

Functional Servicing Report

Former Oakville Trafalgar Memorial Hospital Lands 327 Reynolds Street

Town of Oakville

Table of Contents

	1.	Introd	uction and Background	1
	2.	Site T	opography and Grading	5
	3.	Sanita	ary Servicing	9
	4.	Wate	r Distribution System	15
	5.	Storm	Drainage	17
	6. Storn		water Management	20
		6.1	Stormwater Quality Control	20
		6.2	Stormwater Quantity Control	20
	7.	Erosio	on & Sediment Control	22
8. Utiliti			98	23
9. Tre		Tree	Assessment	24
	10.	Concl	usions	25
Fig			Location Plan	2
	Figure	e 1	Location Plan	2
	Figure	e 2	Proposed Development Concept	4
	Figure 3 Figure 4 Figure 5 Figure 6 Figure 7		Existing Drainage Plan	7
			Preliminary Grading Plan	8
			Preliminary Servicing Plan	10
			Post-Development Sanitary Catchment Plan	13
			Post-Development Storm Drainage Plan	19
Tal	ble	Ind	ex	
	Table	1	Downstream Sanitary Sewer Analysis Results	14
	Table	2	Proposed Domestic Water Demands	16
	Table	3	Pre-Development Flow Rates	20
	Table	4	Post-Development Flow Rates	21

Appendix Index

Appendix A Grading Background Information

Appendix B Sanitary Servicing Background Information

Appendix C Downstream Sanitary Analysis

Appendix D Water Servicing Background Information

Appendix E Storm Servicing Background Information

Appendix F Stormwater Management Background Information

Appendix G Background Utility Information

Appendix H Background Tree Assessment Information

Appendix I Development Cost Calculations

Appendix J Additional Correspondence

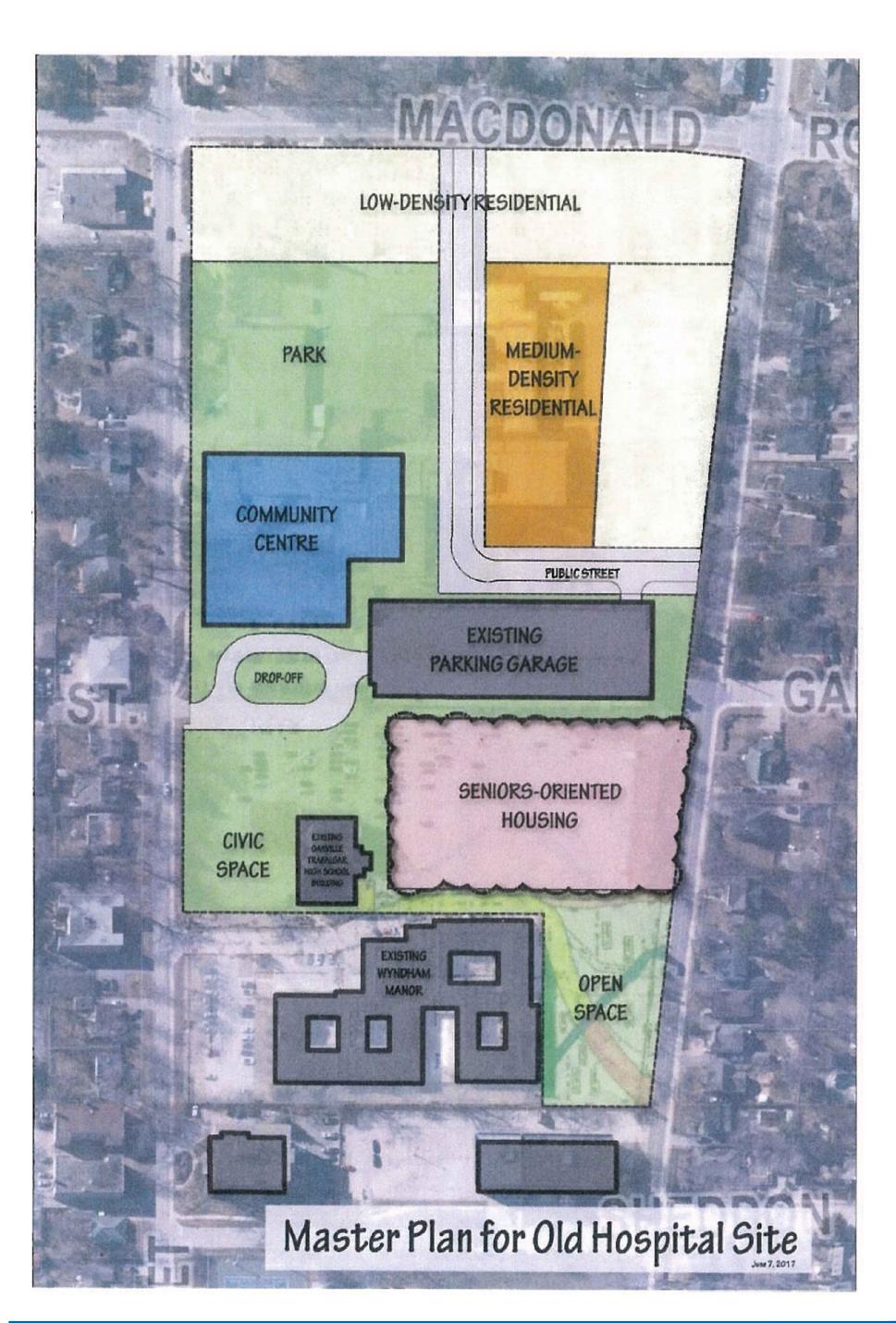
Introduction and Background

GHD Limited (GHD) has been retained by the Town of Oakville to prepare a Functional Servicing Report (FSR) for the redevelopment of the former Oakville Trafalgar Memorial Hospital Site (OTMH) located at 327 Reynold Street (the Site), in the Town of Oakville (the Town).

The objective of this FSR is to assess the serviceability of the Site in terms of grading, sanitary sewers, water distribution system, storm drainage system, stormwater management, utility requirements and impact to existing trees, all based on the Town's proposed redevelopment concept.

The Site is located within the Sixteen Mile Creek watershed and within a mature residential area as shown on the Location Plan in **Figure 1**. It is bound by MacDonald Road to the north, Reynolds Street to the west, Allan Street to the east and the existing/proposed development on the north side of Sheddon Avenue to the south. The Site concurrently consists of the following:

- The former OTMH hospital, medical buildings, nurses residence with associated parking areas, all of which are currently under demolition.
- An above ground parking facility with driveway connections to Allan Street and Reynolds Street planned to remain.
- A long term care facility (Wyndham Manor Extendicare) with parking and driveway access to Reynolds Street.
- Other parking and landscaped areas.


Figure 1 Location Plan

The total Site area is approximately 5.7 ha where the majority of the lands are proposed for redevelopment by the Town as shown on the Development Concept in **Figure 2**. The proposed redevelopment concept includes the following:

- Nineteen low-density residential lots with driveway connections to MacDonald Road and Allan Street.
- A 2-storey Community Centre of 3,900 m² gross floor area with associated parking.
- A subdivision road of 17.0 m right-of-way width with connections to McDonald Road and Allan Street.
- A 0.6 ha park block adjacent to the Community Centre, and a 0.3 ha park block at the southeast corner of the Site.
- Two medium density freehold residential blocks (approx. 2-8 unit townhouse blocks).
- A contemplated senior residence facility with associated parking and driveway connection to Reynolds Street (Note: allowance considered for two possible medium density blocks; each fronting on Reynolds Street and Allan Street).

 The existing above ground parking facility which is to be maintained with removal of the existing driveway to Allan Street and revised north driveway connection to the proposed subdivision road.

□705 Millcree□ Dri□e, Unit 1, Mississa□ga Ontario L5N 5M4 T 1 41□ 213 7121 F 1 41□ 890 8499 E inio□ g□dcanada.com W www.g□d.com

Site Topography and Grading

Existing Conditions

The existing topography across the Site shows the northern portion of the property (north of the Lawson Street and Galt Avenue intersections) generally falling in the southwest direction with approx. 5.0 m of fall to Reynolds Street. For the South Catchment, the topographic survey shows elevations falling in the northwesterly direction for the majority of the property towards Reynolds Street of approximately 1.0 m of fall. A small portion of the landscaped areas (south of Galt Avenue intersection adjacent to Allan Street) fall in the southeasterly direction with minimal fall. Refer to the Existing Conditions Drainage Plan shown in **Figure 3** and the topographic survey provided in **Appendix A**.

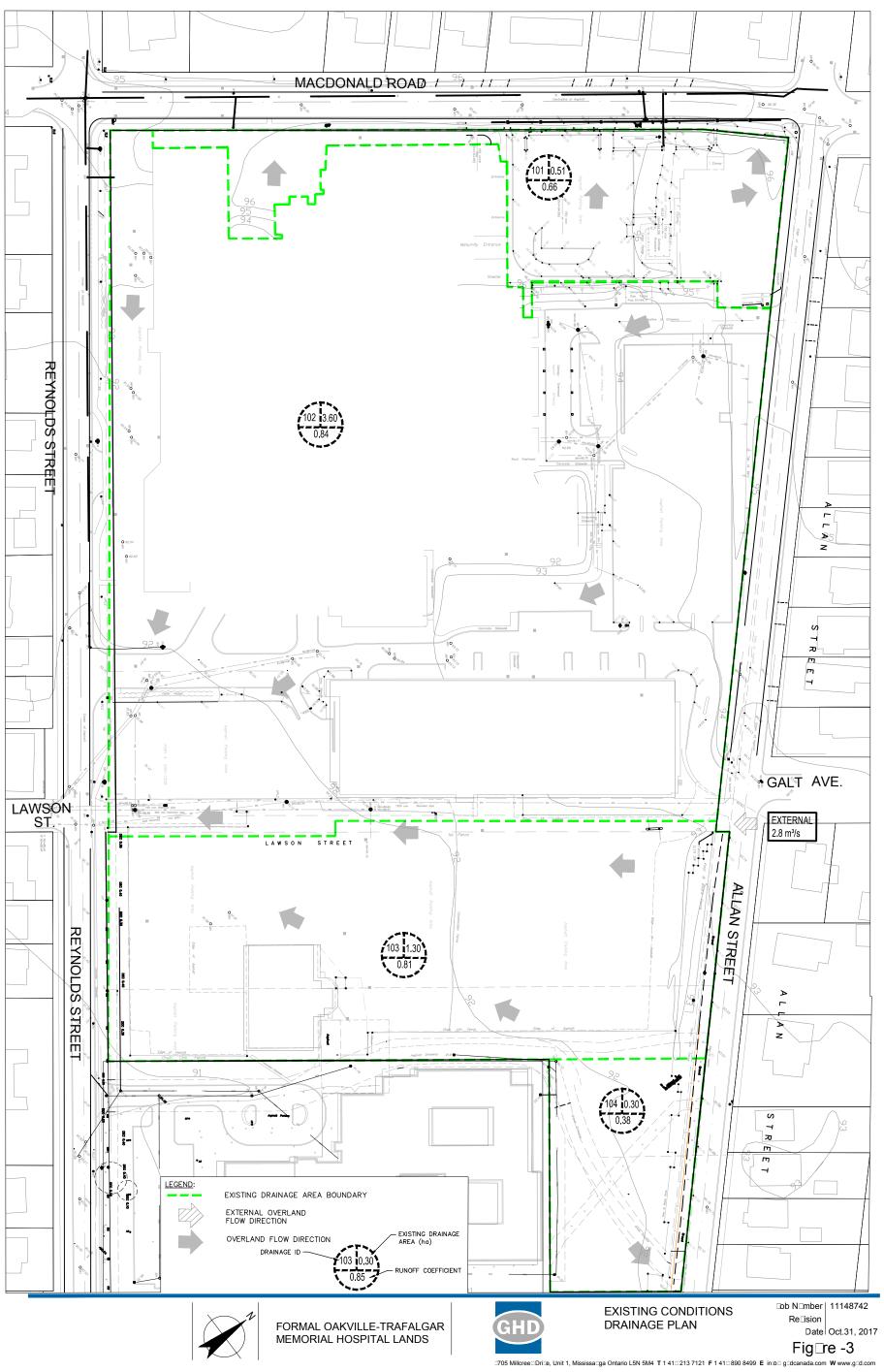
Topographic survey information shows that the previous internal driveway grading design included a low point adjacent to the old entrance to the hospital. Also, some existing boulevard grading along the north and east property lines adjacent to MacDonald Road and Allan Street show reverse sloping boulevards.

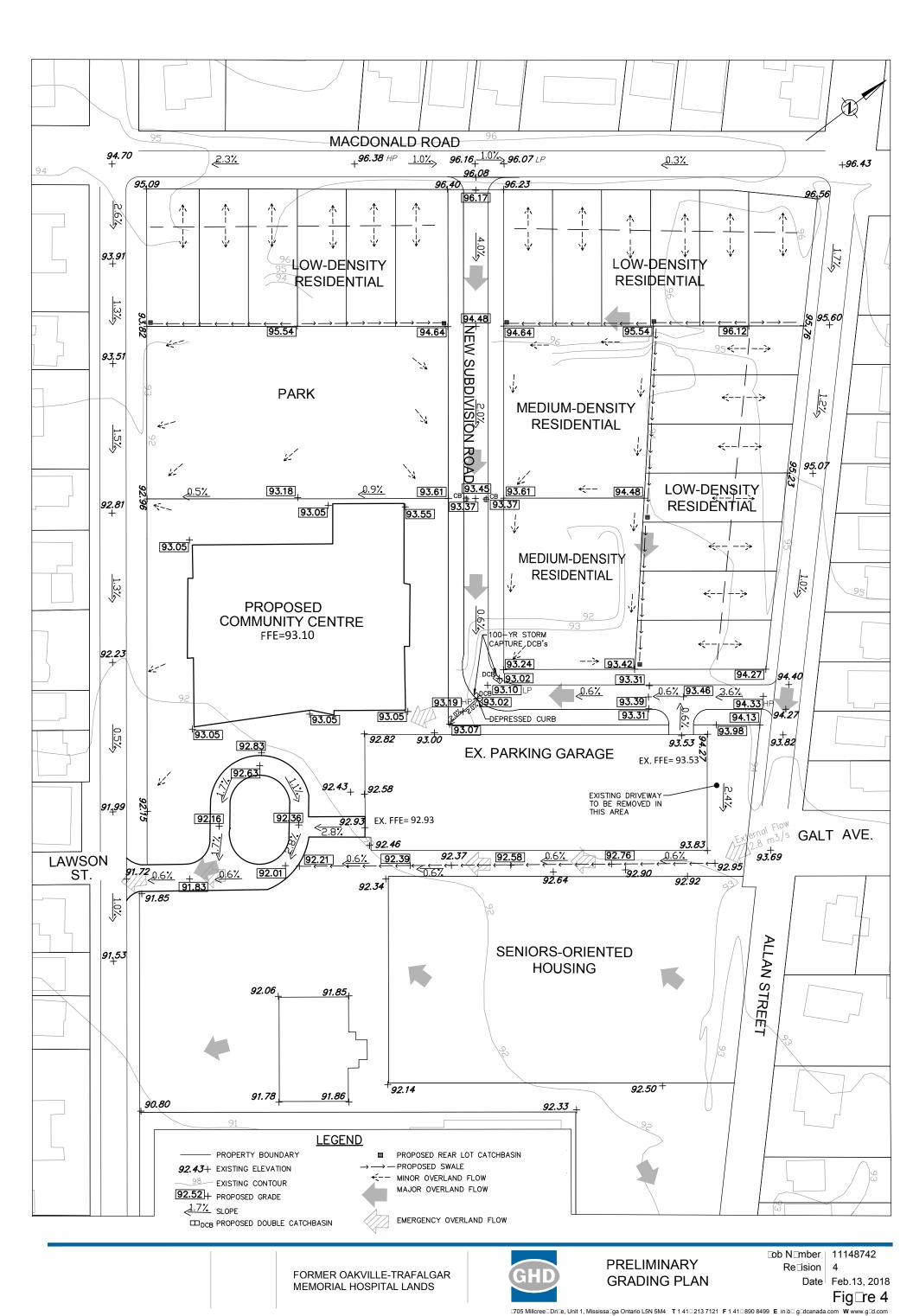
Proposed Conditions

Based on the Town's development concept, the proposed grading design for the Site is shown on the Preliminary Grading Plan on **Figure 4** which can be summarized as follows:

- Split drainage for the low-density residential lots with rear yard swales/catchbasins for self-contained drainage.
- A lot point along the new subdivision road located at the bend adjacent to the Community Centre site.
- Park drainage via overland flow and swales generally in the southwesterly direction to Reynolds Street.
- Community centre drainage in the southwesterly direction to Reynolds Street.
- Emergency overland flow accommodated between the Community Centre and the existing parking facility from the new subdivision road low point.
- Medium density residential blocks draining in the westerly direction toward the new subdivision road for self-contained drainage.
- Emergency overland flow swale along the south side of the parking garage flowing in westerly direction for emergency overland from external areas.
- Drainage within the southern portion of the Site generally matching existing drainage patterns to Reynolds Street and Allan Street.

The proposed drainage design is further described in the Storm Drainage section of this Report.


Preliminary Earthworks


Based on the Preliminary Grading Plan shown on **Figure 4**, preliminary earthwork calculations were completed to give a preliminary assessment of the required earthworks for the development. The following conservative assumptions were made for the preliminary earthwork calculations:

- All required building removals in range of 0.5 to 1.0 m depth below the surveyed elevations.
- All required removals of existing parking and driveway areas completed to a depth of 0.5 m below the surveyed elevations.
- Additional stripping depth of 0.3 m across all development areas to reach suitable native material elevation.
- Proposed pre-grade depths of the following:
 - 0.30 m for park/landscaped blocks
 - 0.75 m for the new subdivision road
 - 0.90 m for the low-density residential lots
 - 1.10 m for the medium density residential block
 - 0.5 m for the Community Centre site
 - 0.5 m for the Seniors Facility
- No additional sub-excavation/export of any geotechnically unsuitable or contaminated material.

The preliminary earthwork calculations show approximate removals of 24,000 m³ and rough grading surplus of 3,000 m³ for the northern portion of the Site (north of Lawson Street and Galt Avenue intersections), and removals of 7,000 m³ with a rough grading balance for the southern portion of the Site. Therefore, allowances have been made within the preliminary development cost calculations for the Town located in **Appendix I**.

In speaking to Town staff, the planned demolition for the Site involves filling basement excavations filled with crushed concrete which may require the developer to provide allowances for additional engineered clay fill for overlying house foundations and possibly additional subsurface drainage works. Also all required topsoil is to be imported for all development areas to a minimum depth of 0.3 m.

Sanitary Servicing

Existing Conditions

The Site is located within the Region of Halton's Oakville Southwest WWTP catchment. Record plan and profile drawings and operating maps from the Region of Halton show the following existing municipal sanitary sewers surrounding the Site:

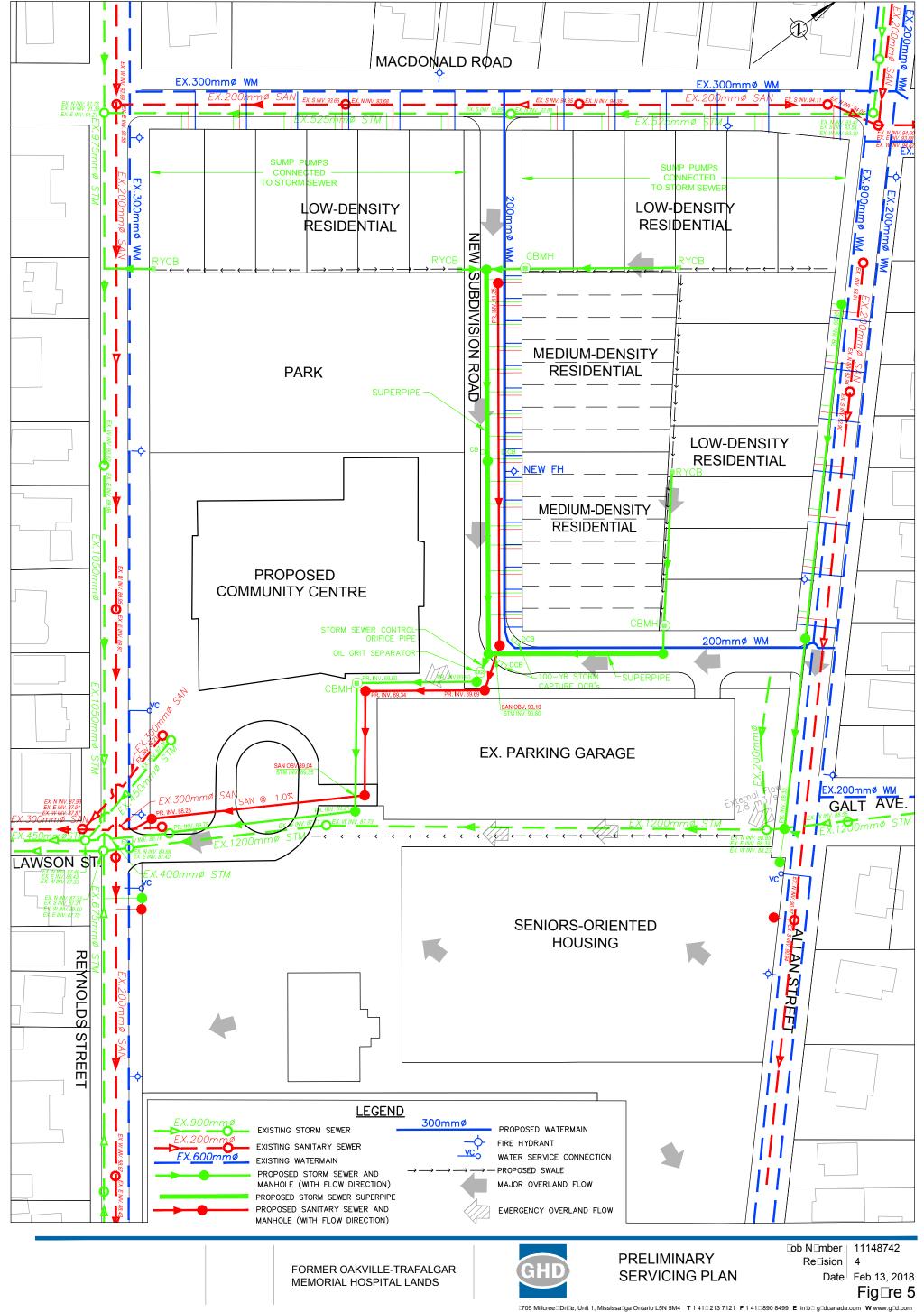
- 200 mm dia. sanitary sewer on MacDonald Road with high point in the middle splitting drainage in the westerly direction to Reynolds Street and easterly direction to Allan Street.
- 200 mm dia. sanitary sewer on Allan Street flowing in the southerly direction.
- 200 mm dia. sanitary sewer on Reynolds Street flowing in the southerly direction.
- 300 mm dia. sanitary sewer on Lawson Street flowing in the westerly direction.

The sanitary sewers along the west side of the Site along Reynolds Street and Lawson Street eventually connect to the existing 450 mm dia. trunk sanitary sewer along Palmer Avenue which then connects to the existing 675 mm dia. sanitary on Dunn Street.

Through additional review of background drawings of the Site and topographic surveys, there are existing sanitary services within the property that connect to the Lawson Street sanitary sewer within the north portion of the Site. Therefore, it is believed that all the lands from the subject site are conveyed to the trunk sanitary sewer on Dunn Street. Please refer to **Figure 5** for the Existing Conditions Sanitary Drainage Plan.

After reviewing existing demands from the current development and using the Region of Halton design criteria, the following demands were calculated for the existing conditions from the Site:

15.4 L/s peak sanitary flow to Lawson Street sanitary sewer.


The sanitary flow calculations can be found in **Appendix C**.

Proposed Conditions

Base on the Town's development concept, the following sanitary servicing requirements were identified and are summarized on the Preliminary Servicing Plan on **Figure 7**:

- Individual sanitary service connections to the existing MacDonald Road and Allan Street sewers for each low-density residential unit.
- Individual sanitary service connections for the two medium density freehold residential blocks assuming basement requirements.
- Separate sanitary service for the Community Centre connected <u>direct</u> to the existing municipal sanitary system (separate from the subdivision works).
- New sanitary service to the Seniors Facility (with allowance for separate sanitary services for two possible medium density blocks; each fronting on Reynolds Street and Allan Street).

At the time of preparing this report, it was assumed that sanitary servicing for the park blocks and landscaped areas would not be required.

