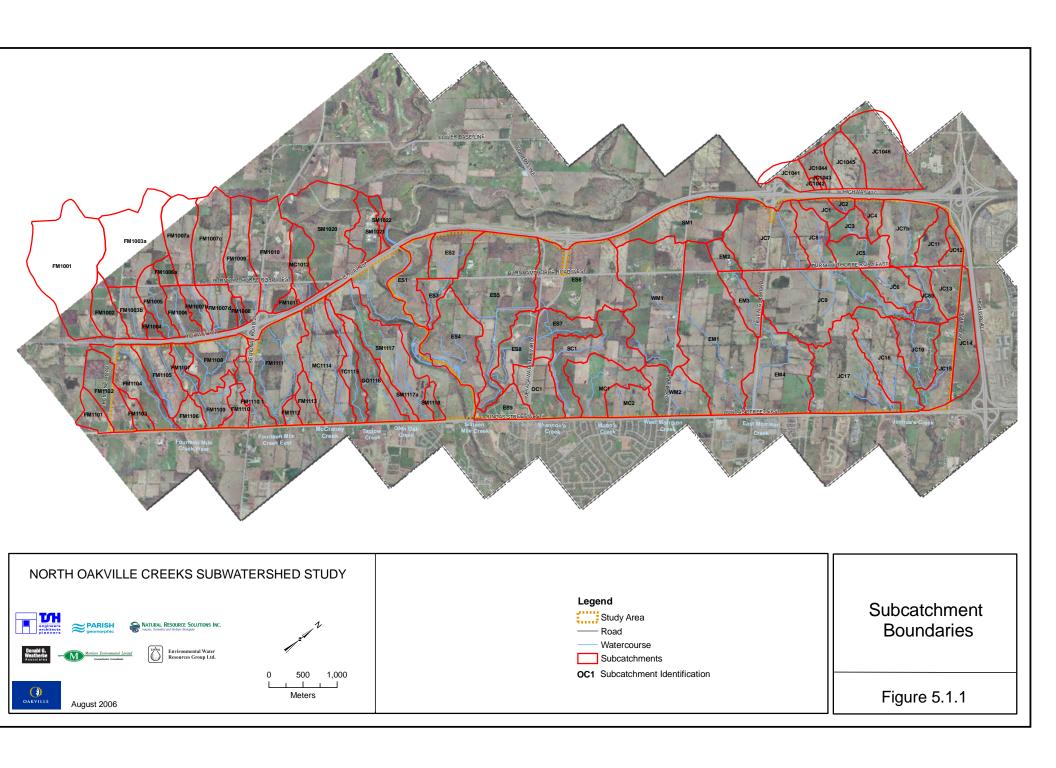

 Peak Hr. (Comm.)
 2.25

Development Scenario		Area (ha)			Population	Avg. Day	Max. Day	Peak Hr.			
		Residential	Employment	Residential	ntial Employment Total		Flow (I/s)	Flow (I/s)	Flow (I/s)		
Scenario A	70% Res + 30% Emply.	37.4	16.0	10653	1442	12095	38.5	86.6	146.0		
Scenario B	50% Res + 50% Emply.	26.7	26.7	7610	2403	10013	31.9	71.7	114.1		
				Difference	in Domestic Wa	ter Demand:	6.6	86.6 146.0			

Note: Design criteria per Regional Municipality of Halton Version 5 Water and Wastewater Linear Design Manual, October 2019

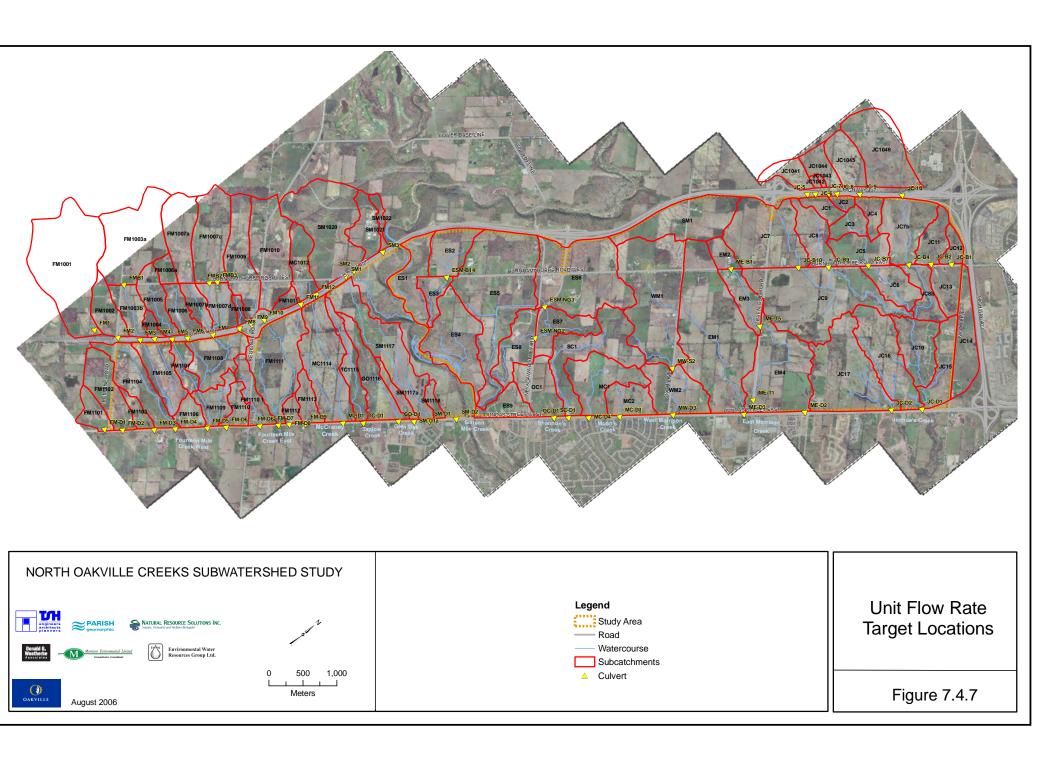


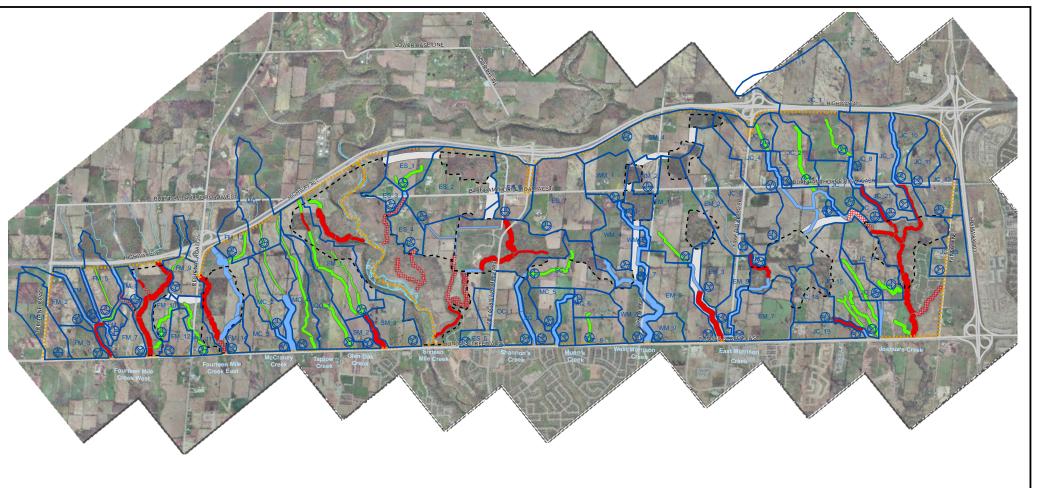


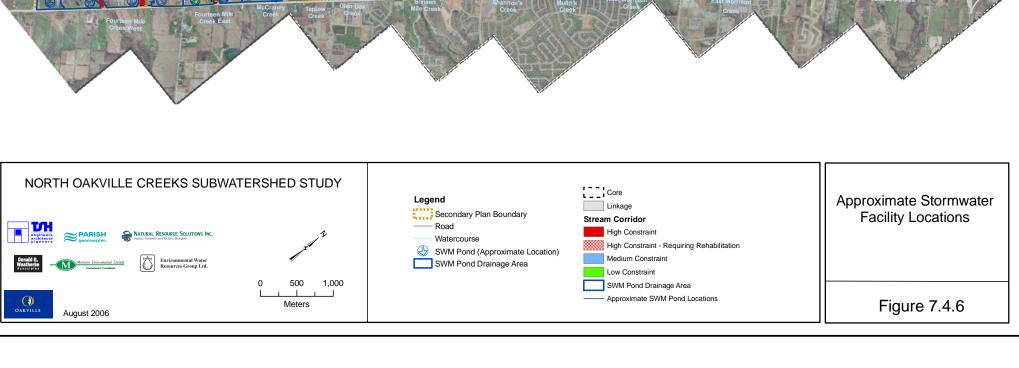

North Oakville Development Plan Max Day Pressures (psi) and System Capacities **AECOM**