Plot Date: 13 Febr⊡ar□2018 - □27 PM Plotted b□ Serge□Y□n□ae□

In order to adequately service, the two medium density residential blocks along the new subdivision road, the following design scenarios were carefully evaluated:

- Direct flows along the new subdivision road in the southerly and easterly directions to the existing **Allan Street** sanitary sewer.
- Direct flows along the new subdivision road in the northerly direction then in the westerly
 direction through an easement within the park block to the existing Reynolds Street sanitary
 sewer.
- Direct flows along the new subdivision road in the southerly direction then in the southwesterly
 direction through an easement in the Community Centre site to the existing Lawson Street
 sanitary sewer.

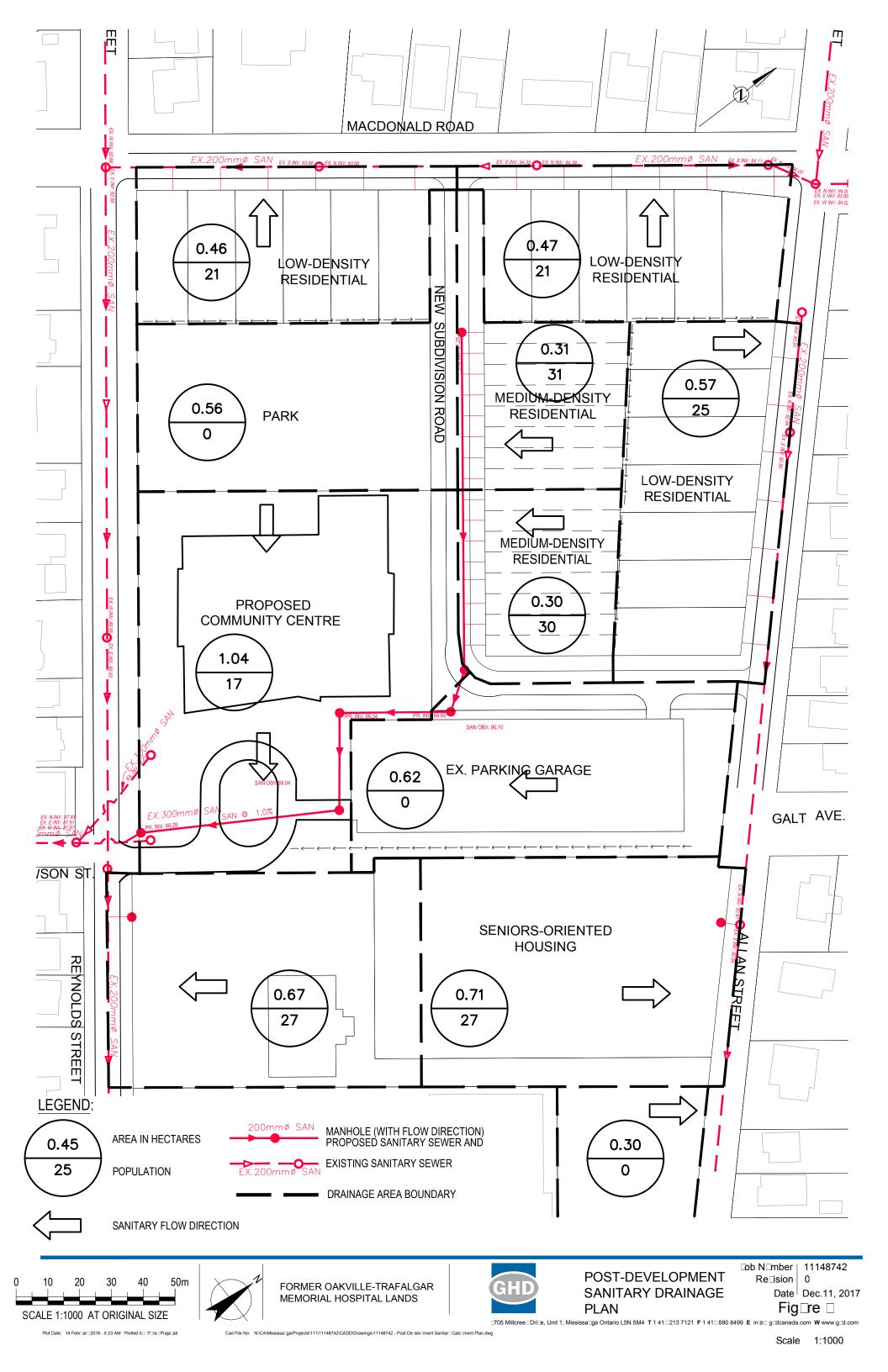
After the review of the above design scenarios, the following was determined:

- Draining both the medium density blocks to either the Allan Street or Reynolds Street sanitary sewers would be redirecting existing condition flows from the Lawson Street sanitary sewer and require additional capacity approval from the Region.
- The elevation of the existing Allan Street sanitary sewer was too high to provide gravity drainage and frost protection for the sanitary sewer along the new subdivision road.
- The elevation of the existing Reynolds Street sanitary sewer may provide enough depth within
 the subdivision road to adequately drain basements from the medium density block to the north
 (assuming steps to the ground floor), however, would not drain basements from the block to the
 south.
- Based on the grading design of the new subdivision road and the elevation of the
 Lawson Street sanitary sewer, adequate depth could be provided to provide gravity drainage for
 future basements within the medium density blocks and keep the demands within the
 Lawson Street sanitary sewer system.

After reviewing the findings and considering the need for the medium density freehold individual connections, it was determined that a new municipal sanitary sewer located within the new subdivision road, through a future easement between Community Centre and the existing parking facility, outletting to the Lawson Street connection would be the best solution.

Therefore, the preliminary sanitary servicing strategy can be shown on the Preliminary Servicing Plan on **Figure 6** and summarized as follows:

- Individual 125 mm dia. sanitary service connections for the low-density residential units to the MacDonald Road and Allan Street sanitary sewers (Note: based on the shallow elevation of the municipal sanitary sewers, proposed basement elevations must be carefully reviewed for adequate gravity drainage).
- Individual 125 mm dia. sanitary service connections for the medium-density freehold residential blocks which will connect to proposed 200 mm dia sanitary sewer on the new subdivision road, conveyed through the easement between the Community Centre and existing parking garage to the Lawson Street connection.


- A separate 200 mm dia. sanitary service to the Community Centre connected <u>direct</u> to the existing Lawson Street sanitary sewer through the existing sanitary service.
- A new minimum 150 mm dia. sanitary service to the Seniors Facility connected to the Reynolds Street sanitary sewer, and allowances for two medium density blocks with separate new sanitary services each connected to the Reynolds Street and Allan Street sanitary sewers.

After reviewing proposed demands and using the Region of Halton design criteria, the following demands were calculated to compare against the Lawson Street sanitary sewer systems:

2.47 L/s peak sanitary flow to Lawson Street sanitary sewer.

Proposed demand along MacDonald Road, Allan Street and Reynolds Street sanitary sewer systems are:

- 0.97 L/s peak sanitary flow to MacDonald Road sanitary sewer.
- 2.19 L/s peak sanitary flow to Allan Street sanitary sewer.
- 1.42 L/s peak sanitary flow to Reynolds Street sanitary sewer.

Therefore, based on the completed sanitary calculations, an overall theoretical post-development decrease of 8.35 L/s is shown to the Lawson Street sanitary sewers respectively. The sanitary flow calculations can be found in **Appendix C**.

After discussions with Region of Halton staff it was confirmed that all post-development increases on the municipal system must be reviewed in terms of the available capacity in the municipal sanitary system. This includes the minor additional load from the low-density residential units on the MacDonald Road and Allan Street sanitary sewers. GHD staff then initiated a downstream sanitary sewer capacity analysis to review the possible impact on the municipal system.

Downstream Sanitary Capacity Analysis

In order to complete the downstream sanitary capacity analysis, spreadsheets were set up with separate data for each of the four legs of the municipal sanitary sewer system. Using Region of Halton record drawings, the pipe diameters and slopes were input into the spreadsheets in between each manhole location. The Region design criteria were utilized (July 2017) to determine the flows, population and infiltration rates. GHD also completed a site visit in January 2018 to confirm existing developments for the analysis. Each analysis incorporated external flows and terminated at the 450 mm dia. trunk sewer connection point as confirmed with Region staff.

The findings from the analysis showed that all the post-development flows were well below the available capacity of the sewer, where the used capacity at the most critical point summarized as follows in **Table 1**:

Table 1 Downstream Sanitary Sewer Analysis Results

Leg	Description	Used Capacity (%)					
Oakville	Southwest WWTP Catchment:						
1	Lawson Street to Trafalgar Road	12%					
2	MacDonald Road to Reynolds Street	28%					
Oakville Southeast WWTP Catchment:							
3	Allan Street to Palmer Avenue	16%					
4	MacDonald Road to Douglas Avenue	31%					

Refer to **Appendix C** for the downstream sanitary capacity calculations.

Water Distribution System

Existing Conditions

The Site is located within the Region of Halton's Pressure Zone OB1. Record plan and profile drawings and operating maps provided by Region of Halton show the following existing watermains surrounding the Site:

- 300 mm dia. watermain on Macdonald Road.
- 200 mm dia. watermain on Allan Street.
- 300 mm dia. watermain on Reynolds Street.
- 900 mm dia. transmission main on Allan Street.

Through discussions with Region of Halton staff, it was confirmed that the existing 900 mm dia. transmission main on Allan Street is not be considered for future development connections in this area.

Hydrant Flow Tests

In order to verify existing flows and pressures of the surrounding water distribution system, hydrant flow tests were conducted at the following locations:

- Hydrants #18481 and #7739 located on Reynolds Street north of Lawson Street.
- Hydrants #7782 and #7781 located on Allan Street south of MacDonald Road.

The hydrant flow tests were performed by Corix Water Services on November 23, 2017 with good results showing static pressures in the range of 60 psi (415 kPa) and substantial flows with both ports open in the range of 1500 USGPM (95 L/s) with minimal pressure loss. Refer to **Appendix D** for the hydrant flow test results.

Proposed Conditions

Based on the Town's development concept, the water servicing requirements were identified:

- Individual water service connections to the existing MacDonald Road and Allan Street watermains for each low-density residential unit.
- Individual water service connections to service the two medium density freehold residential blocks from the new municipal watermain along the new subdivision road.
- Separate water (fire and domestic) service for the Community Centre connected <u>direct</u> to the existing municipal watermain (separate from the subdivision works).
- Maintain water servicing to the existing parking facility (if required).
- New water service to the Seniors Facility.

At the time of preparing this report, it was assumed that water servicing for the park blocks and landscaped areas would not be required.

The proposed domestic water servicing demands were calculated using Region of Halton design criteria for each development type where the results are summarized in **Table 2** below:

Table 2 Proposed Domestic Water Demands

Area (ha)		Population	Average	Day	Maximu	ım Day	Peak Hour	
	, ,	•	Flows (L/d)	Flows (L/s)	Flows (L/d)	Flows (L/s)	Flows (L/d)	Flows (L/s)
Residential-Houses	1.5	83	22,688	0.3	51,047	0.6	90,750	1.1
Medium DensityTownhouses	0.61	82	22,646	0.3	50,954	0.6	90,585	1.0
Community Centre	1	44	12,100	0.1	27,225	0.3	27,225	0.3
Senior Resd. (Medium Density)	1.38	186	51,233	0.6	115,273	1.3	115,273	1.3

To review the worst case fire flow demand scenario, the required fire protection for the proposed Community Centre was calculated using the Fire Underwriters Survey and the following assumptions:

- Two storeys with total GFA of 4,900 m², (Ground Floor 3,800 m², Second Floor 1,100 m²).
- Sprinkler protection is provided.
- Non-combustible construction.
- Vertical openings and exterior vertical communications are properly protected.
- Closest spacing to adjacent building (parking garage) is 9 m.

Based on the above assumptions the required fire flow for the Community Centre is calculated to be in the range of 150 L/s within minimum required pressure of 20 psi (140 kPa). Please refer to **Appendix D** for the fire flow calculations.

After reviewing the proposed domestic demands and worst case fire flow protection requirements of 150.3 L/s (maximum day demand plus fire flow), against the hydrant flow test results, it is believed that the existing municipal system has sufficient capacity to convey the required 150.3 L/s while maintaining the required residual pressure of 20 psi (140 kPa).

Therefore, the preliminary water servicing strategy can be shown on the Preliminary Servicing Plan on **Figure 5** and summarized as follows:

- Individual 25 mm dia. water service connections for the low-density residential units to the MacDonald Road and Allan Street watermains.
- A new 200 mm dia. watermain along the new subdivision road connected to the MacDonald Road and Allan Street.
- Individual 25 mm dia. water service connections medium density freehold residential blocks connected to the new 200 mm dia. watermain in the new subdivision road.
- A separate 200 mm dia. water service for the Community Centre connected <u>direct</u> to the existing 300 mm dia. watermain on Reynolds Street.
- A new 200 mm dia. water service to the Seniors Facility connected to the existing 300 mm dia.
 watermain on Reynolds Street and allowance for two possible medium density blocks with separate water services connected to the Reynolds Street and Allan Street watermain.

5. Storm Drainage

Existing Conditions

The Site is located within the Sixteen Mile Creek watershed, where record plan and profile drawings and GIS information provided by the Town of Oakville show the following existing surrounding municipal storm sewers:

- 525 mm dia. storm sewer on MacDonald Road in the westerly direction to Reynolds Street.
- 975 mm dia. to 1,050 mm dia. storm sewers on Reynolds Street flowing in the southerly and 675 mm dia. northerly directions to the Lawson Street 1,200 mm dia. storm sewer which flows in the westerly direction.
- No existing storm sewer along Allan Street in the vicinity of the Site.
- 450 mm dia. storm sewer on Lawson Street flowing in the westerly direction.
- 1,200 mm dia. trunk storm sewer within an easement along the south side of the existing parking garage flowing in the westerly direction through Lawson Street.

Through additional review of background drawings of the Site and topographic surveys, it was confirmed that there are two existing private storm sewer connection at the Reynolds Street and Lawson Street intersection that connect to the existing 450 mm dia. storm sewer along Lawson Street.

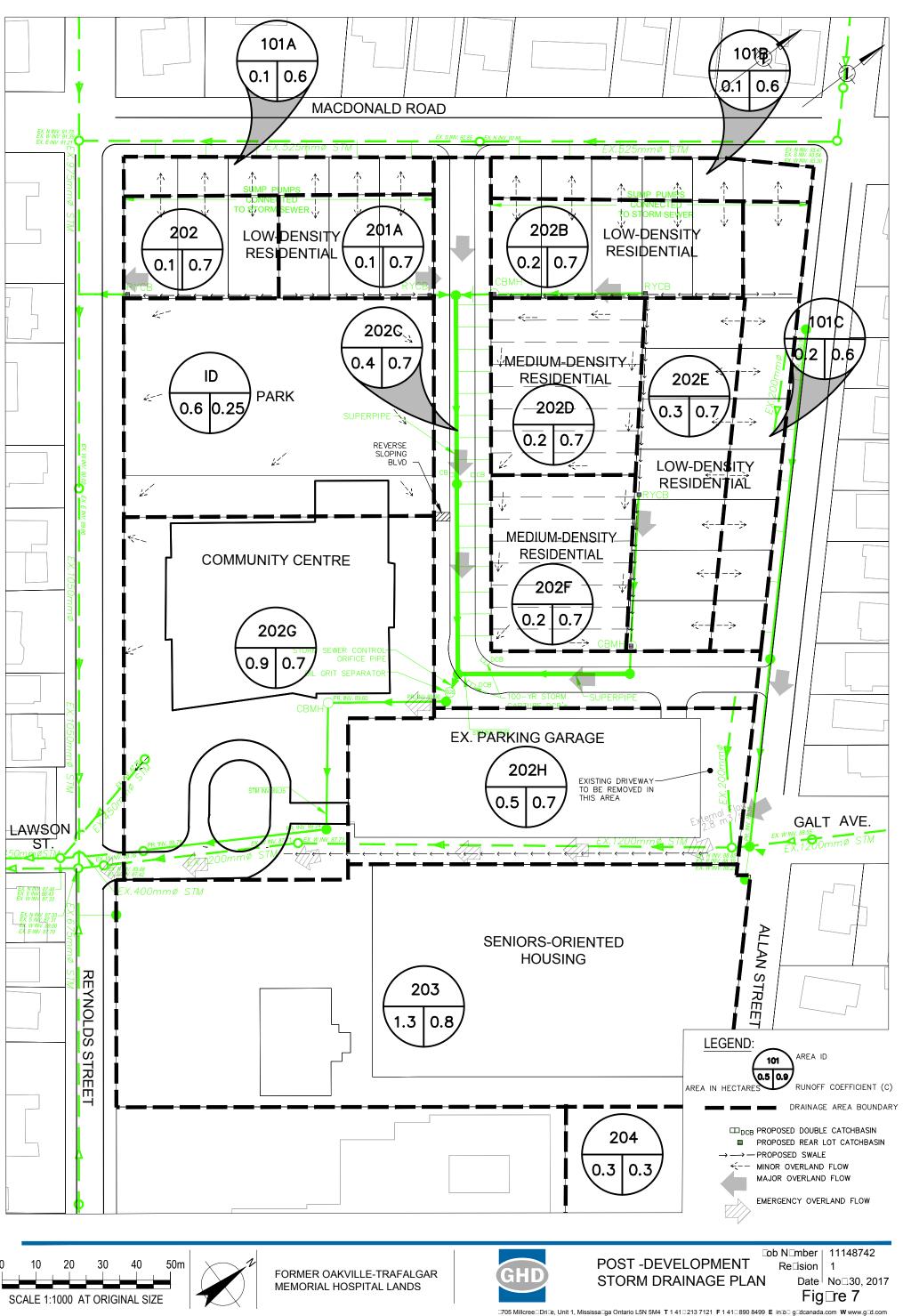
External Drainage

Through discussions with Town staff is currently undertaking an update to the Town's Master Drainage Plan with their consultant (Wood PLC). As part of this undertaking, it was identified that there is a large external drainage area of approx. 5.0 ha to the north and east of the Site that needed to be addressed. Based on the currently modelling it shows a major overland flow in the range of 2.8 m³/s during a Regional Storm event possibly entering the Site. Therefore, based on the proposed grading design this emergency overland flow route would be located on the south side of the existing parking garage flowing in the westerly direction, outletting at the Reynolds Street and Lawson Street intersection. GHD staff utilized the 2.8 m³/s flow rate provided by Wood PLC, and based on existing topography along the south side of the parking garage conservatively assumed an available width of 9.0 m and 0.6 percent slope for the emergency swale. The emergency swale design requirements are noted on the Preliminary Grading Plan on **Figure 4** and the cross-section details are provided in **Appendix E**.

Proposed Conditions

Further to the proposed grading details outlined within the Grading Section of this report, the following minor and major storm drainage requirements were identified and shown on the Preliminary Servicing Plan on **Figure 5**:

- Individual storm connections for the low-density residential lots to the existing MacDonald Road and Allan Street storm sewers (where possible).
- Rear yard catchbasins for the low-density residential lots with 100-year capture design.



- Storm sewer design within the new subdivision road to capture and convey the 100-year storm event.
- Proposed 300 mm dia. Storm sewer on Allan Street for foundation drain collection which will connect to the existing 1,200 mm dia. trunk sewer located at Allan Street and Galt Avenue.
- Individual storm connections to the two medium density freehold blocks connecting (assuming basement requirements) to the new storm sewer in the new subdivision road.
- Separate storm service connection for the Community Centre (and park block) connect <u>direct</u> to the existing storm sewer system on Lawson Street (separate from the subdivision works).
- New storm service for the Seniors Facility direct to the existing storm sewer system on Lawson Street and allowance for separate storm service for a possible medium density block connected to the existing 1,200 mm dia. trunk sewer on the south side of the existing parking garage.
- Emergency overland flow route from the low point at the bend in the new subdivision road between the Community Centre and existing parking facility flowing in westerly direction to Reynolds Street.
- Emergency overland flow route across the south side of the existing parking facility flowing in the westerly direction to Reynolds Street.
- Landscaped areas drainage via overland flow and swales generally in the easterly direction to Allan Street.

Based on the preliminary grading and servicing design, all of the required minor and major storm requirements can be accommodated with the following points to be noted:

- Community Centre and corresponding park storm system (designed by Town's consultant MTE)
 are to be designed with stormwater management quantity controls to ensure pre-development
 flow rates and capacity of the existing storm service to the Lawson Street sewer are not
 exceeded.
- Subdivision storm sewer system (superpipe) sizing to be confirmed at time of detailed design
 where superpipe design shall not exceed pre-development flow rates nor the capacity of the
 existing storm service connected to the Lawson Street storm sewer.
- Some sump pumps would be required for the individual low-density residential units with basements along MacDonald Road and Allan Street based on the shallow depth (or availability) of the existing storm sewers.
- The emergency overland flow swale required on the south side of the parking garage should be protected with an easement should there be a severance/transfer of land in the area.

The required stormwater management quantity and quality measures are discussed in the next section of the report.

6. Stormwater Management

6.1 Stormwater Quality Control

Based on the Town's development concept and the preliminary storm drainage strategy, the following stormwater (SWM) quality controls are recommended:

- Oil and Grit separator be provided at the storm outlet for the Community Centre (and corresponding park block), the low point within the new sub-division road and Seniors Facility site (or medium density blocks) located to the south.
- Bioswales for landscaped areas.
- Lot level controls for residential units for roof leaders outletting to splash pads, etc.
- Best Management Practices (BMP) and Low Impact Development (LID) measures.

6.2 Stormwater Quantity Control

The Town of Oakville's primary design criteria for the required SWM Quantity controls for redevelopment applications outlines:

 Post-development runoff shall <u>not</u> exceed pre-development runoff for all rainfall events up to and including the 100-year storm event.

Pre-Development Drainage

As shown in the Existing Conditions Drainage Plan in **Figure 3**, there are four main drainage areas with separate outlet locations from the Site. Pre-development runoff rates were calculated for the 2-year, 5-year, 10-year, 25-year, 50-year, and 100-year storm rainfall events for all the catchment areas using the Rational Method and the Town of Oakville storm intensity parameters. The pre-development storm runoff flow rates are summarized in **Table 3** below:

Table 3 Pre-Development Flow Rates

Description	Area (ha)	ID No.	Pre-Development Flow Rates (L/s)						
			2-Year	5-Year	10-Year	25-Year	50-Year	100-Year	
MacDonald/Allan (north)	0.51	101	77.3	107.4	126.7	152.5	171.2	188.8	
Lawson Street	3.60	102	683.5	949.9	1121.0	1348.7	1514.1	1670.0	
Reynolds Street	1.30	103	243.6	338.6	399.6	480.8	539.7	595.3	
Allan Street (south)	0.30	104	27.0	37.5	44.2	53.2	59.7	65.9	

Post-Development Drainage

As shown in the Post-Development Drainage Plan in **Figure 7**, the same four main drainage areas and outlets are generally maintained with the preliminary storm servicing strategy for the Site. Similar to the pre-development runoff calculations, post-development runoff rates were calculated

for the 2-year, 5-year, 10-year, 25-year, 50-year and 100-year storm rainfall events summarized in **Table 4** below:

Table 4 Post-Development Flow Rates

Description	Area (ha)	ID No.	Post-Development Flow Rates (L/s)						
			2-Year	5-Year	10-Year	25-Year	50-Year	100-Year	
MacDonald/Allan (north)	0.43	201	57.4	79.8	94.2	113.3	127.2	140.3	
Lawson Street	3.50	202	525.5	730.3	861.9	1036.9	1164.1	1284.0	
Reynolds Street	1.4	203	226.1	314.2	370.8	446.1	500.8	552.3	
Allan Street (south)	0.30	204	16	22.2	26.2	31.5	35.3	39	

^{*} Discrepancies is Area 202 is due to small portion of 0.1 ha goes to Reynolds Street

Based on the results, it can be concluded that there is a net overall decrease in the amount of post-development runoff from the Site in the range of 7 percent to 41 percent due to the increased perviousness within the proposed redevelopment concept.

In order to ensure pre-development flow rates are not exceeded, the following SWM quantity controls are recommended:

- Rear yard catchbasins for the low-density residential lots with 100-year storm capture design.
- Community Centre and park storm drainage (designed by Town's consultant MTE) where the SWM controls are to ensure pre-development flow rates and the capacity of the existing storm service to Lawson Street sewer are both not exceeded.
- Subdivision storm sewer system (superpipe) to be sized for 100-year storm capture to mitigate
 overland flow through the Community Centre site, and controlled to ensure pre-development
 flow rates and the capacity of the existing storm service to the Lawson Street sewer are not
 exceeded.
- Medium density block storm drainage to be designed uncontrolled in accordance to the allowances within the new subdivision 100-year superpipe design.
- Senior Facility site (or medium density blocks) storm drainage to ensure post-development runoff does not exceed pre-development runoff for all storm events.