1:18,000 September 2009 Source: Infowater

APPENDIX D Storm Drainage and SWM Information






							200		
Location	Culvert No.	Drainage Area	Regional Storm	100 year storm	50 year storm	25 year storm	10 year storm	5 year storm	2 year storm
		ba.	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s	m³/s
4 Mile Creek									
	FM-D2	45,56	2.50	1.04	0.92	0.80	0.62	0.51	0.31
	Flow rate / /	Area (m²/s/aa)	0.054	0.022	0.020	0.017	0.013	0.011	0.007
	FM-D3	11.71	0.75	0.36	0.32	0.28	0.23	0.19	0.12
170	Flow rate / /	Area (m²/s/ha)	0.365	0.031	0.027	0.024	0.020	0.016	0.010
	FM-D4	423.70	20.96	8.39	7.42	6.49	5.09	4.17	2.62
	Flow rate / 2	Area (m²/s/ba)	0.049	0.020	0.018	0.015	0.012	0.010	0.006
	FM-D5	339.99	18,73	7.56	6.60	5.68	4.35	3.43	2.01
	Flow rate / /	Arca (m²/s/na)	0.055	0.022	0.019	0.017	0.013	0.010	0.006
Dundas St. W.	FM-D6	16.91	0.88	0.36	0.32	0.28	0.23	0.19	0.12
Landida St. W.	Higw rate / :	Area (m²/s/ba)	0.052	0.021	0.019	0.017	0.014	0.011	0.007
	FM-D6a	26,23	1.38	0.57	0.50	0.44	0.34	0.28	0.18
	Plum rate / :	Area (m ³ /s/ha)	0.053	0.022	0.019	0.017	0.013	0.011	0.007
	FM-D7	247.92	11.96	4.63	4.07	3.54	2.75	2.23	1.36
	Flow rate /	Area (m ⁵ /s/ba)	0.048	0.019	0.016	0.014	0.011	0.009	0.005
	FM-D8	8.45	0.66	0.37	0.33	0.29	0.23	0.19	0.12
	Flow rate / .	Area (m²/s/ha)	0.078	0.044	0.039	0.034	0.027	0.022	0.014
	FM-D9	18.53	1.47	0.86	0.76	0.67	0.54	0.44	0.28
		Area (m ² /s/ha)	0.079	0.046	0.041	0.036	0.029	0.024	0.015
McCraney Cree	k								
Dundas St. W.	MC-D1	126.46	6.43	2.60	2.31	2.02	1.59	1.31	0.83
	Flow rare /.	Area (m ² /s/ha)	0.051	0.021	0.018	0.016	0.013	0.010	0.007
Taplow Creek									
Dundas St. W.	TC-D1	33.61	1.64	0.64	0.57	0.50	0.39	0.32	0.21
		Area (m²/s/ha)	0.049	0.019	0.017	0.015	0.012	0.010	0.006
Glen Oak Creek									
Dundas St. W.	CO-D1	47.16	2.34	0.93	0.83	0.73	0.58	0.48	0.31
		Area (m /s/hat	0.050	0.020	0.018	0.015	0.012	0.010	0.007
West 16 Mile C						,			
	SM-D1	87.97	3.58	1,24	1,09	0.95	0.73	0.59	0.36
		Area (m²/s/ha)	0.041	0.014	0.012	0.011	0.008	0.007	0.004
Dundas St. W.	SM-Dia	12.53	0.81	0.38	0.34	0.30	0.24	0.20	0.13
	THE RESERVE THE PARTY OF THE PA	Area (iii ⁵ /s/ba)	0.065	0.030	0.027	0.024	0.019	0.016	0.010
	SM-D2	1 8.0.	0.52	0.24	0,22	0.19	0.15	0.13	0.08
		Area (m³/s/ha)	0.065	0.030	0.027	0.024	0.019	0.016	0.010
East 16 Mile Cr	cek Tribs.								
Sixteen Mile		383.10	16.86	6.28	5.48	4.70	3.58	2.82	1.04
Creck	Flow rate /	Area (m 75/ha)	0.044	0.016	0.014	0.012	0.009	0.007	0.004
Osenego Creek			19-1-10-10-10-10-10-10-10-10-10-10-10-10-1						
Dundas St. W.	OC-D1	43,93	2,63	1.20	1.06	0.94	0.74	0.62	0.40
		Area (ar ³ /sitia)	0.060	0.027	0.024	0.021	0.017	0.014	0.009
Shannon's Cree	_	-		-					
Dundas St. W.	SC-D1	84.37	2.81	39	1.23	1.05	0,82	0.66	0.40
	How rate /	Area (m'/s/ha)	0.045	0.016	0.015	0.013	0.010	0,008	0.(8)5

	TABL	E 7.4.1 T.		NIT ARI		K FLOW	RATES		
Location	Culvert No.	Drainage Area	Regional Storm	100 year storm	50 year storm	25 year storm	10 year storm	5 year storm	2 year storm
	- Interestation	ha.	m ⁵ /s	m³/s	m ^N /s	m ³ /s	$m^3/3$	m³/s	m³/s
Munn's Creek						COLUMNIA			-
	MC-D1	29.99	2.01	0.99	0.88	0.77	0.62	0.51	0.33
Daniel Br. 10	Flow rate / A	sres (m³/s/ha)	0.367	0.033	0.029	0.026	0.021	0.017	0.011
Dundas St. W.	MC-D4	59.61	3.19	1.31	1.16	1.02	0.80	0.67	0.43
	Flow rate / /	krea (m³/x/ba)	0.054	0.022	0.019	0.0.7	0.013	0.011	0.007
West Morrison	Creek								
Dundas St. F.	MW-D3	226.38	10.93	4.26	3,77	3.30	2.59	2.13	1.35
Dungas of F.	Plow rate / /	Area (m²/s/ha)	0.048	0.019	0.017	0.015	0.011	0.009	0.006
East Morrison (reek								
Dundas St. E.	ME-D2	313.94	13,67	5.18	4.58	4.00	3.14	2.57	1.62
Dungas St. E.	Flow rate / /	Area (m²/s/ha)	0.044	0.016	0.015	0.013	0.010	0.008	0.005
Joshua's Creek					*************				
	JC-D1		16.02	12.57	10.35	6.53			
Dundas St. E.	Flow rate / /	Area (m³/s/ha)	0.052	0.021	0.019	0.017	0.013	0.011	0.007
Duning St. E.	JC D2	111.80	5.68	2.21	1.95	1.69	1.31	1.07	0.65
	Plow rate / /	Area (m//s/.ia)	0.051	0.020	0.017	0.015	0.012	0.010	0.006

Λ	В	C	D	E	F	G	н	1	J	K
1	T.	BLE 6.3.6	TARGET UNI	T AREA	PEAK F	LOW R.	ATES		area area area and	-
2			EXISTING	G LAND	USE					
3				Reg.	100	50	25	10	5	2
4 Location	Culvert	Culvert GAWSER		meg.	year	year	year	year	year	year
5 Joeanon	No.	Hyd. No.	Land Use	m³/s	m³/s	m³/s	m³/s	m ³ /s	m³/s	m^3/s
6										
133 Bunhamthorpe Re. 1	E. JC-B7	2215	Existing	11.33	5.50	4.90	4.30	3.40	2.83	1.81
134										
135 Burhamthorpe Rd. 1	E. JC-B9	2225	Existing	1.96	0.82	0.72	0.63	0.50	0.42	0.26
136			Section 1					1 2 2 4		
137 Bunhamthorpe Rd. I	3. JC-B10	2222	Existing	5.33	2.24	1.99	1.75	1.38	1.15	0.73
138										
139 Dundas St. E.	JC-D1	2275	Existing	50.06	20.58	18.18	16.02	12.57	10.35	6.53
140										
141 Dundas St. E.	JC-D2	2278	Existing	5.68	2.21	1.95	1.69	1.31	1.07	0.65