Erosion & Sediment Control

Sediment and erosion control measures will need to be implemented to minimize soil erosion and sediment migration to the adjacent lands and surrounding municipal streets, which will include but not be limited to the following:

- Sediment control fence are to be installed prior to commencement of grading works.
- The sediment control fencing shall be installed around all construction areas, and around the perimeter of all temporary topsoil stockpiles.
- Silt fences will be inspected routinely and after storm events. Sediment shall be removed once its depth reaches half of the design depth.
- Silt sacks are to be installed at catchbasins and catchbasin manholes upon completion of servicing.
- Catchbasin buffer controls are to be provided as servicing commences.
- Mud mats will be installed at construction entrance for vehicle tracking control and to prevent the transport of sediment onto the municipal streets.
- Temporary drainage swales are to be created with temporary rock check dams.
- The rock check dams will be placed perpendicular to the flow in the temporary swales to reduce runoff velocities with the accumulation of sedimentation.
- Native grass mixes with topsoil will be used to stabilize the disturbed grassed areas upon grading completion.

8. Utilities

Discussions are ongoing with Hydro One Oakville staff regarding the proposed demand from the redevelopment of the Site. Any external upgrades to the existing hydro or other utilities are to be determined over the course of the application.

A street light design shall be prepared for the new subdivision road which shall include poles with utility cabinets and fixtures with LED lamps per the Town of Oakville standards. Also, a lighting assessment shall also apply to MacDonald Road and Allan Street to determine the need for any additional lighting to meet current photometric requirements.

Tree Assessment

As part of the development application process within the Town of Oakville, all existing trees must be accurately assessed and reviewed in in terms of their condition and possible retention through the design. After the review of record drawings, topographic surveys, GIS information, background arborist reports, and site visits completed by GHD staff, the location and type of each tree were recorded and mapped. Based on the preliminary grading and servicing design completed by GHD, each tree was then reviewed and assessed by certified ISA Ontario Arborist J-P Fleras, with the findings shown on the figures located in **Appendix E**.

Conclusions 10.

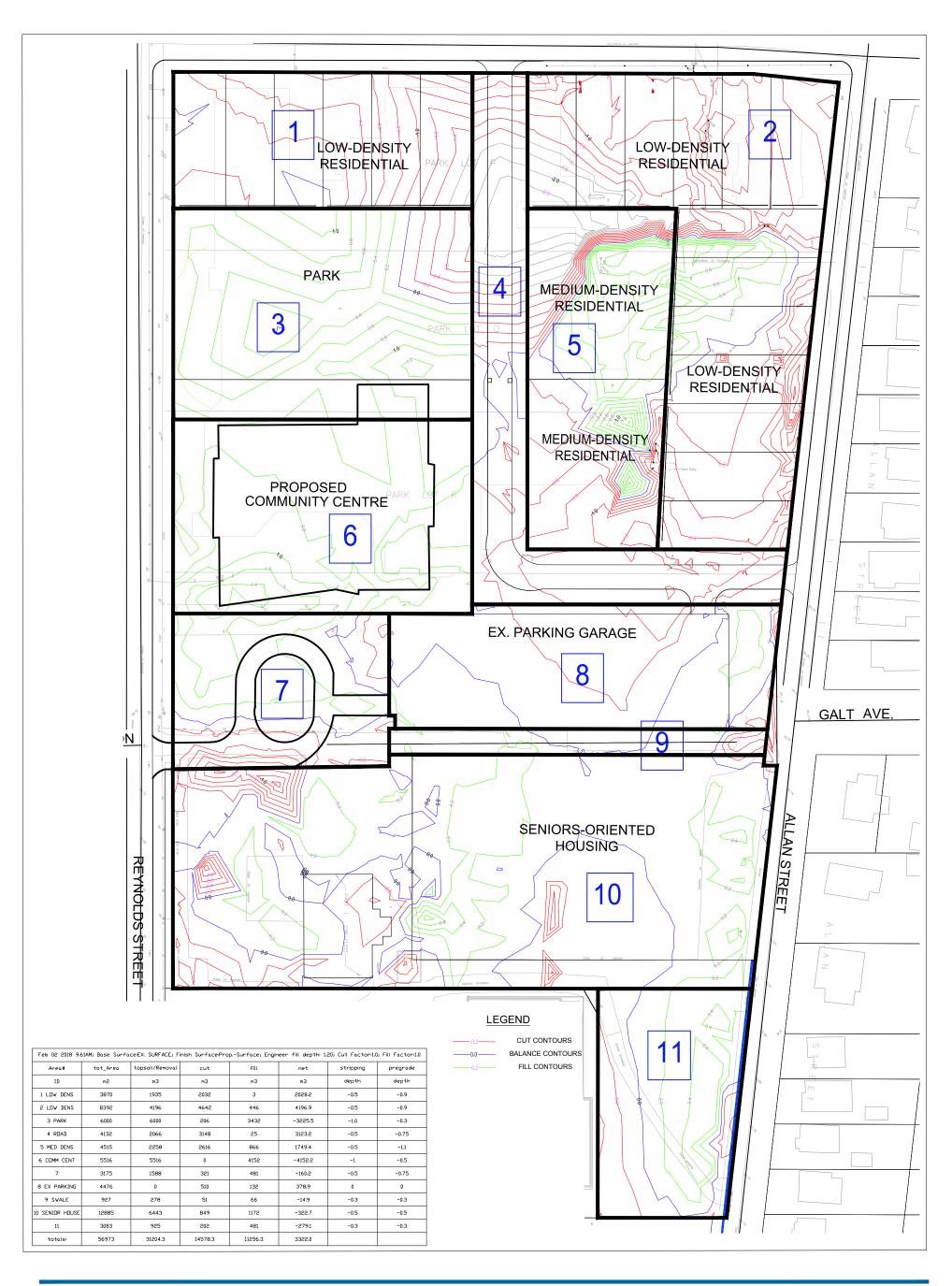
Based on the findings of this report, we believe the proposed development can be supported without negative impact to the surrounding existing developments. The key conclusions of this report can be summarized as follows:

- The proposed grading design can generally meet the existing topography of the subject lands and can be accommodated without any negative impact to the surrounding properties.
- The proposed grading design will require reconstruction of the existing boulevards along MacDonald Road and Allan Street including road improvements in order to meet the Town of Oakville's urban design standards.
- The proposed sanitary design can be adequately accommodated to the existing sanitary system from a capacity perspective and without any external improvements.
- The proposed water distribution design can be accommodated with the proposed connections to the existing watermains surrounding the property for adequate flow and pressure requirements without any external improvements.
- The proposed storm sewer design can be accommodated with the proposed storm connections to the existing storm sewers.
- Basement designs for the individual low-density residential units along MacDonald Road and Allan Street are to be carefully coordinated with the shallow municipal storm and sanitary sewers for gravity and/or sump pump servicing.
- Emergency overland flow from possible external drainage from the Allan Street and Galt Avenue intersection in the range of 2.8 m³/s can be accommodated through a grassed swale within a 9 m wide easement along the south side of the parking garage to Reynolds Street.
- Emergency overland flow from possible spill from the new subdivision road must be provided between the Community Centre and existing parking structure within the 9 m width available and is to be coordinated with the Community Centre site plan grading design.
- All post-development storm runoff can meet pre-development rates with the recommended 100-year storm capture and control measures outlined in this report.

Stormwater quality objective can be met through the use of oil grit separators, bioswales, lot level controls, BMP's and LID's.

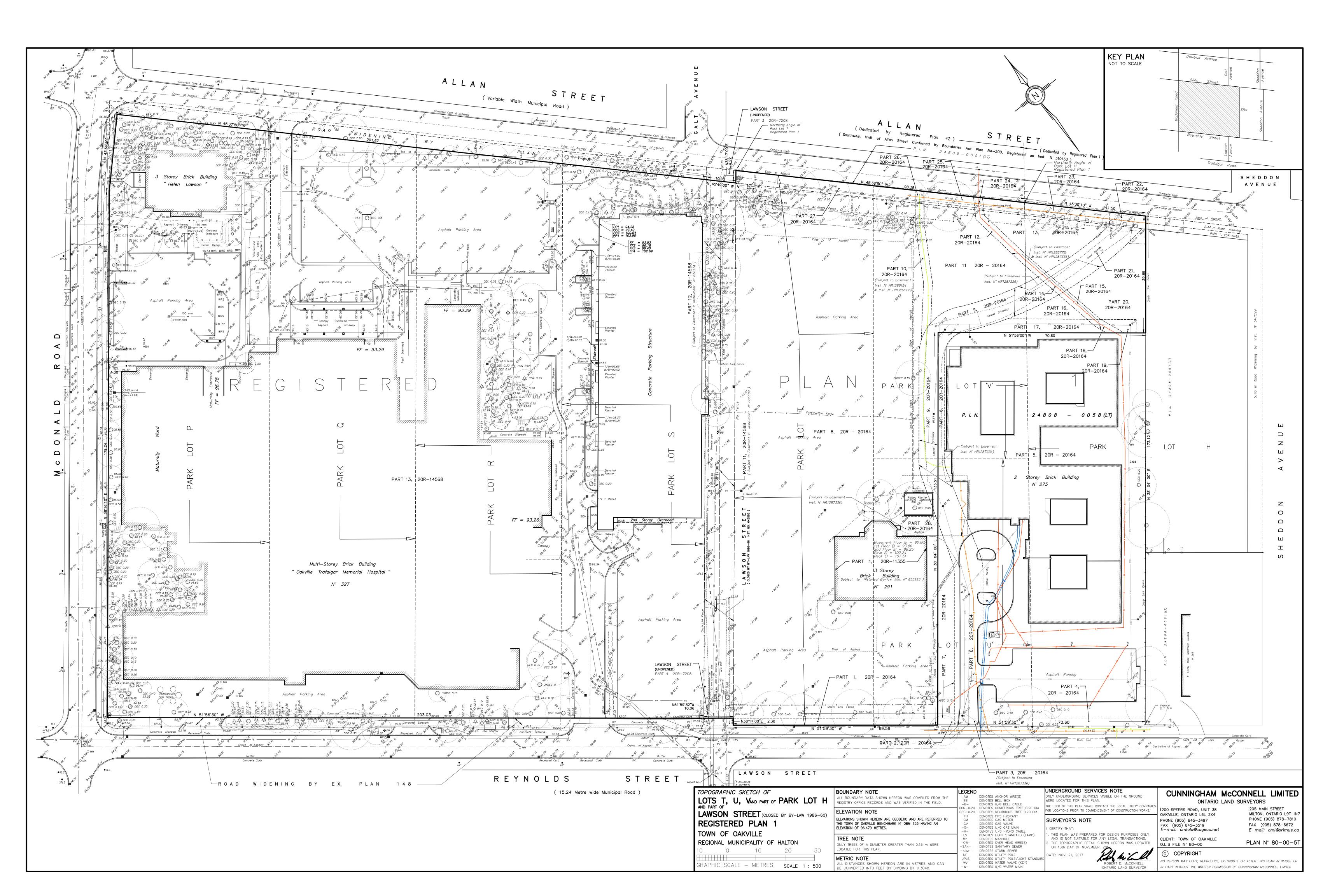
All of Which is Respectfully Submitted,

GHD


Muhammad Afzal Paracha,

Project Engineer

Scott W. Passmore, P. Eng.


Project Director

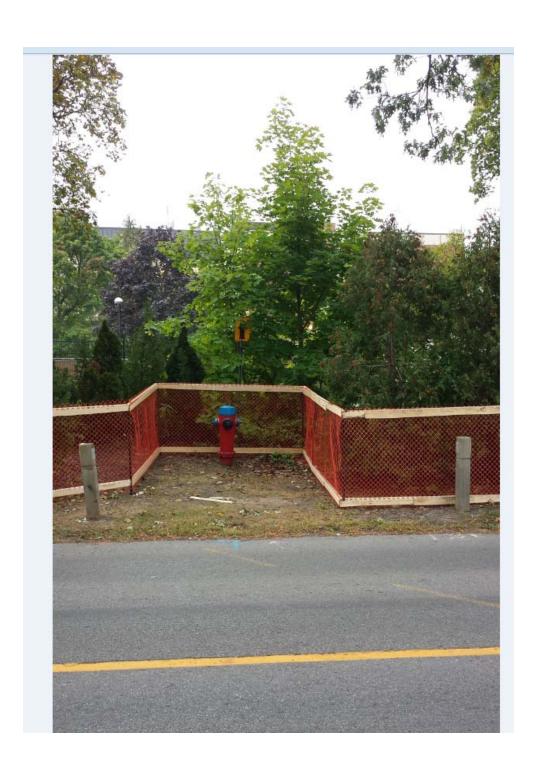
Appendix A Grading Background Information	
GHD Functional Servicing Report, Former Oakville Trafalgar Memorial Hospital Lands 11148742 (1)	

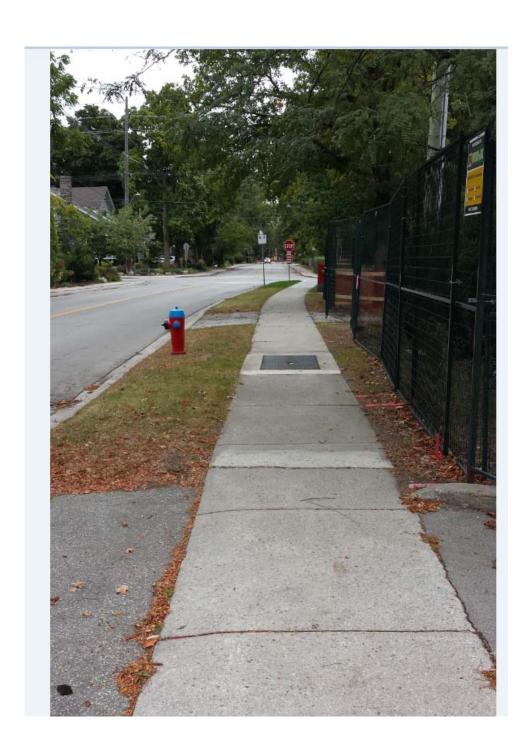
PRELIMINARY EARTHWORKS □ob N□mber | 11148742 Re⊡sion 1

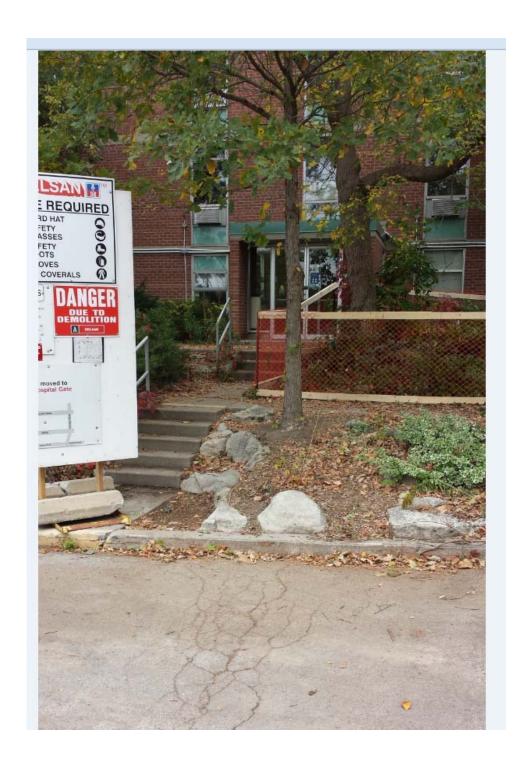
Date No 30, 2017 Fig re EW

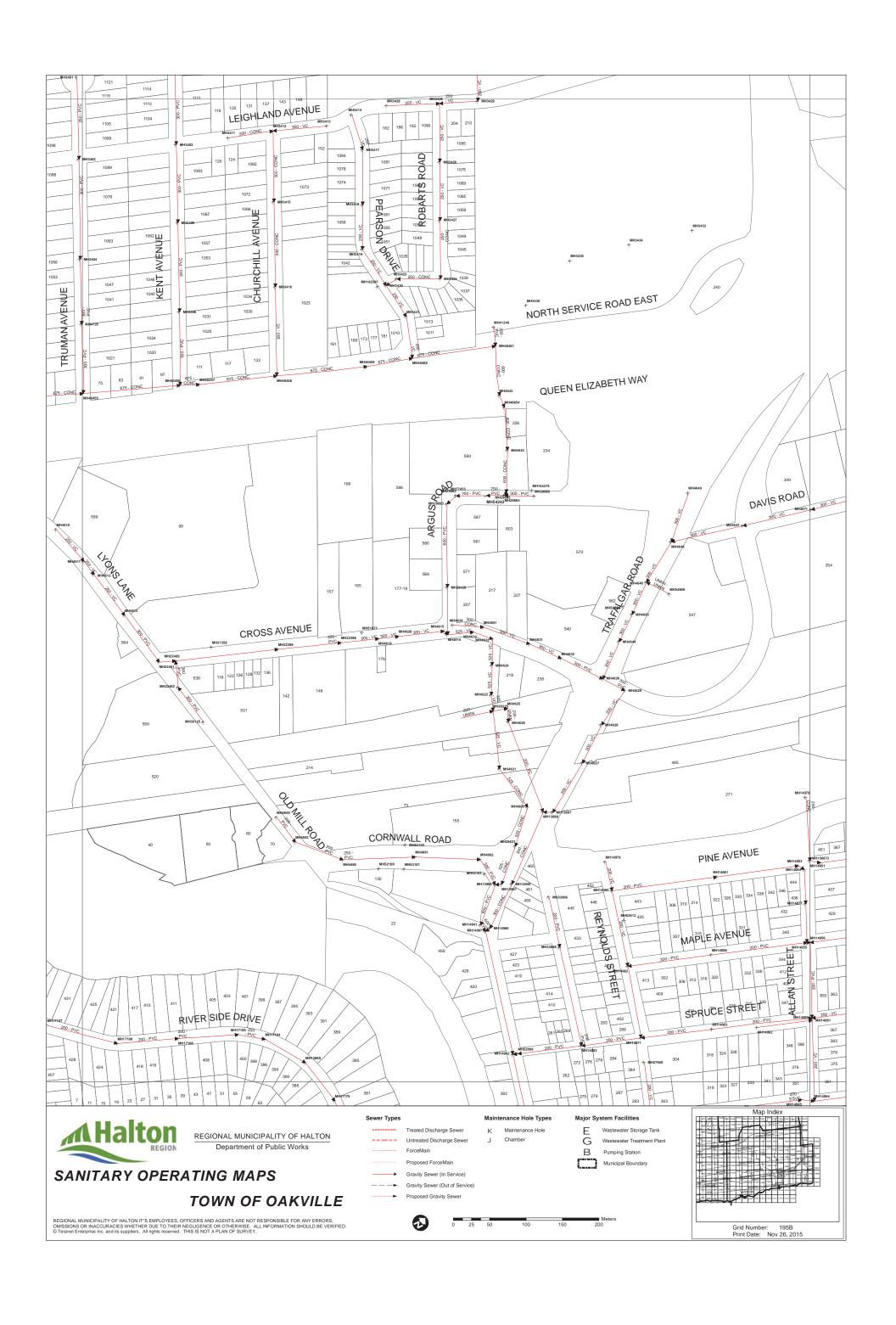
Site Photos

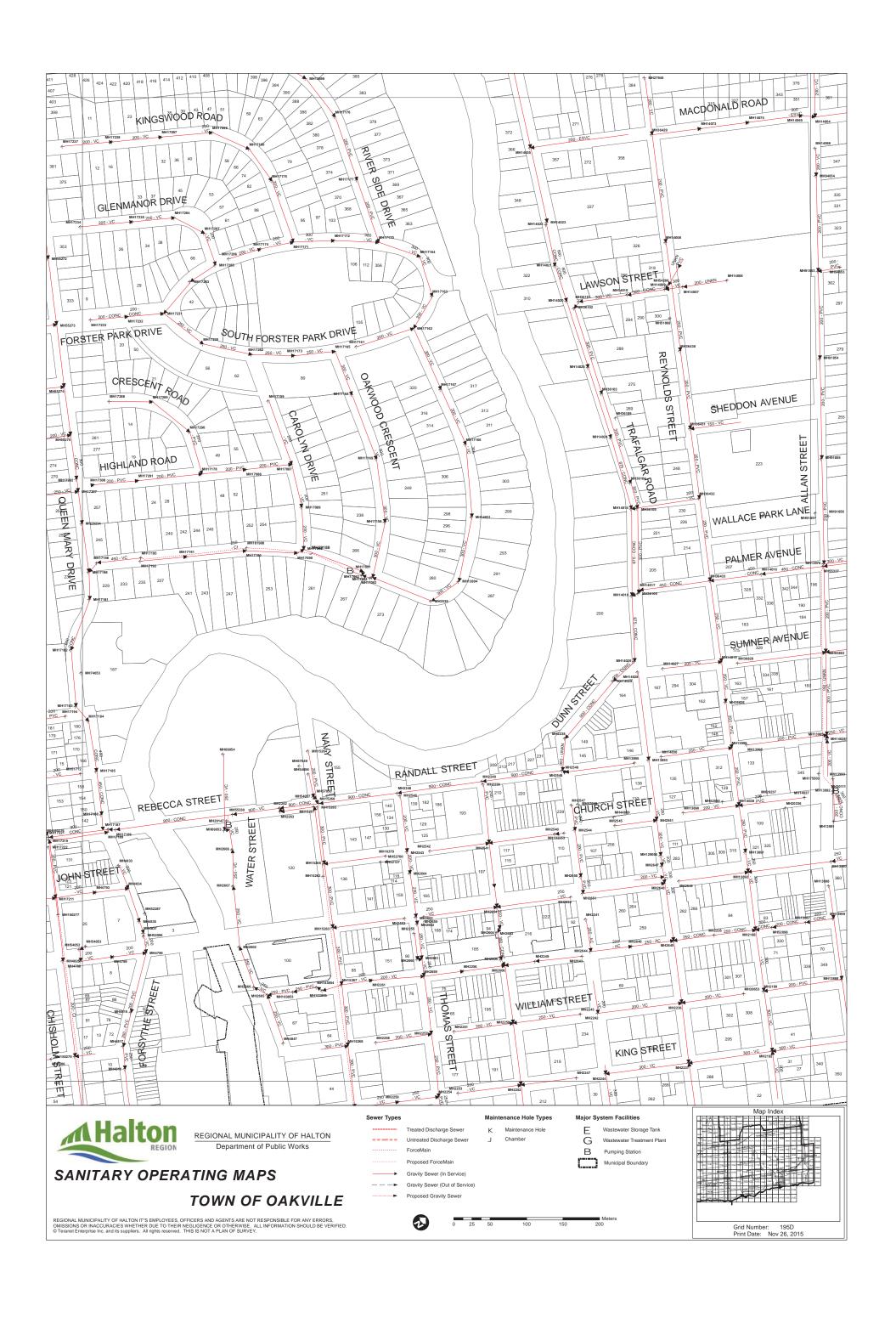










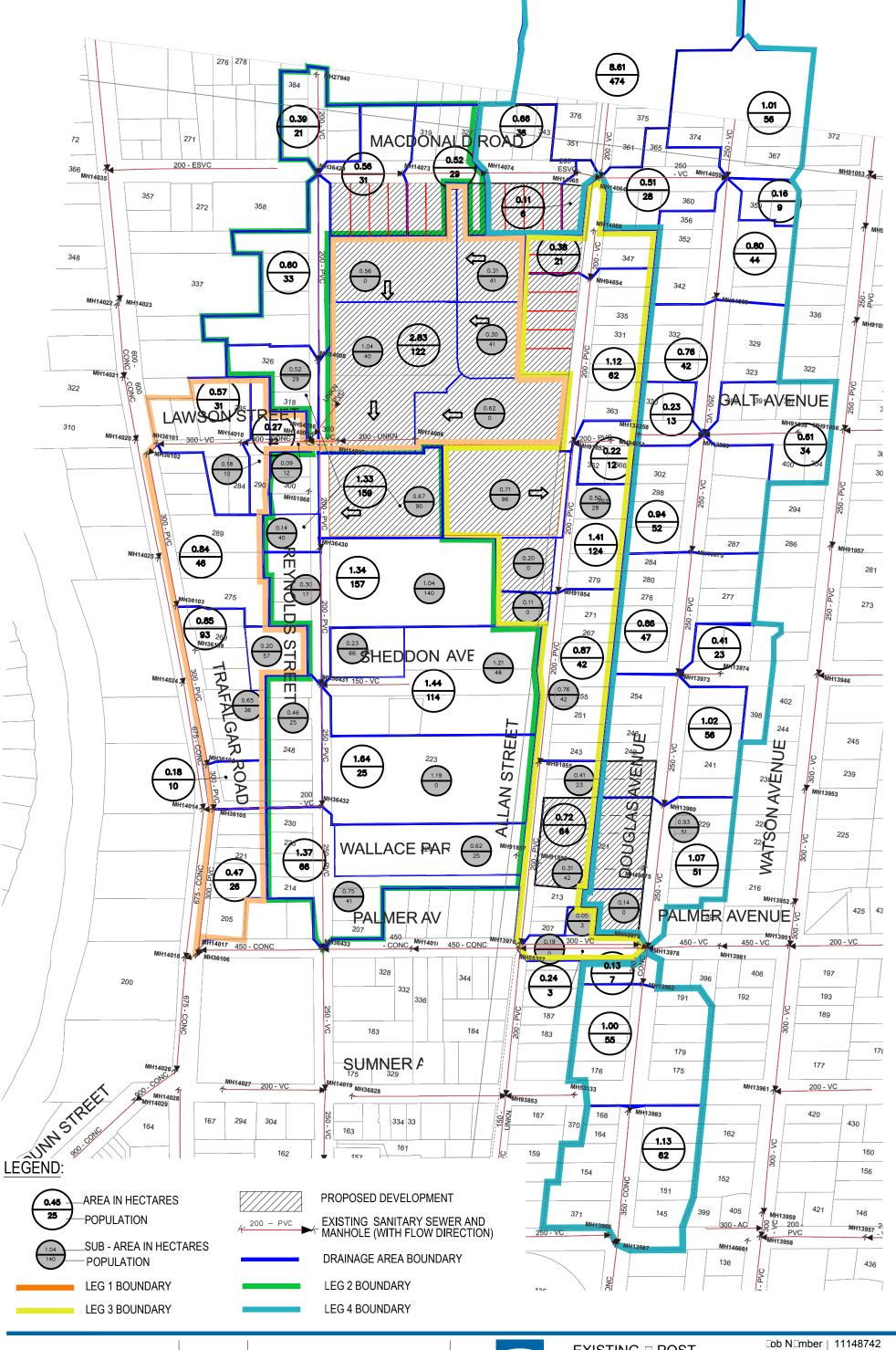


Appendix B Sanitary Servicing Background Information
GHD Functional Servicing Report, Former Oakville Trafalgar Memorial Hospital Lands 11148742 (1)

Project:	OTMH Site			
Project No:	11148742			CHD.
Date:	30-Nov-17			GITTE
OTMH Site - Existi	ng Sanitary Flow			
Site Area =			5.7	ha
Total Beds as Per (Online Records			beds
		Water Design Manual, 2017) =		
Population 4 person		,	1468	
Peaking Factor (co			2.95	
Infiltration =			0.000286	m³/ha/s
			0.0016302	
				L/s
Average Sewage F	low =		0.00001270	m³/bed/s
			0.005	m3/s
			5	L/s
Average Sewage F	low * Average Peak Flow		13.7	L/s
Peak + Infiltration	Flow =		15.4	L/s
Total Flow to Law	son Street		15.4	L/s

Project:	OTMH Site		
Project No:	11148742		CHIE
Date:	30-Nov-17		CHD
OTMH Site - Prop	posed Sanitary Flow		
A. Community Si	10 Avon =	1	ha
	Region Water and Waste Water Design Manual, 2017) =		pers/ha
	er + Senior Residence Population =		persons
Peaking Factor =	er i Semor Residence ropulation –	4.33	•
Infiltration =		0.000286	
inilitration =			
		0.000286	· ·
		0.29	L/S
Average Sewage	Flow =	0.00012732	m³/ha/s
		0.00012732	
		0.13	L/s
Peak Sewage Flov	w =	0.55	L/s
Peak + Infiltration	n Flow =	0.84	L/s
	m Density (proposed sub-division road) =	0.61	ha
	Region Water and Waste Water Design Manual, 2017) =		pers/ha
Population =			persons
Peaking Factor =		4.27	
Infiltration =		0.000286	
		0.00017446	m ³ /s
		0.17	L/s
Average Sewage	Flow =	0.000003183	m³/per/s
		0.00026212	
		0.26	-
Peak Sewage Flov	w =	1.12	L/s
Dealer Lefth 11	- Flam	4.00	1./2
Peak + Infiltration	T FIOW =	1.29	L/S
	+ Ex. Parking Garage =	1.18	
Infiltration =		0.000286	
		0.00033748	m ³ /s
		0.34	

Page1 2/14/2018


			100
Project:	OTMH Site		
Project No:	11148742		GHD
Date:	30-Nov-17		GHD
D. Detached Dwe	llings Site Area (Mcdonalds Road) =	0.93	ha
Single Family		12	unit
Population Rate (Region Water and Waste Water Design Manual, 2017) =	55	pers/ha
Population =		51	persons
Peaking Factor =		4.31	
Infiltration =		0.000286	m³/ha/s
		0.00026598	
		0.27	
Average Sewage I	Flow =	0.000003183	m³/per/s
<u> </u>		0.00016281	
		0.16	~
Peak Sewage Flov	v =	0.70	L/s
Peak + Infiltration	Flow =	0.97	L/s
E. Detached Dwe	llings Site Area (Allan Street) =	0.57	ha
Single Family			unit
	Region Water and Waste Water Design Manual, 2017) =	55	pers/ha
Population =			persons
Peaking Factor =		4.35	
Infiltration =		0.000286	m ³ /ha/s
		0.00016302	
		0.16	L/s
Average Sewage I	Flow =	0.000003183	
		9.97871E-05	
		0.10	L/s
Peak Sewage Flow	v =	0.43	L/s
Peak + Infiltration	ı Flow =	0.60	L/s
E Sonior Posido	ce (Future Medium Density to Allan Street) =	0.71	ha
	Region Water and Waste Water Design Manual, 2017) =		pers/ha
Population =	negion water and waste water Design Manual, 2017) -		persons
Peaking Factor =		4.25	† ·
reaking ractor =		4.25	1

Page2 2/14/2018

			2000000
Project:	OTMH Site		OHE
Project No:	11148742		CIID)
Date:	30-Nov-17		
Infiltration =		0.000286	
		0.00020306	m ³ /s
		0.20	
Average Sewage	Flow =	0.000003183	m³/per/s
		0.000305091	
		0.31	L/s
Peak Sewage Flow	N =	1.30	L/s
- 1 . 60.			
Peak + Infiltration	n Flow =	1.50	L/s
C Comion Bosidon	(Future Medium Densitute Bernelde Street) -	0.67	ha
	Region Water and Waste Water Design Manual, 2017) =		
Population =	Region water and waste water besign Manual, 2017) =		pers/ha persons
Peaking Factor =		4.26	-
Infiltration =		0.000286	
mmit ation –		0.00019162	
		0.00019102	
		0.19	L/ 3
Average Sewage	Flow =	0.000003183	m ³ /ner/s
Average Sewage	How -	0.000287902	
		0.29	-
		0.23	L/ 3
Peak Sewage Flow	N =	1.23	L/s
			,
Peak + Infiltration	ı Flow =	1.42	L/s
H. Park Site Area	to Allan Street =	0.3	
Infiltration =		0.000286	m³/ha/s
		0.0000858	m ³ /s
		0.09	L/s

Page3 2/14/2018

Appendix C Downstream Sanitary Analysis	
GHD Functional Servicing Report, Former Oakville Trafalgar Memorial Hospital Lands 11148742 (1)	

FORMER OAKVILLE-TRAFALGAR MEMORIAL HOSPITAL LANDS

EXISTING DOST - DEVELOPMENT SANITARY CATCHMENT PLAN

Re ision 0

Date AN.30, 2018

AN Fig re 1

LEG #1 - LAWSON STREET TO TRAFALGAR ROAD

Prepared by: A.H. Checked by: M.P. & S.P.

Date: 14-Feb-18

DOWNSTREAM SANITARY SEWER ANALYSIS

Region of Halton:
Peaking Factor M = 1+(14/(4+SQRT(P/1000))) Halton Region Section 3.2.3 (July 2017) Single Family Pers/ha = 55 Halton Region Table 3-1 (July 2017)

Semi-Detached, Duplex & 4-Plex Pers/ha =

Townhouse, Maisonette (6 storey apt or less) Pers/h Apartment (over 6 storey high) Pers/ha =

100 Halton Region Table 3-1 (July 2017)
135 Halton Region Table 3-1 (July 2017)
135 Halton Region Table 3-1 (July 2017)
285 Halton Region Table 3-1 (July 2017)
40 Halton Region Table 3-2 (July 2017) Community Services Pers/ha =

Residential Average Flow (m³/capita/day) = **0.275** Halton Region Table 3-1 (July 2017) Community Services Average Flow (m³/ha/day) = 11 Halton Region Table 3-2 (July 2017)
0.0002860 Halton Region Section 3.2.4 (July 2017)
n=0.013 Halton Region Section 3.3.1 (July 2017)

Infiltration (m³/s/ha) = Mannings 'n'

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	17	18	19	20		21	22	24	25	26	27	28	29	30	31	32
				,	Tributary	Residential Areas				Tri	butary Resi	dential Populatio	n		Res	sidential Fl	ow	Communit	ty Services		In	iltration	MAX			PIPE			Surcharge	
STREET NAME	From	То		Inc	rement (h	a)	Total	Total		Incre	ment (pers)		Total	Total	Cumul	Peak	Total Peak	Incr	Cum	Total	Cumul	Total	WET					,	(Yes/No)	Used
	MH	MH	Single	Semi-	Town	Apartment	Incr.	Cumul.	Single	Semi-	Town	Apartment	Incr	Cumul.	Flow	Factor	Dry Flow	Area	Area	Flow	Area	Infiltration	FLOW	Dia	Slope	Qcap	V i	m/s	1	Capacity
			Family	Detached	House	(over 6 storey)	(ha)	(ha)	Family	Detached	House	(over 6 storey)	(pers)	(pers)	(m ³ /s)	(M)	(m³/s)	(ha)	(ha)	(m ³ /s)	(ha)	(m³/s)	m3/s	mm	%	m³/s	Full	Act	i	%
LAWSON STREET	OTMH LANDS	MH14009			0.61		0.61	0.61	0	0	82	0	82	82	0.000262	4.27	0.001118	1.04	1.04	0.000573	2.83	0.000809	0.002501	300	0.50	0.071334	0.98	0.46	no	4%
LAWSON STREET	MH14009	MH14010	0.18		0.09		0.27	0.88	10	0	12	0	22	104	0.000332	4.24	0.001408		1.04	0.000573	3.10	0.000887	0.002868	300	0.70	0.084404	1.16	0.46	no	3%
LAWSON STREET	MH14010	MH36101	0.57				0.57	1.45	31	0	0	0	31	136	0.000432	4.20	0.001817		1.04	0.000573	3.67	0.001050	0.003440	300	0.70	0.084404	1.16	0.54	no	4%
LAWSON STREET	MH36101	MH36102					0.00	1.45	0	0	0	0	0	136	0.000432	4.20	0.001817		1.04	0.000573	3.67	0.001050	0.003440	300	0.70	0.084404	1.16	0.54	no	4%
TRAFALGAR ROAD	MH36102	MH36103	0.84				0.84	2.29	46	0	0	0	46	182	0.000579	4.16	0.002411		1.04	0.000573	4.51	0.001290	0.004274	300	0.26	0.051440	0.70	0.43	no	8%
TRAFALGAR ROAD	MH36103	MH36104	0.65			0.20	0.85	3.14	36	0	0	57	93	275	0.000874	4.09	0.003580		1.04	0.000573	5.36	0.001533	0.005686	300	0.26	0.051440	0.70	0.47	no	11%
TRAFALGAR ROAD	MH36104	MH36105	0.18				0.18	3.32	10	0	0	0	10	285	0.000906	4.09	0.003703		1.04	0.000573	5.54	0.001584	0.005861	300	0.25	0.050441	0.69	0.48	no	12%
TRAFALGAR ROAD	MH36105	MH36106 (trunk)	0.47				0.47	3.79	26	0	0	0	26	310	0.000988	4.07	0.004024		1.04	0.000573	6.01	0.001719	0.006316	300	0.26	0.051440	0.70	0.49	no	12%
·																													<u> </u>	
		·	1						1															I			1	-	1	

NOTES:

1. PARK LANDS (0.56 HA) & EX. PARKING GARAGE (0.62 HA) ARE INCLUDED IN INFILTRATION AREA/FLOW CALCULATIONS.

2. THE POPULATION DENSITY AT 312 REYNOLDS STREET (6-PLEX) IS ASSUMED TO BE EQUIVALENT TO TOWNHOUSE DEVELOPMENT (135 PERS/HA).

3. THE SANITARY SEWERS FROM 4-STOREY HIGH 4-PLEX BUILDINGS AT 262 & 268 REYNOLDS STREET DRAIN TO TRAFALGAR ROAD WITH POPULATION DESITY ASSUMED EQUIVALENT TO OVER 6 STOREY DEVELOPMENT (285 PERS/HA).

LEG #2 - MACDONALD ROAD TO REYNOLDS STREET

Prepared by: A.H. Checked by: M.P. & S.P.

Date: 14-Feb-18

DOWNSTREAM SANITARY SEWER ANALYSIS

Region of Halton:

Mannings 'n'

1+(14/(4+SQRT(P/1000))) Halton Region Section 3.2.3 (July 2017) Peaking Factor M = Single Family Pers/ha =

Semi-Detached, Duplex & 4-Plex Pers/ha = Townhouse, Maisonette (6 storey apt or less) Pers/h Apartment (over 6 storey high) Pers/ha =

Community Services Pers/ha = Residential Average Flow (m³/capita/day) = Community Services Average Flow (m³/ha/day) = Infiltration (m³/s/ha) =

11 Halton Region Table 3-2 (July 2017)

0.0002860 Halton Region Section 3.2.4 (July 2017)

n=0.013 Halton Region Section 3.3.1 (July 2017)

55 Halton Region Table 3-1 (July 2017)

100 Halton Region Table 3-1 (July 2017)
 135 Halton Region Table 3-1 (July 2017)
 285 Halton Region Table 3-1 (July 2017)

40 Halton Region Table 3-2 (July 2017)

0.275 Halton Region Table 3-1 (July 2017)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	17	18	19	20		21	22	24	25	26	27	28	29	30	31	32
					Tributary	Residential Area	IS			Tı	ibutary Resi	dential Population	on		Re	sidential Fl	ow	Communi	ty Services		Inf	iltration	MAX			PIPE		-	Surcharge	
STREET NAME	From	To		Inc	crement (ha	a)	Total	Total		Incr	ement (pers)		Total	Total	Cumul	Peak	Total Peak	Incr	Cum	Total	Cumul	Total	WET					'	(Yes/No)	Used
	MH	MH	Single	Semi-	Town	Apartment	Incr.	Cumul.	Single	Semi-	Town	Apartment	Incr	Cumul.	Flow	Factor	Dry Flow	Area	Area	Flow	Area	Infiltration	FLOW	Dia	Slope	Qcap	V	m/s	1	Capacity
			Family	Detached	d House	(over 6 storey)	(ha)	(ha)	Family	Detached	House	(over 6 storey)	(pers)	(pers)	(m ³ /s)	(M)	(m ³ /s)	(ha)	(ha)	(m ³ /s)	(ha)	(m ³ /s)	m3/s	mm	%	m³/s	Full	Act	<u></u>	%
																									 '			<u> </u>	├	
MACDONALD ROAD	MH14074	MH14073	0.52				0.52	0.52	29	0	0	0	29	29	0.000091	4.36	0.000397		0.00	0.000000	0.52	0.000149	0.000545	200	0.98	0.033873	1.04	0.33	no	2%
MACDONALD ROAD	MH14073	MH36429	0.56				0.56	1.08	31	0	0	0	31	59	0.000189	4.30	0.000813		0.00	0.000000	1.08	0.000309	0.001122		0.82	0.030984	0.96	0.45	no	4%
REYNOLDS STREET	MH36429	MH14008	0.99				0.99	2.07	54	0	0	0	54	114	0.000362	4.23	0.001532		0.00	0.000000	2.07	0.000592	0.002124	200	1.50	0.041907	1.29	0.66	no	5%
REYNOLDS STREET	MH14008	MH36430	0.52		0.67	0.14	1.33	3.40	29	0	90	40	159	273	0.000868	4.10	0.003556		0.00	0.000000	3.40	0.000972	0.004529	200	0.70	0.028628	0.88	0.66	no	16%
REYNOLDS STREET	MH36430	MH36431	0.30		1.04		1.34	4.74	17	0	140	0	157	430	0.001368	4.01	0.005481		0.00	0.000000	4.74	0.001356	0.006836	200	0.52	0.024674	0.76	0.66	no	28%
REYNOLDS STREET	MH36431	MH36432	0.46			0.23	0.69	5.43	25	0	0	66	91	521	0.001657	3.97	0.006570	1.21	1.21	0.000607	7.83	0.002239	0.009416	250	0.40	0.039237	0.77	0.64	no	24%
REYNOLDS STREET	MH36432	MH36433 (trunk)	0.75				0.75	6.18	41	0	0	0	41	562	0.001788	3.95	0.007059	0.62	1.83	0.000913	9.20	0.002631	0.010603	250	0.40	0.039237	0.77	0.66	no	27%
																											1	<u> </u>		
																											1		1	

- NOTES:

 1. SANITARY FLOW FROM MH27940 TO MH36429 ON REYNOLDS STREET (0.39 HA) HAS BEEN COMPILED TO THE CONFLUENCE POINT MH36429.

 2. POPULATION DENSITY AT 288 REYNOLDS STREET (4 STOREY HIGH, 4-PLEX BUILDING) IS ASSUMED AS APARTMENT DENSITY (285 PERS/HA).

 3. 291 REYNOLDS STREET LONG TERM CARE CENTRE HAS 128 BEDS, THE POPULATION DENSITY IS ASSUMED EQUIVALENT TO TOWNHOUSE DEVELOPMENT (135 PERS/HA).

 4. THE APARTMENT BUILIDING LOCATED AT 265 REYNOLDS STREET HAS 45 UNITS, THE POPULATION DENSITY IS ASSUMED EQUIVALENT TO APARTMENT (285 PERS/HA).

 5. SANITARY FLOW FROM SHEDDON AVENUE TO MH36431 ON REYNOLDS STREET HAS BEEN COMPILED TO THE CONFLUENCE POINT MH36431.

 6. PARK LANDS (1.19 HA) ARE INCLUDED IN INFILTRATION AREA/FLOW CALCULATIONS.

LEG #3 - ALLAN STREET TO PALMER AVENUE

Prepared by: A.H. Checked by: M.P. & S.P.

Date: 13-Feb-18

DOWNSTREAM SANITARY SEWER ANALYSIS

Region of Halton:
Peaking Factor M = 1+(14/(4+SQRT(P/1000))) Halton Region Section 3.2.3 (July 2017) Single Family Pers/ha = 55 Halton Region Table 3-1 (July 2017)

Semi-Detached, Duplex & 4-Plex Pers/ha =

Townhouse, Maisonette (6 storey apt or less) Pers/h

100 Halton Region Table 3-1 (July 2017)
135 Halton Region Table 3-1 (July 2017)
135 Halton Region Table 3-1 (July 2017)
285 Halton Region Table 3-1 (July 2017)
40 Halton Region Table 3-2 (July 2017) Apartment (over 6 storey high) Pers/ha =
Community Services Pers/ha =

Residential Average Flow (m³/capita/day) = **0.275** Halton Region Table 3-1 (July 2017) Community Services Average Flow (m³/ha/day) =

11 Halton Region Table 3-2 (July 2017)

0.0002860 Halton Region Section 3.2.4 (July 2017)

n=0.013 Halton Region Section 3.3.1 (July 2017) Infiltration (m³/s/ha) = Mannings 'n'

1	2	3	4	5	6	7 8	3 9	ı	10	11	12	13	14	15	17	18	19	20		21	22	24	25	26	27	28	29	30	31	32
					Tributary	Residential Areas				Trib	utary Resi	dential Populatio	n		Re	sidential Fl	low	Communit	y Services		Inf	iltration	MAX			PIPE		-	Surcharge	
STREET NAME	From	To		Inci	rement (ha	a) To	tal To	al		Incren	nent (pers)		Total	Total	Cumul	Peak	Total Peak	Incr	Cum	Average	Cumul	Total	WET					,	(Yes/No)	Used
	MH	MH	Single	Semi-	Town	Apartment Inc	cr. Cun	nul. S	ingle	Semi-	Town	Apartment	Incr	Cumul.	Flow	Factor	Dry Flow	Area	Area	Flow	Area	Infiltration	FLOW	Dia	Slope	Qcap	V r	m/s	1	Capacity
			Family	Detached	House	(over 6 storey) (ha	a) (h	a) Fa	amily D	Detached	House	(over 6 storey)	(pers)	(pers)	(m ³ /s)	(M)	(m³/s)	(ha)	(ha)	(m ³ /s)	(ha)	(m³/s)	m3/s	mm	%	m³/s	Full	Act	1	%
ALLAN STREET	MH14066	MH94654	0.38			0.3	38 0.3	38	21	0	0	0	21	21	0.000067	4.38	0.000291		0.00	0.000000	0.38	0.000109	0.000400	200	0.50	0.024195	0.75	0.24	no	2%
ALLAN STREET	MH94654	MH91853	1.12			1.1	12 1.5	0	62	0	0	0	62	83	0.000263	4.27	0.001120		0.00	0.000000	1.50	0.000429	0.001549	200	1.25	0.038255	1.18	0.55	no	4%
ALLAN STREET	MH91853	MH91854	0.72		0.71	1.4	13 2.9	93	40	0	96	0	135	218	0.000694	4.13	0.002868		0.00	0.000000	3.13	0.000895	0.003763	200	0.76	0.029829	0.92	0.65	no	13%
ALLAN STREET	MH91854	MH91855	0.76			0.7	76 3.6	9	42	0	0	0	42	260	0.000827	4.10	0.003393		0.00	0.000000	4.00	0.001144	0.004537	200	0.86	0.031731	0.98	0.70	no	14%
ALLAN STREET	MH91855	MH13976	0.41		0.31	0.7	72 4.4	11	23	0	42	0	64	324	0.001032	4.06	0.004193		0.00	0.000000	4.72	0.001350	0.005543	200	1.07	0.035394	1.09	0.81	no	16%
PALMER AVENUE	MH13976	MH13979	0.05			0.0	05 4.4	16	3	0	0	0	3	327	0.001041	4.06	0.004229		0.00	0.000000	4.96	0.001420	0.005649	300	0.20	0.045116	0.62	0.44	no	13%
PALMER AVENUE	MH13979	MH13978 (CONF PT))			0.0	00 4.4	16	0	0	0	0	0	327	0.001041	4.06	0.004229		0.00	0.000000	4.96	0.001420	0.005649	300	0.20	0.045116	0.62	0.44	no	13%
																												<u> </u>		
																												T -		

Sernas Associates

THE PARK (0.3 HA) NEAR THE PROPOSED COMMUNITY CENTRE IS INCLUDED IN INFILTRATION AREA/FLOW CALCULATIONS. SANITARY FLOW FROM MH94653 TO MH91853 ON GALT AVENUE (0.22 HA) HAS BEEN COMPILED TO THE CONFLUENCE POINT MH91853 ON ALLAN STREET.

LEG #4 - MACDONALD ROAD TO DOUGLAS AVENUE

Prepared by: A.H. Checked by: M.P. & S.P.

Date: 13-Feb-18

DOWNSTREAM SANITARY SEWER ANALYSIS

Region of Halton:

1+(14/(4+SQRT(P/1000))) Halton Region Section 3.2.3 (July 2017) Peaking Factor M =

Single Family Pers/ha = 55 Halton Region Table 3-1 (July 2017) Semi-Detached, Duplex & 4-Plex Pers/ha = 100 Halton Region Table 3-1 (July 2017) Townhouse, Maisonette (6 storey apt or less) Pers/h 135 Halton Region Table 3-1 (July 2017)

285 Halton Region Table 3-1 (July 2017) 40 Halton Region Table 3-2 (July 2017) Apartment (over 6 storey high) Pers/ha = Community Services Pers/ha = Residential Average Flow (m³/capita/day) = **0.275** Halton Region Table 3-1 (July 2017)

Community Services Average Flow (m³/ha/day) = 11 Halton Region Table 3-2 (July 2017) **0.0002860** Halton Region Section 3.2.4 (July 2017) **n=0.013** Halton Region Section 3.3.1 (July 2017) Infiltration (m³/s/ha) = Mannings 'n'

1	2	3	4	5	6 7	8	9	10	11	12	13	14	15	17	18	19	20		21	22	24	25	26	27	28	29	30	31	32
				Trib	outary Residential	Areas			Т	ributary Resi	dential Population	on		Re	sidential F	low	Community	y Services		Inf	iltration	MAX			PIPE			Surcharge	э
STREET NAME	From	То		Increm	ent (ha)	Total	Total		Inci	ement (pers)		Total	Total	Cumul	Peak	Total Peak	Incr	Cum	Average	Cumul	Total	WET						(Yes/No)	Used
	MH	MH	Single	Semi-	Town Apartme	nt Incr.	Cumul.	Single	Semi-	Town	Apartment	Incr	Cumul.	Flow	Factor	Dry Flow	Area	Area	Flow	Area	Infiltration	FLOW	Dia	Slope	Qcap	V	m/s		Capaci
			Family	Detached F	louse (over 6 sto	rey) (ha)	(ha)	Family	Detached	House	(over 6 storey)	(pers)	(pers)	(m ³ /s)	(M)	(m ³ /s)	(ha)	(ha)	(m ³ /s)	(ha)	(m ³ /s)	m3/s	mm	%	m³/s	Full	Act		%
MACDONALD ROAD	MH14074	MH14065	0.66	<u> </u>		0.66	0.66	26	0	0	0	26	26	0.000116	4.34	0.000502		0.00	0.000000	0.66	0.000189	0.000690	200	0.52	0.024674	0.76	0.30	no	3%
MACDONALD ROAD	MH14065	MH14063	0.00	 		0.00	0.00	- 50	0	0	0	- 6	30		4.34		1			0.00			_	0.50		0.76		110	376
MACDONALD ROAD			0.11	<u> </u>		0.11	0.77	6	0	0	0	6	42	0.000135	4.33	0.000583		0.00	0.000000	0.77	0.000220	0.000804	200	0.50	0.024195	0.75	0.30	no	3%
MACDONALD ROAD	MH14064	MH14059	9.12			9.12	9.89	502	0	0	0	502	544	0.001731	3.96	0.006848		0.00	0.000000	10.62	0.003037	0.009885	250	0.79	0.055141	1.09	0.83	no	18%
DOUGLAS AVENUE	MH14059	MH14069	1.97			1.97	11.86	108	0	0	0	108	652	0.002076	3.91	0.008122		0.00	0.000000	11.86	0.003392	0.011514	250	0.40	0.039237	0.77	0.67	no	29%
DOUGLAS AVENUE	MH14069	MH13969	0.76			0.76	12.62	42	0	0	0	42	694	0.002209	3.90	0.008609		0.00	0.000000	12.62	0.003609	0.012218	250	0.40	0.039237	0.77	0.69	no	31%
DOUGLAS AVENUE	MH13969	MH13975	1.78			1.78	14.4	98	0	0	0	98	792	0.002521	3.86	0.009738		0.00	0.000000	14.40	0.004118	0.013856	250	1.20	0.067960	1.34	1.05	no	20%
DOUGLAS AVENUE	MH13975	MH13973	0.86			0.86	15.26	47	0	0	0	47	839	0.002671	3.85	0.010279		0.00	0.000000	15.26	0.004364	0.014643	250	1.20	0.067960	1.34	1.07	no	22%
DOUGLAS AVENUE	MH13973	MH13980	1.43			1.43	16.69	79	0	0	0	79	918	0.002922	3.82	0.011172	1	0.00	0.000000	16.69	0.004773	0.015945	250	1.20	0.067960	1.34	1.10	no	23%
DOUGLAS AVENUE	MH13980	MH13978	0.93			0.93	17.62	51	0	0	0	51	969	0.003085	3.81	0.011748		0.00	0.000000	17.76	0.005079	0.016828	250	1.20	0.067960	1.34	1.12	no	25%
DOUGLAS AVENUE	MH13978 (CONF PT)	MH13982	3.44		1.02	4.46	22.1	189	0	138	0	327	1296	0.004125	3.72	0.015364		0.00	0.000000	22.72	0.006498	0.021862	350	3.10	0.267928	2.70	1.63	no	8%
DOUGLAS AVENUE	MH13982	MH13983	1.00			1.00	23.08	55	0	0	0	55	1351	0.004300	3.71	0.015962		0.00	0.000000	23.72	0.006784	0.022746	350	1.50	0.186373	1.88	1.29	no	12%
DOLIGI AS AVENUE	MH13983	MH13987 (trunk)	1 13		Ì	1 12	2/1/21	62	<u> </u>	^	0	62	1/113	0.004408	2.70	0.016634		0.00	0.000000	24.85	0.007107	0.023741	350	1.20	0.166697	1.68	1 21	no	1/10/

[.] THE PROPOSED PARKS ON ALLAN STREET & DOUGLAS AVENUE ARE INCLUDED IN INFILTRATION FLOW CALCULATIONS.

^{2.} SANITARY FLOW (8.61 HA) FROM ALLAN STREET, THE NORTH OF MACDONALD ROAD HAS BEEN COMPILED TO THE CONFLUENCE POINT MH14064 ON MACDNALD ROAD.

3. SANITARY FLOWS FROM DOUGLAS AVENUE, THE NORTH OF MACDONALD ROAD (1.01HA), AND MACDONALD ROAD (0.16 HA) HAVE BEEN COMPILED TO THE CONFLUENCE POINT MH14059 ON DOUGLAS AVENUE.

I. SANITARY FLOWS FROM GALT AVENUE (0.61HA & 0.23 HA) HAVE BEEN COMPILED TO THE CONFLUENCE POINT MH13969 ON DOUGLAS AVENUE.

SANITARY FLOW FROM SHEDDON AVENUE (0.41HA) HAS BEEN COMPILED TO THE CONFLUENCE POINT MH13973 ON DOUGLAS AVENUE.

SANITARY FLOWS FROM LEG #3 (3.75 HA RESIDENTIAL, 0.50 HA PARK & ROAD AREA), HAVE BEEN COMPILED TO THE CONFLUENCE POINT MH13978 ON DOUGLAS AVENUE.

Appendix D Water Servicing Background Information	
GHD Functional Servicing Report, Former Oakville Trafalgar Memorial Hospital Lands 11148742 (1)	

10 Estate Drive, Toronto, Ontario M1H 2Z1

Phone: 416.282.1665 Fax: 416.282.7702 Toll Free: 1.888.349.2493

www.corix.com

		SITE NAME:	Reynold TIME OF TEST:		0			DATE:	no	- 23, 20	17		
		LOCATION:_	Reynold	0 -SX +	Jan.	on s	t., 0	ahril	le			_	
		TEST DATA	TIME OF TEST:	TEST: /EL O	12.5	Jem Jeant 3	000	- # 3	38 P.	melh	11	_	
			LOCATION OF	(RESIDU	AL) C	V. Cent	3p au	an A	312 RE	undels	St	_	
		MAIN SIZE: _		300 m	~				6			_	
		STATIC PRES	SSURE:	6	60 ps	5.	16.						
		NUMBER	R OF OUTLETS & OR	IFICE SIZE	PITOT PI	RESSURE	FLOW (U.S	S. G.P.M.)	RESIDUAL	PRESSURE	,		
		# 1	1×1'/8			0 psi	265		6	0 PS1			
		#3	1X10/9			5 psi	/00		60	2 251			
		# 4	5×5/5		12	3 251	142		S	8 051			
	145], \			
	135												
	130												
	120											\neg	-
	110												-8
	105												
P.S.I.G.	95												_
P.S.	85 80												\pm
JRE	75 70											+	+
RESSURE	65												Ŧ
PRE	55				0								
	45												_
	35	×											\pm
	25							-			-+	+	+
	20						*						+
	15										_	\perp	# 4
	5												1.8
	0 200 4	500	900 1050 1150 1000 1100	1250 139 1200 1300	50 1450 1400 1	1 1550 I 500 1600	1650 1750 1700) I 1850 1800	I 1950 1900 20	1 2050 I 000 210	21 ['] 50	2200	2250
						J.S. G.P.				1 .			
		COMMENTS: _	Comp	lited 1	NFPK	1291	lla te	osl	equest	ess			
		Authorized Sigr	nature			Corix Wa	ater Service	s Signatur	e	lenge 9	2_	-	

Authorized Signature_

10 Estate Drive, Toronto, Ontario M1H 2Z1

Phone: 416.282.1665 Fax: 416.282.7702 Toll Free: 1.888.349.2493

www.corix.com

		SITE	IAME:_		G+ al	10									_DAT	≣:	nev	23	,20	17			
		LOCAT	TON:		al	lan	St	+ 7	nas		lere	41	el,	00	hi	lle							
		TEST I	DATA	TIM	E OF T	EST:			1.2	PP	-												
				LOC	CATION	OFT	EST: (FLOW)	<u>C</u>	V.	est.	3P	12	1	ne/	lon	110	~ 0	Ella	7			
							(RES	DUAL)		EV.	Cent	3P	27	Sof	Ma	6	nald	on (all	as			
			SIZE:					one				N.											
		STATIC	PRES	SURE:				-	> <u>8</u>	PC) (
		# 1 F	UMBER	OF OU	1. 7	& ORIF	FICE S	ZE F		,				(U.S. 0	G.P.M.) RE	SIDUAL			I			
		# 2		1X	13/4	,		+			PS1	+		589		+	2	87	Z!				
		# 3		IX	21/2			\top			PSI		C	717			50	6 7	Si				
		# 4		ZX	21/2	_				22	25		1	570			5	5	5				
	145								-									ا ا	3				
	135																	1					
	130			+																	,		
	120																			Ι			Г
	115																						Ė.
	105 100																						- 3
G.	95			+							+			+	-								F
P.S.I.G.	85																						
	75																						E
RESSURE	70			+++																			
3ES	65																						F
ď	55 50			0																			
	45								-				-	+	+			+					_
	35																		1				
	25																						_
	20		+	H					+														_
	15																						
	5																					Г	¬ ^{1.8}
	0 200 4	l ₅ 00 l	700 I 800	900	₁₀ 50 1000 1	1150 100 12	l 1250 1 200 130	1350 00 1	1 ₁₄₅ 400	0 1500	1550 160	165 00	0 1700	1750	₁₈	50 190	1950 0 2	205 000	60 210	215 10	50 220	225	0
								FL	OW	U.S	6. G.	P.N	1.										
	•	COMME	NTS:			C	emp	leter	111	MFI	PAZ	29/	k	ew,	test	00	leg	ues	tel				
	<u>.</u>												,	=									

_____ Corix Water Services Signature

Project Name OTMHI Site
Project No. 11148742

Subject Water Demand Calculations

	Area (ha)	Population	Average	e Day	Maximu	ım Day	Peak	Hour
		, , , .	Flows (L/d)	Flows (L/s)	Flows (L/d)	Flows (L/s)	Flows (L/d)	Flows (L/s)
Residential-Houses	1.5	83	22,688	0.3	51,047	0.6	90,750	1.1
Medium DensityTownhouses	0.61	82	22,646	0.3	50,954	0.6	90,585	1.0
Community Centre	1	40	11,000	0.1	24,750	0.3	24,750	0.3
Senior Resd. (Medium Density)	1.38	186	51,233	0.6	115,273	1.3	115,273	1.3

Water Demands Population/Hectare

residential 275.0 L/cap/d Single Family 55 max. day factor 2.25 Townhouses 135 peak hour factor 4.00 Residential Community Ser. 40

peak hour factor 2.25 Community Services

Peak Hour Flows < Max. Day Flows +Fire Flow

Total System Demand (House)=Max. Day Flows+ Fire Flow
33.9 L/s
Total System Demand (appartment)=Max. Day Flows+ Fire Fl
150.3 L/s

Oakville Hospital FSR Appendix D

^{*}Based on Regional Municipality of Halton Water and Wastew Linear Design Manual Version 3.01

CALCULATIONS Prepared by Alecia Hu Checked by Scott Passmore

Project Name	OTMH Site
Project No.	11148742
Subject	Water Demand Calculations

Community Center

As per Fire Underwriter's Survey Guidelines

PROJ:	OTMH Site		DATE CREATED		6-Dec-17
JOB#:	11148742		DATE PRINTED:	De	cember 6, 2017
С	Coefficient related to type of construction	[yes/no]			
	◆ Wood frame		1.5		
	 Ordinary construction 		1		
	 Non-combustible construction 	yes	0.8		
	 Fire resistive construction (< 2 hrs) 		0.7		
	 Fire resistive construction (> 2 hrs) 		0.6		
	 Interpolation (Using FUS Tables) 				
	Assumes Vertical Openings & Exterior Vertical Communications Are Properly Protected (One Hour Rating)				
Α	A f - ((2)	4,075		12 962 42	
A	Area of structure considered (m²) (All floors excluding Basement, under 2-Storeys)	4,075	<==>	43,863 ft ²	
_					
F	Required fire flow (L/min) $F = 220 \text{ C (A)}^{0.5}$		=	11,000 L/n	nin
	Occupancy hazard reduction of surcharge	[yes/no]	_		
	Non-combustible	yes	-25%		
	 Limited combustible 		-15%		
	 ◆ Combustible 		0%		
	 Free burning 		15%		
	 Rapid burning 		25%		
			=	8,250 L/n	nin
	Sprinkler Reduction ◆ Non-combustible - Fire Resistive (3)	yes	30%_	2,475 L/n	nin
	Exposure surcharge (cumulative (%), 4 side	[yes/no]			
	0 - 3 m		- 25%		
	3.1 - 10 m	yes	20%	1 side	20%
	10.1 - 20 m		15%	2 side	
	20.1 - 30 m	yes	10%	2 side	20%
	30.1- 45 m	yes	5%	1 side	5%
			Cun	nulative Total	45%
			=	3,713 L/n	nin
	REQUIRED FIRE FLOW [(1) - (2) + (3)]			9,000 L/n	nin
	(2,000 L/min < Fire Flow < 45,000 L/min)		or	150.00 L/s	
			or	2,378 US	GPM

Note: The calculation is based on the following sumptions:

- The proposed building is 2-Storeys.
 Main Floor Area is 4252 sq.m.

Oakville Hospital FSR Appendix D

Appendix E Storm Servicing Background Information
GHD Functional Servicing Report, Former Oakville Trafalgar Memorial Hospital Lands 11148742 (1)

Muhammad Paracha

From: Kristina Parker <kristina.parker@oakville.ca>

Sent: Friday, December 22, 2017 2:51 PM

To: Scott Passmore Cc: Scott Passmore

Subject: Fwd: Drainage System Capacity and Spill Assessment at Old Oakville Hospital

Attachments: Major System Flows - reduced.pdf

CompleteRepository: 011148742

Description: OTMH, Brantwood School & Trafalgar

JobNo: 11487 OperatingCentre: 01

RepoEmail: 011148742@ghd.com

RepoType: Proposal **SubJob:** 42

Scott

please see below and attached related to flows.

thanks

Sent from my Samsung Galaxy smartphone.

----- Original message -----

From: "Farrell, Aaron" <aaron.farrell@woodplc.com>

Date: 2017-12-22 2:43 PM (GMT-05:00)

To: Kristina Parker < kristina.parker@oakville.ca>

Cc: "Scheckenberger, Ron" <ron.scheckenberger@woodplc.com>, patrick.macdonald@woodplc.com, Rita Juliao <rita.juliao@oakville.ca>, Philip Kelly <philip.kelly@oakville.ca>, George Trenkler

<george.trenkler@oakville.ca>

Subject: RE: Drainage System Capacity and Spill Assessment at Old Oakville Hospital

Hi Kristina.

Just following-up on this item from last week. We've extracted the 100 year major system (overland) flows from the PCSWMM model in the vicinity of the hospital. The attached figure shows the flows in the various locations.

The flows from the modelling indicate major system flows of 0.927 cms and 0.281 cms respectively, conveyed along Allan and Galt toward (i.e. upstream) of the intersection of the roads. Beyond this intersection (i.e. downstream), 0.689 cms would be conveyed along the connector road between Galt and Lawson (running through the old hospital site), and 0.52 cms conveyed south along Allan.

The modelled flows indicate 0.965 cms conveyed along Reynolds toward (i.e. upstream) of the intersection with Lawson and the connector road through the old hospital site, as well as 2.758 cms conveyed along the connector road to this same location; the higher flow along the connector road at this location is due to the additional runoff from the old hospital site. Beyond the intersection (i.e. downstream) 2.005 cms is conveyed along Lawson, and 1.538 cms is conveyed along Reynolds.

We trust that this information satisfies your current requirements. Our office will be closed next week for the holidays, however we will be open again on January 2; let us know if you'd like to connect at all to discuss.

All the best to you and your family for the holidays and into 2018.

Cheers.

Aaron.

From: Kristina Parker [mailto:kristina.parker@oakville.ca]

Sent: Thursday, December 14, 2017 3:33 PM **To:** Farrell, Aaron <aaron.farrell@woodplc.com>

Cc: Scheckenberger, Ron < ron.scheckenberger@woodplc.com >; Macdonald, Patrick

<patrick.macdonald@woodplc.com>; Rita Juliao <rita.juliao@oakville.ca>; Philip Kelly <philip.kelly@oakville.ca>;

George Trenkler < george.trenkler@oakville.ca >

Subject: Re: Drainage System Capacity and Spill Assessment at Old Oakville Hospital

thanks Aaron, much appreciated. no need to re-run calculations.

the consultant working on the FSR for the community centre would like to look at the need to attenuate flows. can you please provide flows at Galt/Allan and Lawson/Reynolds assuming no spill upstream. they will look at the cross section needed to convey these flows across the site.

many thanks, kristina

Sent from my Samsung Galaxy smartphone.

----- Original message -----

From: "Farrell, Aaron" <aaron.farrell@woodplc.com>

Date: 2017-12-13 3:12 PM (GMT-05:00)

To: Kristina Parker < kristina.parker@oakville.ca >

Cc: "Scheckenberger, Ron" < ron.scheckenberger@woodplc.com >, "Macdonald, Patrick"

<patrick.macdonald@woodplc.com</pre>>, Rita Juliao <<pre>rita.juliao@oakville.ca>

Subject: RE: Drainage System Capacity and Spill Assessment at Old Oakville Hospital

Hi Kristina.

Just following-up on this item from last week, regarding the spill assessment and associated assumptions for the entrance to the old hospital from Allan St. To answer your question, our assessment was predicated upon the grades for Allan Street and at the entrance to the old hospital being approximately equal. The attached plan shows where we see the grading along the Allan Street which would cause the flow from the road to be directed toward the old hospital. The grading information shows a 2 cm difference between the critical elevation to the old hospital (i.e. 95.36 m) versus the low point of the crest along Allan Street (i.e. 95.33 m). However, the grading information along Allan Street indicates that this 2 cm difference would be localized toward the curb, and further toward the centerline of Allan Street and the east side of the road the grades would be above the crest elevation along the entrance road to the old hospital site.

The weir calculations can certainly be updated to better reflect the conditions along Allan Street (i.e. incorporate a triangular weir), however we anticipate that the refinement to the assessment would result in a greater proportion of flow into the old hospital site for the 100 year storm event.

We trust that this satisfies your current requirements. Let us know if you have any further questions or wish to discuss.

Aaron.

From: Kristina Parker [mailto:kristina.parker@oakville.ca]

Sent: Wednesday, December 06, 2017 4:30 PM **To:** 'Farrell, Aaron' saaron.farrell@woodplc.com

Cc: Scheckenberger, Ron < ron.scheckenberger@woodplc.com>; Macdonald, Patrick

<patrick.macdonald@woodplc.com>; Rita Juliao <ri>rita.juliao@oakville.ca>

Subject: RE: Drainage System Capacity and Spill Assessment at Old Oakville Hospital

Thanks Aaron and Pat,

I appreciate the follow up, has the weir spreadsheet been updated to confirm the flow still overtops the high point and flows to the depression storage area at the old hospital off Allan st? Please see attached zoom-in of the entrance to the hospital off Allan ST. Was the elevation of 95.36 m used as the critical weir height? I suppose we would need to look at the high point in the road to see if the drainage from the east spills across the crest of the road, plus the high point on the driveway entrance.

Thoughts? Thanks,

From: Farrell, Aaron [mailto:aaron.farrell@woodplc.com]

Sent: Tuesday, December 05, 2017 8:54 AM

To: Kristina Parker

Cc: Scheckenberger, Ron; Macdonald, Patrick; Rita Juliao

Subject: RE: Drainage System Capacity and Spill Assessment at Old Oakville Hospital

Hi Kristina.

Just following-up on this item from last week. We've reviewed the drainage information and PCSWMM modelling, and have found that the original estimate of 7 ha based upon the PCSWMM GIS data extraction was an overestimate. After a closer review of the model data, and confirmation from review of drainage information in the area, we have determined that the major and minor system runoff from 2.16 ha drains toward the old hospital site, and the major system runoff from an additional 2.81 ha drains toward the site as well. As such, during formative storm events which exceed the capacity of the minor system, the drainage area to the spill point is 4.97 ha. We're in the process of preparing a graphic which depicts these area clearly, and will forward once complete.

Apologies for any confusion or inconvenience from the previous estimate. Let us know if you wish to discuss at all.

Aaron.

From: Kristina Parker [mailto:kristina.parker@oakville.ca]

Sent: Tuesday, November 28, 2017 1:44 PM **To:** 'Farrell, Aaron' aaron.farrell@woodplc.com

Cc: Scheckenberger, Ron < ron.scheckenberger@woodplc.com >; Macdonald, Patrick

<patrick.macdonald@woodplc.com>; Rita Juliao <rita.juliao@oakville.ca>

Subject: RE: Drainage System Capacity and Spill Assessment at Old Oakville Hospital

Hi Aaron,

Thanks for providing the spill assessment results.

The results have sparked some discussion with the design consultant, and while they are working away to analyze the issue, we are seeking some clarification.

I spoke with Pat on this item late last week and got some clarification on the excel sheet. I'm still not certain of the drainage area that contributes to the 570 m3 of spill from Allan St to the site. I understand about 7 ha drains to the intersection of Allan and MacDonald, but there is a split for the major system. can you advise the percentage of flow or actual drainage area that would contribute to Allan st? I believe the design consultant had estimated a smaller external drainage area, so it would be useful to compare.

Also, please confirm no field verification was carried out to confirm drainage area boundaries in the area, and that the subcatchments would be based on the DEM?

Many thanks, Kristina

Kristina Parker, M.A.Sc., P.Eng. Water Resources Engineer Development Engineering

Town of Oakville | 905-845-6601, ext.3889 | f: 905-338-4414 | www.oakville.ca

Complete our Community Development customer service survey

Vision: To be the most livable town in Canada

Please consider the environment before printing this email. http://www.oakville.ca/privacy.html

From: Farrell, Aaron [mailto:aaron.farrell@woodplc.com]

Sent: Friday, November 17, 2017 2:15 PM

To: Kristina Parker

Cc: Scheckenberger, Ron; Macdonald, Patrick

Subject: Drainage System Capacity and Spill Assessment at Old Oakville Hospital

Hi Kristina.

As requested, we've completed the capacity assessment of the major and minor system in the vicinity of the old Oakville Hospital, and have also assess the potential and associated magnitude of spill into the site from the adjacent roadways.

The attached drawings show the results of the major and minor system capacity along the roads surrounding the site (i.e. Reynolds, Allan, Macdonald, and Sheddon), as well as the access road through the site which connects Lawson and Galt. The results of the capacity assessment indicate that the minor system surrounding the site generally provide sufficient capacity to convey the 5 year flow without surcharging; although surcharging would be anticipated for some locations, the 5 year flow would be conveyed within the sewer network and not flood the roads. It should be noted that Allan Road is rurally drained, hence has no storm sewers to capture runoff during the 5 year storm event.

The results for the major system assessment indicate that, in general, the major system has sufficient capacity to convey the 100 year flow without exceeding the curb of the road. The exceptions are the south portion of Reynolds and the west portion of Sheddon, where the 100 year flow would exceed the depth of the curb but would be contained within the road ROW, as well as the west limit of the access road through the site which would be anticipated to flood beyond the ROW at the west limit of the road.

We also reviewed the TIN and DEM provided for the study to determine potential locations for spill from the adjacent roadways into the site, and have reviewed the detailed topo received Wednesday to verify and refine these findings, as well as to determine the maximum depth of flow within the major system which could be conveyed prior to spilling into the site. Through this review, potential spill locations were identified at the northwest entrance to the site off of Reynolds Street, the northeast entrance to the site off of Allan Street, and the west limit of the access road through the site in the vicinity of the parking lot. Spreadsheet analyses were completed using the results of the PCSWMM modelling for the major system and applying the weir equation at the entrances to determine the flow into the site. The results of the assessment indicated that, during a 100 year storm event, 25 m³ would be anticipated to spill from Reynolds Street into the site, at a maximum flow rate of 0.07 m³/s; this represents a small portion of the total runoff along Reynolds Road during the 100 year event (i.e. 1380 m³ of runoff at a maximum flow rate of 1.04 m³/s), hence is not considered to represent a significant spill potential. However, the results for the entrance off of Allan Street indicate that 570 m³ would be anticipated to spill into the site off of Allan Street, at a

maximum flow rate of 0.40 m³/s; essentially, during a 100 year storm event, approximately 57% of the runoff along Allan Street would be anticipated to spill into the old Hospital site, and accumulate within the depression area identified in the depression storage mapping. The results of the major system modelling for the access road through the site indicate that spill would be anticipated at the west limit of the access road, however this spill would be anticipated to sheet flow south through the site (across the parking lot) and be recaptured and conveyed within the major system along Reynolds Street.

We trust that the foregoing and the attached satisfy your current requirements in this regard; as always, feel free to call should you wish to discuss any of the foregoing. In the meantime, we are continuing with the assessments of the remaining priority areas, and will forward results as soon as the assessments have been completed.

Regards,

Aaron.

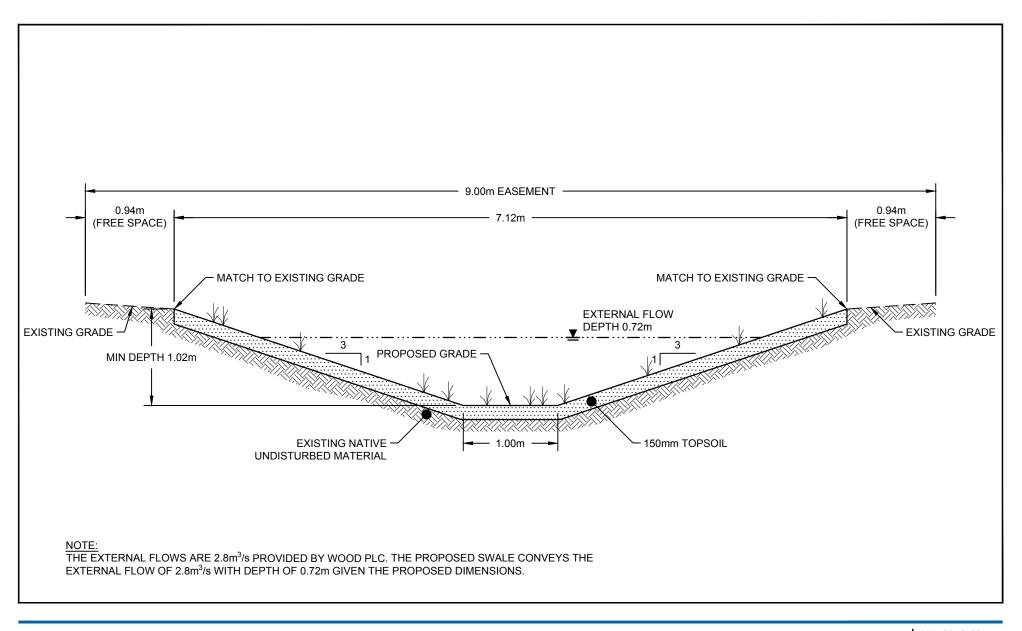
Aaron Farrell, M.Eng., P.Eng., CPM Associate Direct: (905) 335-2353 Mobile: (289) 208-4936 www.woodplc.com

Be more sustainable - think before you print.

This message is the property of John Wood Group PLC and/or its subsidiaries and/or affiliates and is intended only for the named recipient(s). Its contents (including any attachments) may be confidential, legally privileged or otherwise protected from disclosure by law. Unauthorised use, copying, distribution or disclosure of any of it may be unlawful and is strictly prohibited. We assume no responsibility to persons other than the intended named recipient(s) and do not accept liability for any errors or omissions which are a result of email transmission. If you have received this message in error, please notify us immediately by reply email to the sender and confirm that the original message and any attachments and copies have been destroyed and deleted from your system.

If you do not wish to receive future unsolicited commercial electronic messages from us, please forward this email to: unsubscribe@woodplc.com and include "Unsubscribe" in the subject line. If applicable, you will continue to receive invoices, project communications and similar factual, non-commercial electronic communications.

riease click <u>intp://www.woodpic.com/email-disclaimer</u> for notices and company information in relation to emails
originating in the UK, Italy or France.


This message is the property of John Wood Group PLC and/or its subsidiaries and/or affiliates and is intended only for the named recipient(s). Its contents (including any attachments) may be confidential, legally privileged or otherwise protected from disclosure by law. Unauthorised use, copying, distribution or disclosure of any of it may be unlawful and is strictly prohibited. We assume no responsibility to persons other than the intended named recipient(s) and do not accept liability for any errors or omissions which are a result of email transmission. If you have received this message in error, please notify us immediately by reply email to the sender and confirm that the original message and any attachments and copies have been destroyed and deleted from your system.

If you do not wish to receive future unsolicited commercial electronic messages from us, please forward this email to: unsubscribe@woodplc.com and include "Unsubscribe" in the subject line. If applicable, you will continue to receive invoices, project communications and similar factual, non-commercial electronic communications.

Please click http://www.woodplc.com/email-disclaimer for notices and company information in relation to emails originating in the UK, Italy or France.

This e-mail has been scanned for viruses

TOWN OF OAKVILLE FORMER OAKVILLE-TRAFALGAR MEMORIAL HOSPITAL LANDS PROPOSED SOUTH SWALE EXTERNAL FLOWS 11148742-00

Feb 13, 2018

FIGURE 1

Client:	Town of Oakville	Job no.:	11148742	Sheet:	2
Project:	OTMH Site - Oakville	Calcs by:	MP	Date:	5-Dec-17
Subject:	Predevelopment Runoff	Checked by:	SP	Date:	5-Dec-17

Uncontrolled Areas to Macdonald/Allan North Area 101

CONTRIBUTING AREAS

 5143 m^2

Area (m²) Area*RC Runoff Coefficients <u>Site</u> Roof 602 542 Roof 0.9 Pavement 2623 2361 Pavement 0.9 Landscaped 1918 480 0.25 Landscaped TOTAL 5143 RC = 0.658

2 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 82.2 mm/hr
Uncontrolled RC 0.658

TOTAL 2 yr PRE-DEVELOPMENT RELEASE RATE: 77.3 L/s

5 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min Intensity 114.2 mm/hr Uncontrolled RC 0.658

TOTAL 5 yr PRE-DEVELOPMENT RELEASE RATE: 107.4 L/s

10 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 134.8 mm/hr
Uncontrolled RC 0.658

TOTAL 10 yr POST-DEVELOPMENT RELEASE RATE: 126.7 L/s

25 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 162.2 mm/hr
Uncontrolled RC 0.658

TOTAL 25 yr POST-DEVELOPMENT RELEASE RATE: 152.5 L/s

50 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min Intensity 182.1 mm/hr Uncontrolled RC 0.658

TOTAL 50 yr POST-DEVELOPMENT RELEASE RATE: 171.2 L/s

100 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min Intensity 200.8 mm/hr
Uncontrolled RC 0.658

TOTAL 100 yr POST-DEVELOPMENT RELEASE RATE: 188.8 L/s

Calculations

Client:	Town of Oakville	Job no.:	11148742	Sheet:	2
Project:	OTMH Site - Oakville	Calcs by:	MP	Date:	5-Dec-17
Subject:	Predevelopment Runoff	Checked by:	SP	Date:	5-Dec-17

Uncontrolled Areas to Lawson Street Area 102

CONTRIBUTING AREAS 35810 m²

 Roof:
 18165
 m²

 Pavement / Impervious:
 14087
 m²

 Landscaped / Pervious:
 3558
 m²

TOTAL 35810 m²

Area (m²) Area*RC Runoff Coefficients <u>Site</u> Roof 18165 16349 Roof 0.9 14087 3558 Pavement 12678 Pavement 0.9 Landscaped 890 0.25 Landscaped TOTAL 35810 RC = 0.835

2 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 82.2 mm/hr
Uncontrolled RC 0.835

TOTAL 2 yr PRE-DEVELOPMENT RELEASE RATE: 683.5 L/s

5 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min Intensity 114.2 mm/hr Uncontrolled RC 0.835

TOTAL 5 yr PRE-DEVELOPMENT RELEASE RATE: 949.9 L/s

10 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 134.8 mm/hr
Uncontrolled RC 0.835

TOTAL 10 yr POST-DEVELOPMENT RELEASE RATE: 1121.0 L/s

25 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 162.2 mm/hr
Uncontrolled RC 0.835

TOTAL 25 yr POST-DEVELOPMENT RELEASE RATE: 1348.7 L/s

50 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min Intensity 182.1 mm/hr Uncontrolled RC 0.835

TOTAL 50 yr POST-DEVELOPMENT RELEASE RATE: 1514.1 L/s

100 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min Intensity 200.8 mm/hr Uncontrolled RC 0.835

TOTAL 100 yr POST-DEVELOPMENT RELEASE RATE:

1670.0 L/s

Client:	Town of Oakville	Job no.:	11148742	Sheet:	2
Project:	OTMH Site - Oakville	Calcs by:	MP	Date:	5-Dec-17
Subject:	Predevelopment Runoff	Checked by:	SP	Date:	5-Dec-17

Uncontrolled Areas to Reynolds Street Area 103

CONTRIBUTING AREAS

13097 m²

Area (m²) Area*RC Runoff Coefficients <u>Site</u> Roof 733 660 Roof 0.9 9572 432 Pavement 10636 Pavement 0.9 1728 0.25 Landscaped Landscaped TOTAL 13097 RC = 0.814

2 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 82.2 mm/hr
Uncontrolled RC 0.814

TOTAL 2 yr PRE-DEVELOPMENT RELEASE RATE: 243.6 L/s

5 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min Intensity 114.2 mm/hr Uncontrolled RC 0.814

TOTAL 5 yr PRE-DEVELOPMENT RELEASE RATE: 338.6 L/s

10 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 134.8 mm/hr
Uncontrolled RC 0.814

TOTAL 10 yr POST-DEVELOPMENT RELEASE RATE: 399.6 L/s

25 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 162.2 mm/hr
Uncontrolled RC 0.814

TOTAL 25 yr POST-DEVELOPMENT RELEASE RATE: 480.8 L/s

50 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min Intensity 182.1 mm/hr Uncontrolled RC 0.814

TOTAL 50 yr POST-DEVELOPMENT RELEASE RATE: 539.7 L/s

100 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min Intensity 200.8 mm/hr Uncontrolled RC 0.814

TOTAL 100 yr POST-DEVELOPMENT RELEASE RATE: 595.3 L/s

 $3081 \, m^2$

Client:	Town of Oakville	Job no.:	11148742	Sheet:	2
Project:	OTMH Site - Oakville	Calcs by:	MP	Date:	5-Dec-17
Subject:	Predevelopment Runoff	Checked by:	SP	Date:	5-Dec-17

Uncontrolled Areas to Allan Street South Area 104

CONTRIBUTING AREAS

Area (m²) Area*RC Runoff Coefficients <u>Site</u> Roof Roof 0.9 Pavement 630 567 Pavement 0.9 2451 613 0.25 Landscaped Landscaped TOTAL 3081 RC = 0.383

2 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 82.2 mm/hr
Uncontrolled RC 0.383

TOTAL 2 yr PRE-DEVELOPMENT RELEASE RATE: 27.0 L/s

5 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min Intensity 114.2 mm/hr Uncontrolled RC 0.383

TOTAL 5 yr PRE-DEVELOPMENT RELEASE RATE: 37.5 L/s

10 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 134.8 mm/hr
Uncontrolled RC 0.383

TOTAL 10 yr POST-DEVELOPMENT RELEASE RATE: 44.2 L/s

25 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 162.2 mm/hr
Uncontrolled RC 0.383

TOTAL 25 yr POST-DEVELOPMENT RELEASE RATE: 53.2 L/s

50 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min Intensity 182.1 mm/hr Uncontrolled RC 0.383

TOTAL 50 yr POST-DEVELOPMENT RELEASE RATE: 59.7 L/s

100 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min lntensity 200.8 mm/hr
Uncontrolled RC 0.383

TOTAL 100 yr POST-DEVELOPMENT RELEASE RATE: 65.9 L/s

Client:	Town of Oakville	Job no.:	11148742	Sheet:	2
Project:	OTMH Site - Oakville	Calcs by:	MP	Date:	5-Dec-17
Subject:	Predevelopment Runoff	Checked by:	SP	Date:	5-Dec-17

Uncontrolled Areas to Macdonald/Allan North Area 201

CONTRIBUTING AREAS

4370 m²

Area (m²) Area*RC Runoff Coefficients <u>Site</u> Roof 874 787 Roof 0.9 1311 2185 Pavement 1180 Pavement 0.9 Landscaped 546 0.25 Landscaped TOTAL 4370 RC = 0.575

2 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 82.2 mm/hr
Uncontrolled RC 0.575

TOTAL 2 yr PRE-DEVELOPMENT RELEASE RATE: 57.4 L/s

5 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 114.2 mm/hr
Uncontrolled RC 0.575

TOTAL 5 yr PRE-DEVELOPMENT RELEASE RATE: 79.8 L/s

10 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 134.8 mm/hr
Uncontrolled RC 0.575

TOTAL 10 yr POST-DEVELOPMENT RELEASE RATE: 94.2 L/s

25 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 162.2 mm/hr
Uncontrolled RC 0.575

TOTAL 25 yr POST-DEVELOPMENT RELEASE RATE: 113.3 L/s

50 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 182.1 mm/hr
Uncontrolled RC 0.575

TOTAL 50 yr POST-DEVELOPMENT RELEASE RATE: 127.2 L/s

140.3 L/s

100 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min Intensity 200.8 mm/hr Uncontrolled RC 0.575

TOTAL 100 yr POST-DEVELOPMENT RELEASE RATE:

Calculations

Client:	Town of Oakville	Job no.:	11148742	Sheet:	2
Project:	OTMH Site - Oakville	Calcs by:	MP	Date:	5-Dec-17
Subject:	Predevelopment Runoff	Checked by:	SP	Date:	5-Dec-17

Uncontrolled Areas to Lawson Street Area 202

CONTRIBUTING AREAS 35266 m²

 $\begin{array}{c|cccc} & \underline{Area\left(m^2\right)} \\ & Roof: & 13405 & m^2 \\ Pavement / Impervious: & 8417 & m^2 \\ Landscaped / Pervious: & 13444 & m^2 \end{array}$

TOTAL 35266 m²

Area (m²) Area*RC Runoff Coefficients <u>Site</u> Roof 13405 12065 Roof 0.9 8417 13444 7575 3361 Pavement Pavement 0.9 0.25 Landscaped Landscaped TOTAL 35266 RC = 0.652

2 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 82.2 mm/hr
Uncontrolled RC 0.652

TOTAL 2 yr PRE-DEVELOPMENT RELEASE RATE: 525.5 L/s

5 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 114.2 mm/hr
Uncontrolled RC 0.652

TOTAL 5 yr PRE-DEVELOPMENT RELEASE RATE: 730.3 L/s

10 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 134.8 mm/hr
Uncontrolled RC 0.652

TOTAL 10 yr POST-DEVELOPMENT RELEASE RATE: 861.9 L/s

25 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 162.2 mm/hr
Uncontrolled RC 0.652

TOTAL 25 yr POST-DEVELOPMENT RELEASE RATE: 1036.9 L/s

50 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 182.1 mm/hr
Uncontrolled RC 0.652

TOTAL 50 yr POST-DEVELOPMENT RELEASE RATE: 1164.1 L/s

100 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min Intensity 200.8 mm/hr Uncontrolled RC 0.652

TOTAL 100 yr POST-DEVELOPMENT RELEASE RATE:

1284.0 L/s

Client:	Town of Oakville	Job no.:	11148742	Sheet:	2
Project:	OTMH Site - Oakville	Calcs by:	MP	Date:	5-Dec-17
Subject:	Predevelopment Runoff	Checked by:	SP	Date:	5-Dec-17

Uncontrolled Areas to Reynolds Street Area 203

CONTRIBUTING AREAS 13011 m²

 Roof:
 7616
 m²

 Pavement / Impervious:
 2602
 m²

 Landscaped / Pervious:
 2793
 m²

TOTAL 13011 m²

Area (m²) Area*RC Runoff Coefficients <u>Site</u> Roof 7616 6854 Roof 0.9 2342 698 Pavement 2602 Pavement 0.9 Landscaped 2793 0.25 Landscaped TOTAL 13011 RC = 0.760

2 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 82.2 mm/hr
Uncontrolled RC 0.760

TOTAL 2 yr PRE-DEVELOPMENT RELEASE RATE: 226.1 L/s

5 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min Intensity 114.2 mm/hr Uncontrolled RC 0.760

TOTAL 5 yr PRE-DEVELOPMENT RELEASE RATE: 314.2 L/s

10 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min Intensity 134.8 mm/hr Uncontrolled RC 0.760

TOTAL 10 yr POST-DEVELOPMENT RELEASE RATE: 370.8 L/s

25 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 162.2 mm/hr
Uncontrolled RC 0.760

TOTAL 25 yr POST-DEVELOPMENT RELEASE RATE: 446.1 L/s

50 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min Intensity 182.1 mm/hr Uncontrolled RC 0.760

TOTAL 50 yr POST-DEVELOPMENT RELEASE RATE: 500.8 L/s

100 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min Intensity 200.8 mm/hr Uncontrolled RC 0.760

TOTAL 100 yr POST-DEVELOPMENT RELEASE RATE: 552.3 L/s

Client:	Town of Oakville	Job no.:	11148742	Sheet:	2
Project:	OTMH Site - Oakville	Calcs by:	MP	Date:	5-Dec-17
Subject:	Predevelopment Runoff	Checked by:	SP	Date:	5-Dec-17

Uncontrolled Areas to Allan Street South Area 204

CONTRIBUTING AREAS

Area (m²)

 3074 m^2

Area (m²) Area*RC Runoff Coefficients <u>Site</u> Roof 0 0 Roof 0.9 Pavement Pavement 0.9 2793 698 0.25 Landscaped Landscaped TOTAL 2793 RC = 0.250

2 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 82.2 mm/hr
Uncontrolled RC 0.250

TOTAL 2 yr PRE-DEVELOPMENT RELEASE RATE: 16.0 L/s

5 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min Intensity 114.2 mm/hr Uncontrolled RC 0.250

TOTAL 5 yr PRE-DEVELOPMENT RELEASE RATE: 22.2 L/s

10 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 134.8 mm/hr
Uncontrolled RC 0.250

TOTAL 10 yr POST-DEVELOPMENT RELEASE RATE: 26.2 L/s

25 YEAR PRE-DEVELOPMENT FLOW

Time of

Concentration 10 min
Intensity 162.2 mm/hr
Uncontrolled RC 0.250

TOTAL 25 yr POST-DEVELOPMENT RELEASE RATE: 31.5 L/s

50 YEAR PRE-DEVELOPMENT FLOW

Time of

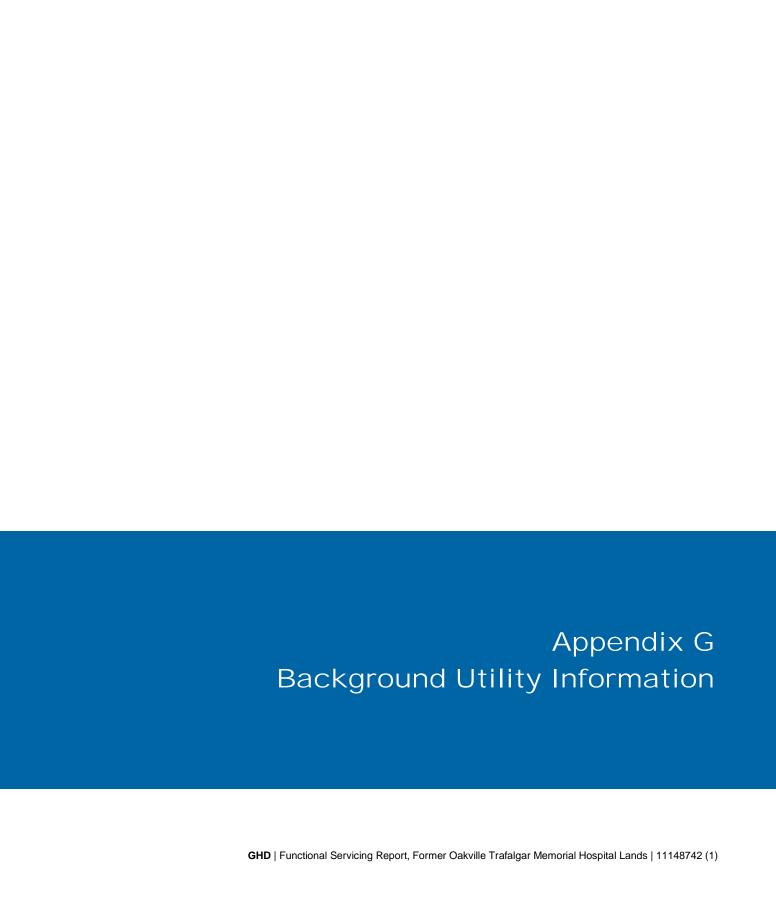
Concentration 10 min Intensity 182.1 mm/hr Uncontrolled RC 0.250

TOTAL 50 yr POST-DEVELOPMENT RELEASE RATE: 35.3 L/s

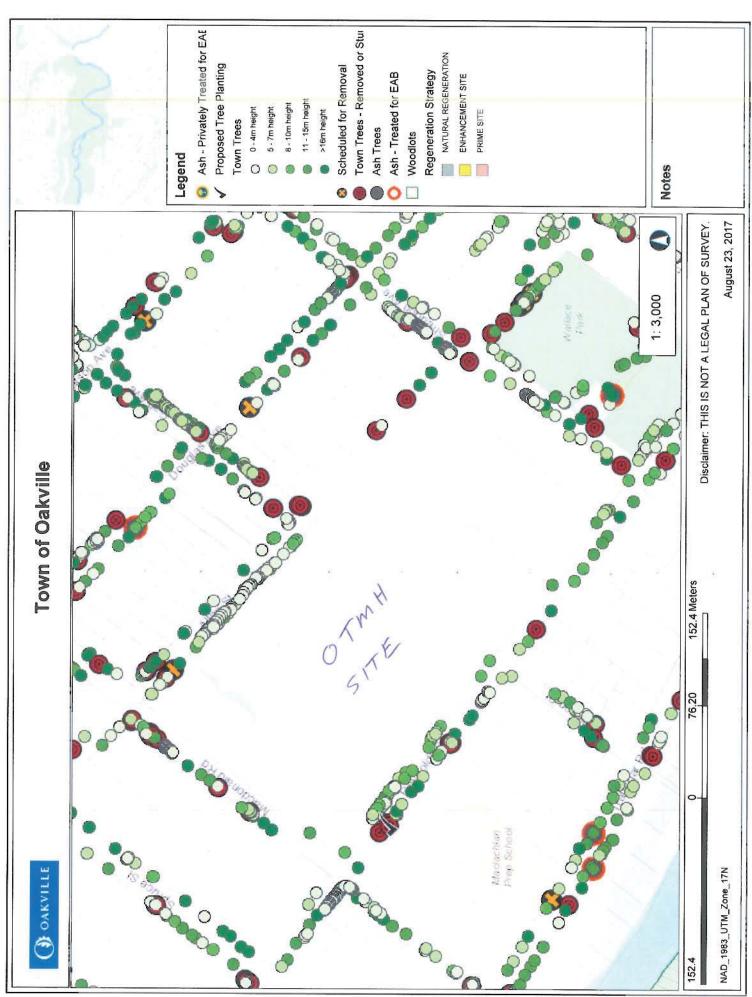
39.0 L/s

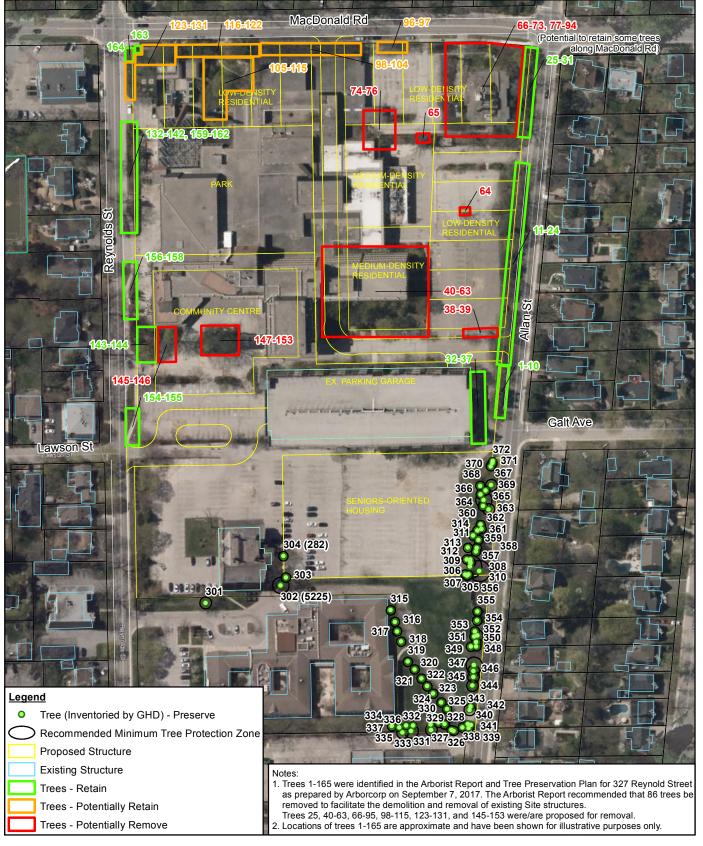
100 YEAR PRE-DEVELOPMENT FLOW

Time of

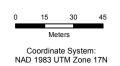

Concentration 10 min lntensity 200.8 mm/hr
Uncontrolled RC 0.250

TOTAL 100 yr POST-DEVELOPMENT RELEASE RATE:




Client:	Town of Oakville	Job no.:	11148742	Sheet:	2
Project:	OTMH Site - Oakville	Calcs by:	MP	Date:	5-Dec-17
Subject:	Comparison	Checked by:	SP	Date:	5-Dec-17

2 year 5 year 10 year 25 year 50 year 100 year	Pre Develop. Area 101 (l/s) 77.3 107.4 126.7 152.5 171.2 188.8	Post Develop Area 201 (I/s) 57.4 79.8 94.2 113.3 127.2 140.3
2 year 5 year 10 year 25 year 50 year 100 year	Pre Develop. Area 102 (l/s) 683.5 949.9 1121.0 1348.7 1514.1 1670	Post Develop Area 202 (l/s) 525.5 730.3 861.9 1036.9 1164.1 1284.0
2 year 5 year 10 year 25 year 50 year	Pre Develop. Area 103 (l/s) 243.6 338.6 399.6 480.8 539.7 595.3	Post Develop Area 203 (l/s) 226.1 314.2 370.8 446.1 500.8 552.3
2 year 5 year 25 year 10 year 25 year 50 year	Pre Develop. Area 104 (I/s) 27 37.5 44.2 53.2 59.7 65.9	Post Develop Area 204 (I/s) 16.0 22.2 26.2 31.5 35.3 39.0



Appendix H Background Tree Assessment Information
GHD Functional Servicing Report, Former Oakville Trafalgar Memorial Hospital Lands 11148742 (1)

Aerial Image: Town of Oakville, 2017.

FORMER OAKVILLE - TRAFALGAR MEMORIAL HOSPITAL OAKVILLE, ONTARIO 11148742-00 Feb 6, 2018

TREE INVENTORY

FIGURE 1

				TABLE	1 - TREE INVENTORY - TREES 30	1-372						
Tree ID	Northing	Easting	Civic Address	Species (Common)	Species (Scientific)	DBH (cm)	Est. Height (m)	Est. Dripline Radius (m)	Recommended Minimum Tree Protection Zone(m ⁶)	Trunk Integrity	Canopy Structure	Canopy Vigour
301	4811921.128	607418.749	327 Reynolds St.	Honey Locust	Gleditsia triacanthos	50.0	12	8	3.0	FAIR-GOOD	FAIR-GOOD	FAIR-GOOD
302 (5225)	4811957.163	607435.438	327 Reynolds St.	Honey Locust Honey Locust	Gleditsia triacanthos	63.9	16 4	10 2	4.2 2.4	FAIR-GOOD	FAIR-GOOD	FAIR-GOOD
303 304 (282)	4811961.718 4811967.387	607433.877 607424.495	327 Reynolds St. 327 Reynolds St.	Manitoba Maple	Gleditsia triacanthos Acer negundo	13.1 16.9	6	6	2.4	FAIR-GOOD FAIR	FAIR FAIR	FAIR-GOOD FAIR
305	4812035.825	607490.627	327 Reynolds St.	Norway Maple	Acer platanoides	16.0	6	3	2.4	POOR-FAIR	POOR-FAIR	FAIR
306	4812036.637	607490.593	327 Reynolds St.	Norway Maple	Acer platanoides	18.0	6	3	2.4	POOR-FAIR	POOR-FAIR	FAIR
307	4812035.432	607489.461	327 Reynolds St.	Norway Maple	Acer platanoides	10.1	6	2	2.4	POOR-FAIR	POOR-FAIR	FAIR
308	4812039.815	607487.904	327 Reynolds St.	White Mulberry	Morus alba	10.5,9.9	8	5	6.0	POOR-FAIR	POOR-FAIR	FAIR
309	4812041.258	607486.523	327 Reynolds St.	White Mulberry	Morus alba	10.3	6	2	2.4	FAIR	POOR-FAIR	FAIR
310	4812041.44	607486.134	327 Reynolds St.	Manitoba Maple	Acer platanoides 'globosum'	14.3	8	4	2.4	FAIR	FAIR	FAIR
311	4812042.196	607485.172	327 Reynolds St.	White Mulberry	Acer platanoides 'globosum'	8.7 15.3	8 10	3	1.8	FAIR	FAIR	FAIR FAIR
312 313	4812040.848 4812044.907	607484.007 607479.603	327 Reynolds St. 327 Reynolds St.	White Mulberry Black Walnut	Thuja occidentalis Thuja occidentalis	14.3	10	6	2.4	FAIR GOOD	FAIR GOOD	GOOD
314	4812050.888	607476.265	327 Reynolds St.	Manitoba Maple	Thuja occidentalis	16.8,15.1	10	6	2.4	FAIR	FAIR	FAIR
315	4811993.903	607480.366	327 Reynolds St.	Northern Red Oak	Quercus rubra	21.0	10	5	2.4	FAIR-GOOD	FAIR-GOOD	FAIR-GOOD
316	4811991.934	607486.35	327 Reynolds St.	Northern Red Oak	Quercus rubra	28.7	10	5	2.4	GOOD	FAIR-GOOD	GOOD
317	4811989.829	607490.842	327 Reynolds St.	Northern Red Oak	Quercus rubra	24.0	10	5	2.4	GOOD	GOOD	GOOD
318	4811988.232	607496.303	327 Reynolds St.	Northern Red Oak	Quercus rubra	27.0	10	5	2.4	GOOD	GOOD	GOOD
319	4811984.556	607506.535	327 Reynolds St.	Northern Red Oak	Quercus rubra	23.6	8	4	2.4	GOOD	FAIR-GOOD	GOOD
320 321	4811984.985 4811984.84	607511.799 607517.632	327 Reynolds St. 327 Reynolds St.	Northern Red Oak Northern Red Oak	Quercus rubra Quercus rubra	14.8 20.1	6 8	3 4	2.4	GOOD FAIR	FAIR-GOOD GOOD	FAIR GOOD
322	4811984.743	607522.575	327 Reynolds St.	Northern Red Oak	Quercus rubra	17.7	8	4	2.4	GOOD	GOOD	FAIR-GOOD
323	4811984.813	607527.392	327 Reynolds St.	Northern Red Oak	Quercus rubra	21.3	10	5	2.4	GOOD	GOOD	GOOD
324	4811985.384	607533.583	327 Reynolds St.	Northern Red Oak	Quercus rubra	21.5	8	4	2.4	GOOD	GOOD	GOOD
325	4811985.621	607538.009	327 Reynolds St.	Northern Red Oak	Quercus rubra	13.2	6	3	2.4	GOOD	GOOD	FAIR
326	4811981.434	607548.986	327 Reynolds St.	Norway Maple	Acer platanoides	14.2	6	4	2.4	FAIR	FAIR	FAIR
327	4811980.771	607548.018	327 Reynolds St.	Norway Maple	Acer platanoides	12.2	6	4	2.4	FAIR	FAIR	FAIR
328	4811979.826	607543.504	327 Reynolds St.	White Spruce	Picea glauca	18.6	10	4	2.4	FAIR	FAIR-GOOD	FAIR
329 330	4811977.802 4811974.149	607540.896 607539.081	327 Reynolds St. 327 Reynolds St.	White Spruce White Spruce	Picea glauca Picea glauca	11.7 7.4	6	2 2	2.4 1.8	FAIR FAIR	FAIR POOR-FAIR	POOR POOR
331	4811972.662	607541.446	327 Reynolds St.	White Mulberry	Morus alba	34.2.22.0.13.4	10	8	3.0	FAIR	FAIR	FAIR
332	4811966.585	607533.943	327 Reynolds St.	White Spruce	Picea glauca	9.7	6	3	1.8	POOR-FAIR	FAIR	POOR
333	4811964.158	607535.645	327 Reynolds St.	White Mulberry	Morus alba	Est. 30,30	51	8	3.6	POOR	POOR	POOR-FAIR
334	4811963.864	607531.834	327 Reynolds St.	White Spruce	Picea glauca	7.8	6	2	1.8	DEAD	DEAD	DEAD
335	4811960.089	607533.49	327 Reynolds St.	Black Walnut	Juglans nigra	45.8	16	8	3.0	FAIR	FAIR	FAIR
336	4811960.564	607530.34	327 Reynolds St.	White Spruce	Picea glauca	6.6	3	2	1.8	FAIR	POOR	POOR
337 338	4811957.887 4811986.095	607527.481 607550.373	327 Reynolds St. 327 Reynolds St.	White Spruce Douglas Fir	Picea glauca Pseudotsuga menziesii	10.8 26.0	6 12	3 4	2.4	FAIR GOOD	FAIR GOOD	FAIR FAIR
339	4811988.46	607552.628	327 Reynolds St.	Eastern White Pine	Pinus strobus	12.0	6	2	2.4	FAIR	FAIR	POOR
340	4811989.205	607550.764	327 Reynolds St.	Eastern White Pine	Pinus strobus	9.0	4	2	1.8	DEAD	DEAD	DEAD
341	4811990.265	607551.984	327 Reynolds St.	Eastern White Pine	Pinus strobus	9.5	6	2	1.8	FAIR	FAIR	POOR-FAIR
342	4811994.597	607545.51	327 Reynolds St.	Black Walnut	Juglans nigra	48.8	15	8	3.0	GOOD	FAIR-GOOD	FAIR-GOOD
343	4811995.967	607544.571	327 Reynolds St.	Norway Spruce	Picea abies	5.5	2	2	1.8	FAIR-GOOD	FAIR	FAIR
344	4812003.332	607536.602	327 Reynolds St.	Black Walnut	Juglans nigra	36.2	15	6	3.0	GOOD	FAIR-GOOD	FAIR-GOOD
345	4812006.513	607533.385	327 Reynolds St.	Black Walnut	Juglans nigra	37.0 40.1	15	6 7	3.0	FAIR	FAIR	FAIR-GOOD
346 347	4812008.415 4812010.426	607531.021 607528.95	327 Reynolds St. 327 Reynolds St.	Black Walnut White Mulberry	Juglans nigra Morus alba	43.0,41.0,30.6	15 15	9	3.0 4.2	FAIR-GOOD POOR	FAIR FAIR	FAIR-GOOD FAIR
348	4812017.289	607521.984	327 Reynolds St.	Douglas Fir	Pseudotsuga menziesii	23.5	12	4	2.4	FAIR	FAIR-GOOD	FAIR-GOOD
349	4812014.954	607520.453	327 Reynolds St.	Manitoba Maple	Acer negundo	16.2	8	5	2.4	FAIR	FAIR	FAIR-GOOD
350	4812018.598	607520.133	327 Reynolds St.	Douglas Fir	Pseudotsuga menziesii	19.3	10	4	2.4	FAIR	FAIR-GOOD	FAIR
351	4812019.552	607517.486	327 Reynolds St.	Douglas Fir	Pseudotsuga menziesii	12.7	6	2	2.4	FAIR	FAIR	FAIR
352	4812021.031	607518.062	327 Reynolds St.	White Mulberry	Morus alba	31.2	10	6	3.0	FAIR	FAIR	FAIR
353	4812021.368	607515.531	327 Reynolds St.	Douglas Fir	Pseudotsuga menziesii	18.7	10	4	2.4	FAIR	FAIR	FAIR
354 355	4812025.696 4812028.689	607511.955 607508.278	327 Reynolds St. 327 Reynolds St.	Norway Spruce White Spruce	Picea abies Picea glauca	19.5 12.8	10 8	3	2.4	GOOD GOOD	GOOD GOOD	GOOD FAIR-GOOD
356	4812042.279	607492.65	327 Reynolds St.	Northern Red Oak	Quercus rubra	82.6	15	10	5.4	GOOD	FAIR-GOOD	FAIR-GOOD
357	4812042.273		327 Reynolds St.		Pinus strobus	13.8	6	3	2.4	POOR	POOR	FAIR
358	4812048.429	607482.54	327 Reynolds St.	Eastern White Pine	Pinus strobus	17	8	3	2.4	POOR-FAIR	FAIR	FAIR
359	4812051.639	607479.745	327 Reynolds St.	Eastern White Pine	Pinus strobus	17.4	8	3	2.4	POOR-FAIR	POOR-FAIR	POOR
360	4812054.234	607475.596	327 Reynolds St.	Eastern White Pine	Pinus strobus	10.3	6	2	2.4	POOR	POOR-FAIR	POOR-FAIR
361	4812056.36	607476.279	327 Reynolds St.	White Mulberry	Morus alba	15.5	8	4	2.4	FAIR-GOOD	FAIR-GOOD	FAIR-GOOD
362	4812057.281	607474.398	327 Reynolds St.	Northern Red Oak	Quercus rubra	13.2	8	4	2.4	FAIR	FAIR-GOOD	POOR
363 364	4812065.435 4812064.106	607470.703 607467.594	327 Reynolds St. 327 Reynolds St.	Northern Red Oak Black Walnut	Quercus rubra	31.5 19.4	12 10	8	3.0 2.4	FAIR GOOD	FAIR FAIR-GOOD	FAIR-GOOD GOOD
365	4812064.106 4812066.434	607465.35	327 Reynolds St.	Northern Red Oak	Juglans nigra Quercus rubra	62.0	10	8	4.2	FAIR	FAIR-GOOD FAIR	FAIR
366	4812066.928		327 Reynolds St.	Manitoba Maple	Acer negundo	21.5	10	6	2.4	FAIR	FAIR	FAIR
367	4812070.067	607462.061	327 Reynolds St.	Black Walnut	Juglans nigra	12.8	10	3	2.4	GOOD	FAIR-GOOD	GOOD
368	4812069.435	607458.53	327 Reynolds St.	Norway Maple	Acer platanoides	11.0	8	4	2.4	FAIR	FAIR-GOOD	GOOD
369	4812074.134	607461.777	327 Reynolds St.	Norway Maple	Acer platanoides	32.8	12	6	3.0	GOOD	FAIR-GOOD	FAIR-GOOD
370	4812079.962			Norway Maple	Acer platanoides	10.3,86	6	3	2.4	POOR	POOR-FAIR	FAIR
371	4812081.516		327 Reynolds St.	Black Walnut	Juglans nigra	15.6	8	3	2.4	FAIR	FAIR-GOOD	FAIR-GOOD
372	4812082.322	60/452.385	327 Reynolds St.	White Mulberry	Acer platanoides	9.7	6	3	1.8	FAIR	POOR-FAIR	FAIR

- Notes:

 1. GHD recommends that Site trees with the potential to be preserved be reassessed upon completion of demolition works.

 2. Trees 1-165 were identified in the Arborist Report and Tree Preservation Plan for 327 Reynold Street as prepared by Arborcorp on September 7, 2017. The Arborist Report recommended that 86 trees be removed to facilitate the demolition and removal of existing Site structures. Trees 25, 40-63, 66-95, 98-115, 123-131, and 145-153 were/are proposed for removal.

 3. Locations of trees 1-165 are approximate and have been shown for illustrative purposes only.

 4. Trees adjacent and southwest of the existing parking garage have been tagged/inventoried (200-series tags). Tree data was unavailable to GHD.

 5. Trees 301-372 were inventoried by GHD Ltd. on January 30, 2018. The majority of the remaining Site trees (e.g. Trees 1-165) could not be accessed due to sound barrier hoarding and tree pretention fence.
- tree protection fence.

 6. Recommended minimum tree protection zone is based on diameter at breast height (DBH) and town of Oakville standards.

FORMER OAKVILLE - TRAFALGAR MEMORIAL HOSPITAL OAKVILLE, ONTARIO

11148742-00 Feb 6, 2018

TREE INVENTORY

FIGURE 2

Arborist Report and Tree Preservation Plan for 327 Reynold St.
Oakville, ON
L6M 0L8

Prepared for:

DST Consulting Engineers Inc. c/o Andrew Naoum 203-2150 Thurston Drive Ottawa, Ontario K1G 5T9 613-748-1415 ext.275

Data Collected and Report Prepared by:

Stephen Shelton ON-0542 251 Third Line Oakville, ON L6L 4A2 (905) 827-9103 steve@arborcorp.ca

7 September 2017

Table of Contents

Background Information	3
Methodology	3
Municipal Trees	3
Neighbouring Trees	6
Observations	6
Tree Protection Recommendations	14
Conclusions	14
Appendix 1 Detailed Tree Data Graph	15
Appendix 2 Tree Locations	26
Appendix 3 Tree Inventory Methodology	27
Appendix 4 Tree Inventory Methodology	28
Appendix 5 Management Recommendations	
Appendix 6 Tree Protection Barriers	30
Appendix 7 Municipal Tree Photo(s)	31
Appendix 8 Appraisal Calculations	47
Appendix 9 Staff Credentials and Qualifications	
Appendix 10 Limitations of Assessment	

Background Information

This report has been prepared in preparation for the application of a Demolition Permit in the Town of Oakville. The owner of this property intends to demolish the exciting buildings on the property. The Arborcorp Tree Experts have been retained to provide an inventory of the existing trees, to give an overview of their current state of health and structure and to monitor the trees condition throughout the construction process. At the time of this inspection no construction activities had been started on this property. This report summarizes our findings and recommendations.

Methodology

The tree inventory and assessment was conducted on September 2, 2017. There are one hundred and sixty-five (165) trees included in this report. The existing trees have been numbered and identified on the site plan provided by DST Consulting Engineers. Each tree was assigned a unique number and detailed data was collected.

A preservation priority rating was assigned to each tree based on its current health and structure. Typically under existing conditions, trees having a high or moderate preservation priority rating are recommended for preservation, and those with a low rating are recommended for removal. Recommendations were assigned to preserve or remove each tree based on its current health and/or structure, and the expected impact from the proposed development. A final recommendation has been made of each tree that takes into account the tree's current biological health, structural condition, and the anticipated development impacts.

The scope of this report involves the identification of the existing trees on the property and to identify tree protection methods throughout the construction process.

Tree valuations for the municipal trees were calculated using the Replacement Cost Method as described in the Guide to Plant Appraisal 9th Edition. Species ratings were determined from the Ontario Supplement of this text.

Municipal Trees

There are forty-two (42) municipal trees included in this report. (Refer to Appendix 2 for approximate location of trees)

Tree number one (1) is a 36 cm dbh Sugar Maple. This tree is in fair condition and additional protective measures have been recommended.

Tree number two (2) is a 22 cm dbh Blue Spruce. This tree is in fair condition and additional protective measures have been recommended.

Tree number three (3) is a 20 cm dbh Blue Spruce. This tree is in fair condition and additional protective measures have been recommended.

Tree number four (4) is an 18 cm dbh Blue Spruce. This tree is in fair condition and additional protective measures have been recommended.

Tree number five (5) is a 17 cm dbh Blue Spruce. This tree is in fair condition and additional protective measures have been recommended.

Tree number six (6) is an 18 cm dbh Blue Spruce. This tree is in fair condition and additional protective measures have been recommended.

Tree number seven (7) is a 19 cm dbh Blue Spruce. This tree is in fair condition and additional protective measures have been recommended.

Tree number eight (8) is a 19 cm dbh Blue Spruce. This tree is in fair condition and additional protective measures have been recommended.

Tree number nine (9) is a 41 cm dbh Norway Maple. This tree is in fair condition and additional protective measures have been recommended.

Tree number ten (10) is a 23 cm dbh Norway Maple. This tree is in fair condition and additional protective measures have been recommended.

Tree number eleven (11) is a 51 cm dbh Norway Maple. This tree is in good condition and additional protective measures have been recommended.

Tree number twelve (12) is a 38 cm dbh Black Locust. This tree is in good condition and additional protective measures have been recommended.

Tree number thirteen (13) is a 34 cm dbh Norway Maple. This tree is in fair condition and additional protective measures have been recommended.

Tree number fourteen (14) is a 44 cm dbh Norway Maple. This tree is in good condition and additional protective measures have been recommended.

Tree number fifteen (15) is a 45 cm dbh Norway Maple. This tree is in good condition and additional protective measures have been recommended.

Tree number sixteen (16) is a 47 cm dbh Austrian Pine. This tree is in fair condition and additional protective measures have been recommended.

Tree number seventeen (17) is a 31 cm dbh Austrian Pine. This tree is in fair condition and additional protective measures have been recommended.

Tree number eighteen (18) is a 46 cm dbh Norway Maple. This tree is in fair condition and additional protective measures have been recommended.

Tree number nineteen (19) is a 43 cm dbh Austrian Pine. This tree is in fair condition and additional protective measures have been recommended.

Tree number twenty (20) is a 22 cm dbh Norway Maple. This tree is in fair condition and additional protective measures have been recommended.

Tree number twenty-one (21) is a 49 cm dbh Black Locust. This tree is in fair condition and additional protective measures have been recommended.

Tree number twenty-two (22) is a 62 cm dbh Honey Locust. This tree is in good condition and additional protective measures have been recommended.

Tree number twenty-three (23) is a 41 cm dbh White Oak. This tree is in fair condition and additional protective measures have been recommended.

Tree number twenty-four (24) is a 63 cm dbh Honey Locust. This tree is in good condition and additional protective measures have been recommended.

Tree number twenty-five (25) is a 65 cm dbh Honey Locust. This tree is in poor condition and it is recommended for removal.

Tree number twenty-six (26) is a 20 cm dbh Northern Catalpa. This tree is in fair condition and additional protective measures have been recommended.

Tree number twenty-seven (27) is a 44 cm dbh White Oak. This tree is in good condition and additional protective measures have been recommended.

Tree number twenty-eight (28) is a 16 cm dbh Ginko. This tree is in fair condition and additional protective measures have been recommended.

Tree number twenty-nine (29) is a 24 cm dbh Red Oak. This tree is in fair condition and additional protective measures have been recommended.

Tree number thirty (30) is a 50 cm dbh Norway Maple. This tree is in fair condition and additional protective measures have been recommended.

Tree number thirty-one (31) is a 25 cm dbh Northern Catalpa. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and fifty-five (155) is a two stem Manitoba Maple. This tree is in poor condition and additional protective measures have been recommended.

Tree number one hundred and fifty-six (156) is a 25 cm dbh Red Oak. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and fifty-seven (157) is a 26 cm dbh Red Oak. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and fifty-eight (158) is a 27 cm dbh Horse Chestnut. This tree is in poor condition and additional protective measures have been recommended.

Tree number one hundred and fifty-nine (159) is a 27 cm dbh Norway Maple. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and sixty (160) is a 26 cm dbh Red Oak. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and sixty-one (161) is a 34 cm dbh Red Oak. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and sixty-two (162) is a 24 cm dbh Red Oak. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and sixty-three (163) is a 10 cm dbh White Cedar hedge. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and sixty-four (164) is a 28 cm dbh Norway Maple. This tree is in good condition and additional protective measures have been recommended.

Tree number one hundred and sixty-five (165) is a 52 cm dbh Austrian Pine. This tree is in fair condition and additional protective measures have been recommended.

Additional information on these trees can be found in Appendix 1, and a valuation of these trees can be found in Appendix 8.

Neighbouring Trees

There are zero (0) neighbouring trees within 6m of the property line.

Additional information on these trees can be found in Appendix 1.

Observations

There are one hundred and twenty-three (123) privately owned trees on this property. (Refer to Appendix 2 for approximate location of trees)

Tree number thirty-two (32) is a 25 cm dbh Austrian Pine. This tree is in fair condition and additional protective measures have been recommended.

Tree number thirty-three (33) is a 34 cm dbh Austrian Pine. This tree is in fair condition and additional protective measures have been recommended.

Tree number thirty-four (34) is a 31 cm dbh Austrian Pine. This tree is in fair condition and additional protective measures have been recommended.

Tree number thirty-five (35) is a 20 cm dbh Red Maple. This tree is in fair condition and additional protective measures have been recommended.

Tree number thirty-six (36) is a 34 cm dbh Austrian Pine. This tree is in fair condition and additional protective measures have been recommended.

Tree number thirty-seven (37) is a 26 cm dbh Austrian Pine. This tree is in fair condition and additional protective measures have been recommended.

Tree number thirty-eight (38) is a 26 cm dbh Black Locust. This tree is in fair condition and additional protective measures have been recommended.

Tree number thirty-nine (39) is a two stem Little Leaf Linden. This tree is in fair condition and additional protective measures have been recommended.

Tree number forty (40) is a 65 cm dbh Norway Maple. This tree is in good condition however it is recommended for removal due to development impacts.

Tree number forty-one (41) is a 26 cm dbh White Spruce. This tree is in good condition however it is recommended for removal due to development impacts.

Tree number forty-two (42) is a 32 cm dbh Norway Maple. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number forty-three (43) is an 18 cm dbh Norway Maple. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number forty-four (44) is a 35 cm dbh Manitoba Maple. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number forty-five (45) is a 22 cm dbh Norway Maple. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number forty-six (46) is a 22 cm dbh Black Walnut. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number forty-seven (47) is a 19 cm dbh Chinese Elm. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number forty-eight (48) is an 18 cm dbh Chinese Elm. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number forty-nine (49) is a 23 cm dbh Black Walnut. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number fifty (50) is a 21 cm dbh Black Walnut. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number fifty-one (51) is an 18 cm dbh White Spruce. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number fifty-two (52) is a 33 cm dbh Ivory Silk Lilac. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number fifty-three (53) is a 17 cm dbh Norway Maple. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number fifty-four (54) is a 42 cm dbh Tamarack. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number fifty-five (55) is a 20 cm dbh Chinese Elm. This tree is in poor condition however it is recommended for removal due to development impacts.

Tree number fifty-six (56) is a 25 cm dbh Chinese Elm. This tree is in poor condition however it is recommended for removal due to development impacts.

Tree number fifty-seven (57) is a 22 cm dbh Chinese Elm. This tree is in poor condition however it is recommended for removal due to development impacts.

Tree number fifty-eight (58) is a 23 cm dbh White Spruce. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number fifty-nine (59) is a 44cm dbh Norway Maple. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number sixty (60) is a 28 cm dbh Manitoba Maple. This tree is in poor condition however it is recommended for removal due to development impacts.

Tree number sixty-one (61) is a 26 cm dbh Black Walnut. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number sixty-two (62) is a 19 cm dbh Norway Maple. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number sixty-three (63) is a 25 cm dbh Manitoba Maple. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number sixty-four (64) is a 28 cm dbh Honey Locust. This tree is in good condition and additional protective measures have been recommended.

Tree number sixty-five (65) is a 72 cm dbh Bur Oak. This tree is in good condition and additional protective measures have been recommended.

Tree number sixty-six (66) is a 16 cm dbh Norway Maple. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number sixty-seven (67) is a 20 cm dbh Little Leaf Linden. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number sixty-eight (68) is a 16 cm dbh Bur Oak. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number sixty-nine (69) is a 46 cm dbh Manitoba Maple. This tree is in poor condition however it is recommended for removal due to development impacts.

Tree number seventy (70) is a 21 cm dbh Ivory Silk Lilac. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number seventy-one (71) is a 25 cm dbh Black Walnut. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number seventy-two (72) is a 46 cm dbh Bur Oak. This tree is in good condition however it is recommended for removal due to development impacts.

Tree number seventy-three (73) is a 45 cm dbh Honey Locust. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number seventy-four (74) is a 27 cm dbh Red Maple. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number seventy-five (75) is a three stem Manitoba Maple. This tree is in poor condition however it is recommended for removal due to development impacts.

Tree number seventy-six (76) is a 26 cm dbh Chinese Elm. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number seventy-seven (77) is an 18 cm dbh Eastern Hemlock. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number seventy-eight (78) is an 18 cm dbh Norway Maple. This tree is in good condition however it is recommended for removal due to development impacts.

Tree number seventy-nine (79) is a 28 cm dbh Manitoba Maple. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number eighty (80) is a 19 cm dbh Red Oak. This tree is in good condition however it is recommended for removal due to development impacts.

Tree number eighty-one (81) is a 23 cm dbh Red Oak. This tree is in good condition however it is recommended for removal due to development impacts.

Tree number eighty-two (82) is a 33 cm dbh Norway Maple. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number eighty-three (83) is a 21 cm dbh Red Oak. This tree is in good condition however it is recommended for removal due to development impacts.

Tree number eighty-four (84) is a 29 cm dbh Norway Maple. This tree is in good condition however it is recommended for removal due to development impacts.

Tree number eighty-five (85) is a 46 cm dbh Bur Oak. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number eighty-six (86) is a 17 cm dbh Bur Oak. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number eighty-seven (87) is a 75 cm dbh Bur Oak. This tree is in poor condition however it is recommended for removal due to development impacts.

Tree number eighty-eight (88) is a 76 cm dbh Bur Oak. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number eighty-nine (89) is an 18 cm dbh Mulberry. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number ninety (90) is an 18 cm dbh Mulberry. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number ninety-one (91) is a 17 cm dbh Northern Catalpa. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number ninety-two (92) is a 20 cm dbh Alder. This tree is in poor condition however it is recommended for removal due to development impacts.

Tree number ninety-three (93) is a 41 cm dbh Chinese Elm. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number ninety-four (94) is a 23 cm dbh Northern Catalpa. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number ninety-five (95) is a 23 cm dbh Honey Locust. This tree is in good condition however it is recommended for removal due to development impacts.

Tree number ninety-six (96) is a 35 cm dbh Honey Locust. This tree is in good condition and additional protective measures have been recommended.

Tree number ninety-seven (97) is a 41 cm dbh Honey Locust. This tree is in good condition and additional protective measures have been recommended.

Tree number ninety-eight (98) is a 48 cm dbh Little Leaf Linden. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number ninety-nine (99) is a 50 cm dbh Little Leaf Linden. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred (100) is a 30 cm dbh Little Leaf Linden. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and one (101) is a 50 cm dbh Little Leaf Linden. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and two (102) is a 38 cm dbh Little Leaf Linden. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and three (103) is a 48 cm dbh Little Leaf Linden. This tree is in good condition however it is recommended for removal due to development impacts.

Tree number one hundred and four (104) is a 47 cm dbh Little Leaf Linden. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and five (105) is a 17 cm dbh Norway Maple. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and six (106) is a 19 cm dbh Little Leaf Linden. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and seven (107) is a 51 cm dbh Chinese Elm. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and eight (108) is a 28 cm dbh Honey Locust. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and nine (109) is a 52 cm dbh Black Locust. This tree is in good condition however it is recommended for removal due to development impacts.

Tree number one hundred and ten (110) is a 39 cm dbh Norway Maple. This tree is in good condition however it is recommended for removal due to development impacts.

Tree number one hundred and eleven (111) is a 25 cm dbh Norway Maple. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and twelve (112) is a 20 cm dbh Black Locust. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and thirteen (113) is a 22 cm dbh Black Locust. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and fourteen (114) is a 24 cm dbh Black Locust. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and fifteen (115) is a 23 cm dbh Black Locust. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and sixteen (116) is a 62 cm dbh Austrian Pine. This tree is in good condition and additional protective measures have been recommended.

Tree number one hundred and seventeen (117) is an 18 cm dbh Norway Maple. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and eighteen (118) is an 18 cm dbh Norway Maple. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and nineteen (119) is an 18 cm dbh Norway Maple. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and twenty (120) is a 19 cm dbh Norway Maple. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and twenty-one (121) is a 23 cm dbh Norway Maple. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and twenty-two (122) is a 33 cm dbh Chinese Elm. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and twenty-three (123) is a 22 cm dbh Norway Maple. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and twenty-four (124) is a 61 cm dbh Austrian Pine. This tree is in good condition however it is recommended for removal due to development impacts.

Tree number one hundred and twenty-five (125) is a 23 cm dbh Black Walnut. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and twenty-six (126) is a 20 cm dbh Norway Maple. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and twenty-seven (127) is a 15 cm dbh Norway Maple. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and twenty-eight (128) is an 18 cm dbh Bur Oak. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and twenty-nine (129) is a 33 cm dbh Black Walnut. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and thirty (130) is a 36 cm dbh Norway Maple. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and thirty-one (131) is a 44 cm dbh Norway Maple. This tree is in good condition however it is recommended for removal due to development impacts.

Tree number one hundred and thirty-two (132) is a 35 cm dbh Red Oak. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and thirty-three (133) is an 18 cm dbh White Spruce. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and thirty-four (134) is an 18 cm dbh White Spruce. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and thirty-five (135) is a 16 cm dbh White Spruce. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and thirty-six (136) is a 27 cm dbh Norway Maple. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and thirty-seven (137) is a 26 cm dbh Austrian Pine. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and thirty-eight (138) is an 18 cm dbh Norway Maple. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and thirty-nine (139) is a 26 cm dbh Eastern White Pine. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and forty (140) is a 28 cm dbh Red Oak. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and forty-one (141) is a 19 cm dbh Eastern White Pine. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and forty-two (142) is a 21 cm dbh Red Oak. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and forty-three (143) is a 56 cm dbh Norway Maple. This tree is in poor condition and additional protective measures have been recommended.

Tree number one hundred and forty-four (144) is a 53 cm dbh Norway Maple. This tree is in fair condition and additional protective measures have been recommended.

Tree number one hundred and forty-five (145) is a 68 cm dbh Bur Oak. This tree is in good condition however it is recommended for removal due to development impacts.

Tree number one hundred and forty-six (146) is a 33 cm dbh Norway Maple. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and forty-seven (147) is a 16 cm dbh Red Oak. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and forty-eight (148) is a two stem Canada Yew. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and forty-nine (149) is a 20 cm dbh Columnar Oak. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred and fifty (150) is an 18 cm dbh Norway Maple. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred fifty-one (151) is a 16 cm dbh Norway Maple. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred fifty-two (152) is a 53 cm dbh Bur Oak. This tree is in fair condition however it is recommended for removal due to development impacts.

Tree number one hundred fifty-three (153) is a 77 cm dbh Red Oak. This tree is in good condition however it is recommended for removal due to development impacts.

Additional information on these trees can be found in Appendix 1 and Appendix 2.

Tree Protection Recommendations

The Following recommendations shall serve as guidelines for specific trees. These recommendations are intended to protect specific trees throughout the construction process. Protective tree hoarding shall be constructed according to Town of Oakville specifications and will consist of orange snow fencing with two by four frame top and bottom. The Arborcorp Tree Experts have been retained to ensure that all tree protection measures are being followed.

Refer to Appendix 2 for protection recommendations for trees to be protected.

In addition to these specific recommendations all of the guidelines indicated in Appendix 5 shall be adhered to throughout the construction process. The Arborcorp Tree Experts have been retained to complete all required arboricultural actions.

Conclusions

There are one hundred and sixty-four (164) trees associated with this property, one hundred and sixty-four (164) of which will be affected by the proposed construction. There are forty-two (42) municipal trees associated with this project. Tree preservation recommendations have been made for all trees affected by the proposed construction. There are eighty-six (86) trees recommended for removal. Tree removals shall be carried out in accordance with the Town of Oakville's Private Tree Protection By-Law.

Appendix 1 Detailed Tree Data Graph

		Appoint													
Tree No.	Tree Species	Latin Name	Municipal Address	ОВН (сш)	Height (m)	Crown Reserve (m)	Crown Height (m)	Biological Health	Structural Conditions	Minimum Required TPZ	Municipal Tree	Recommendation Based on Health & Structure	Recommendation Based on Development Impacts	Final Recommendation	Observations / Comments
1	Maple Sugar (hard maple)	Acer saccharum	327	36	9	6	6	M	M	2.4	Υ	Р	Р	Р	PP, WNC, RP, ER
2	Spruce Blue	Picea pungens	327	22	9	4	8	М	М	2.4	Υ	Р	Р	Р	RP, DC
3	Spruce Blue	Picea pungens	327	20	9	4	8	М	М	2.4	Υ	Р	Р	Р	RP, DC
4	Spruce Blue	Picea pungens	327	18	9	4	8	М	М	2.4	Υ	Р	Р	Р	Rp, DC
5	Spruce Blue	Picea pungens	327	17	9	4	8	М	М	2.4	Υ	Р	Р	Р	Rp, DC
6	Spruce Blue	Picea pungens	327	18	9	4	8	М	М	2.4	Υ	Р	Р	Р	RP, DC
7	Spruce Blue	Picea pungens	327	19	9	4	8	М	М	2.4	Υ	Р	Р	Р	DC, RP
8	Spruce Blue	Picea pungens	327	19	9	4	8	М	М	2.4	Υ	Р	Р	Р	LN (M), RP, DC
9	Maple Norway	Acer platanoides	327	41	10	8	8	М	М	3	Υ	Р	Р	Р	PP, WNC, DC
10	Maple Norway	Acer platanoides	327	23	8	6	6	М	М	2.4	Υ	Р	Р	Р	RP, ML, FK3@2M
11	Maple Norway	Acer platanoides	327	51	10	11	8	Н	Н	3.6	Υ	Р	Р	Р	RP, ML, BR3, DC
12	Locust Black	Robina pseudoacacia	327	38	10	6	4	Н	Н	2.4	Υ	Р	Р	Р	DC, SF, ML
13	Maple Norway	Acer platanoides	327	34	9	8	7	М	М	2.4	Υ	Р	Р	Р	PP, WNC, ML, RP
14	Maple Norway	Acer platanoides	327	44	9	9	6	Н	Н	3	Υ	Р	Р	Р	RP, ML, DC
15	Maple Norway	Acer platanoides	327	45	10	8	8	Н	Н	3	Υ	Р	Р	Р	PP, WNC, ML, RP
16	Pine Red	Pinus resinosa	327	47	8	9	6	М	М	3	Υ	Р	Р	Р	VC, RP, ML

Tree No.	Tree Species	Latin Name	Municipal Address	DBH (cm)	Height (m)	Crown Reserve (m)	Crown Height (m)	Biological Health	Structural Conditions	Minimum Required TPZ	Municipal Tree	Recommendation Based on Health & Structure	Recommendation Based on Development Impacts	Final Recommendation	Observations / Comments
17	Pine Red	Pinus resinosa	327	31	6	5	5	М	М	2.4	Υ	Р	Р	Р	ML, RP, VC
18	Maple Norway	Acer platanoides	327	46	10	8	7	М	М	3	Υ	Р	Р	Р	DC, SF, BR2, ML, RP
19	Pine Red	Pinus resinosa	327	43	10	6	8	М	М	3	Υ	Р	Р	Р	RP, ML, DC
20	Maple Norway	Acer platanoides	327	22	8	4	5	М	М	2.4	Υ	Р	Р	Р	ER, RP, ML
21	Locust Black	Robina pseudoacacia	327	49	10	6	8	М	М	3	Υ	Р	Р	Р	DC, RP, ML
22	Locust Honey	Gleditsia triacanthos	327	62	13	8	10	Н	Н	4.2	Υ	Р	Р	Р	DC, TW, WNC, ML
23	Oak White	Quercus alba	327	41	11	6	8	М	М	3	Υ	Р	Р	Р	PP, RP, WNC, ML
24	Locust Honey	Gleditsia triacanthos	327	63	13	9	8	Н	Н	4.2	Υ	Р	Р	Р	PP, WNC, SC, RP
25	Locust Honey	Gleditsia triacanthos	327	65	14	0	0	L	L	4.2	Υ	R	R	R	DEAD
26	Catalpa Northern	Catalpa speciosa	327	20	10	4	8	М	М	2.4	Υ	Р	Р	Р	RP, ML, DC
27	Oak White	Quercus alba	327	44	14	8	6	Н	Н	3	Υ	Р	Р	Р	DC, RP, ML, SF
28	Ginko	Ginko biloba	327	16	7	4	4	М	М	2.4	Υ	Р	Р	Р	PP, WC, ML
29	Oak Red	Quercus rubra	327	24	10	6	7	М	М	2.4	Υ	Р	Р	Р	RP, ML, DC
30	Maple Norway	Acer platanoides	327	50	14	8	12	М	М	3	Υ	Р	Р	Р	PP, WNC, LN (L)
31	Catalpa Northern	Catalpa speciosa	327	25	9	4	6	М	М	2.4	Υ	Р	Р	Р	RP, ML, 50%DW
32	Pine Red	Pinus resinosa	327	25	9	5	5	М	М	2.4	N	Р	Р	Р	RP, DC
33	Pine Red	Pinus resinosa	327	34	10	6	6	М	М	2.4	N	Р	Р	Р	BR2, RP, DC
34	Pine Red	Pinus resinosa	327	31	10	6	6	М	М	2.4	N	Р	Р	Р	DC, RP, SF

Tree No.	Tree Species	Latin Name	Municipal Address	DBH (cm)	Height (m)	Crown Reserve (m)	Crown Height (m)	Biological Health	Structural Conditions	Minimum Required TPZ	Municipal Tree	Recommendation Based on Health & Structure	Recommendation Based on Development Impacts	Final Recommendation	Observations / Comments
35	Maple Red (soft maple)	Acer rubrum	327	20	15	5	7	М	М	2.4	N	Р	Р	Р	PP, WNC, RP, ML
36	Pine Red	Pinus resinosa	327	34	15	7	8	М	М	2.4	N	Р	Р	Р	PP, BR2, WNC
37	Pine Red	Pinus resinosa	327	26	15	5	8	М	М	2.4	N	Р	Р	Р	RP, ML, DC
38	Locust Black	Robina pseudoacacia	327	26	15	6	12	М	М	2.4	Ν	Р	Р	Р	RP, ML, DC
39	Linden Little Leaf	Tilia cordata	327	24, 14	9	7	8	М	М	2.4	N	Р	Р	Р	ST, SC, RP, ML
40	Maple Norway	Acer platanoides	327	65	16	11	15	Н	Н	4.2	N	Р	R	R	SF, DC, RP, ER
41	Spruce White	Picea glauca	327	26	16	7	15	Н	Н	2.4	N	Р	R	R	RP, DC, SF
42	Maple Norway	Acer platanoides	327	32	13	8	11	М	М	2.4	N	Р	R	R	DC, RP, ML, PP
43	Maple Norway	Acer platanoides	327	18	15	3	13	М	М	2.4	N	Р	R	R	RP, ML, DC, SF
44	Maple Manitoba	Acer negundo	327	35	15	6	12	M	M	2.4	N	Р	R	R	PP, WNC, RP
45	Maple Norway	Acer platanoides	327	22	13	4	10	М	М	2.4	N	Р	R	R	PP, WC, ML
46	Walnut Black	Juglans nigra	327	22	13	7	6	M	М	2.4	N	Р	R	R	RP, ML, LN (L)
47	Elm Chinese	Ulmus parvifolia	327	19	14	2	4	M	M	2.4	N	Р	R	R	PP, WNC, SC
48	Elm Chinese	Ulmus parvifolia	327	18	15	2	3	M	M	2.4	N	Р	R	R	PP, WNC, ML
49	Walnut Black	Juglans nigra	327	23	14	5	6	M	M	2.4	N	Р	R	R	LN (L), RP, ML
50	Walnut Black	Juglans nigra	327	21	13	5	6	M	M	2.4	N	Р	R	R	ML, RP
51	Spruce White	Picea glauca	327	18	13	6	12	M	М	2.4	N	Р	R	R	DC, RP
52	Lilac Ivory Silk	Syringa reticulata 'Ivory Silk'	327	33	7	8	6	М	М	2.4	N	Р	R	R	ML, DC, BR2,

Tree No.	Tree Species	Latin Name	Municipal Address	DBH (cm)	Height (m)	Crown Reserve (m)	Crown Height (m)	Biological Health	Structural Conditions	Minimum Required TPZ	Municipal Tree	Recommendation Based on Health & Structure	Recommendation Based on Development Impacts	Final Recommendation	Observations / Comments
53	Maple Norway	Acer platanoides	327	17	13	5	8	M	M	2.4	N	Р	R	R	RP, ML, DC, ER
54	Tamarack	Larix laricina	327	42	16	6	13	M	M	3	N	Р	R	R	VC, RP, DC
55	Elm Chinese	Ulmus parvifolia	327	20	14	3	11	L	L	2.4	N	Р	R	R	ML, RP, ST
56	Elm Chinese	Ulmus parvifolia	327	25	14	2	10	L	L	2.4	N	Р	R	R	PP, WNC, SC
57	Elm Chinese	Ulmus parvifolia	327	22	14	3	10	L	L	2.4	N	Р	R	R	PP, WNC, ST, SC, RP
58	Spruce White	Picea glauca	327	23	12	5	11	M	М	2.4	N	Р	R	R	RP, DC, ER, VC
59	Maple Norway	Acer platanoides	327	44	12	8	10	M	M	3	N	Р	R	R	DC, RP, ML, ER
60	Maple Manitoba	Acer negundo	327	28	10	6	8	L	L	2.4	N	Р	R	R	Ln (h), RP, ML
61	Walnut Black	Juglans nigra	327	26	8	7	5	М	М	2.4	N	Р	R	R	PP, WNC, RP, DC
62	Maple Norway	Acer platanoides	327	19	9	4	5	М	М	2.4	N	Р	R	R	PP, WC, RP, ML
63	Maple Manitoba	Acer negundo	327	25	10	7	8	М	М	2.4	N	Р	R	R	RP, ML, SC, ST, TW
64	Locust Honey	Gleditsia triacanthos	327	28	8	7	6	Н	Н	2.4	N	Р	Р	Р	RP, PP, WNC, DC
65	Oak Bur	Quercus macrocarpa	327	72	15	9	11	Н	Н	4.8	Ν	Р	Р	Р	SC, ST, VC, RP
66	Maple Norway	Acer platanoides	327	16	8	6	6	M	M	2.4	N	Р	R	R	ER, GR, RP, ML
67	Linden Little Leaf	Tilia cordata	327	20	9	6	7	M	M	2.4	N	Р	R	R	Er, RP, ML, PP
68	Oak Bur	Quercus macrocarpa	327	16	9	5	7	M	M	2.4	N	Р	R	R	RP, ML, BR
69	Maple Manitoba	Acer negundo	327	46	12	8	9	L	L	3	N	Р	R	R	VC, RP, ML, PP, FB

Tree No.	Tree Species	Latin Name	Municipal Address	DBH (cm)	Height (m)	Crown Reserve (m)	Crown Height (m)	Biological Health	Structural Conditions	Minimum Required TPZ	Municipal Tree	Recommendation Based on Health & Structure	Recommendation Based on Development Impacts	Final Recommendation	Observations / Comments
70	Lilac Ivory Silk	Syringa reticulata 'Ivory Silk'	327	21	8	7	6	M	M	2.4	N	Р	R	R	PP, WNC, TW
71	Walnut Black	Juglans nigra	327	25	12	8	10	М	М	2.4	N	Р	R	R	RP, ML, DC
72	Oak Bur	Quercus macrocarpa	327	46	14	13	12	Н	Н	3	N	Р	R	R	VC, RP, ML, PP, WNC
73	Locust Honey	Gleditsia triacanthos	327	45	14	10	12	М	М	3	N	Р	R	R	PP, WC, ML, RP
74	Maple Red (soft maple)	Acer rubrum	327	27	9	6	8	M	M	2.4	N	Р	R	R	DC, RP, TOB
75	Maple Manitoba	Acer negundo	327	20, 16, 15	8	7	7	L	L	2.4	N	Р	R	R	PP, WNC, ST
76	Elm Chinese	Ulmus parvifolia	327	26	12	5	11	M	M	2.4	N	Р	R	R	RP, ML, ST, SC
77	Hemlock Eastern	Tsuga canadensis	327	18	12	4	11	M	M	2.4	N	Р	R	R	DC, ER, RP
78	Maple Norway	Acer platanoides	327	18	12	5	11	Н	Н	2.4	N	Р	R	R	ER, RP, ML, PP, WNC
79	Maple Manitoba	Acer negundo	327	28	13	7	10	М	М	2.4	N	Р	R	R	ER, RP, SC, ML
80	Oak Red	Quercus rubra	327	19	12	8	9	Н	Н	2.4	N	Р	R	R	LN (L), RP, ML, GR
81	Oak Red	Quercus rubra	327	23	12	8	10	Н	Н	2.4	N	Р	R	R	RP, SG, LN (L)
82	Maple Norway	Acer platanoides	327	33	14	9	10	М	М	2.4	N	Р	R	R	PP, WC, RP, ML
83	Oak Red	Quercus rubra	327	21	10	5	7	Н	Н	2.4	N	Р	R	R	PP, WC, ER, DC
84	Maple Norway	Acer platanoides	327	29	13	8	11	Н	Н	2.4	N	Р	R	R	PP, WNC, ER, DC
85	Oak Bur	Quercus macrocarpa	327	46	12	6	9	M	M	3	N	Р	R	R	ST, SC, RP, ML, UW

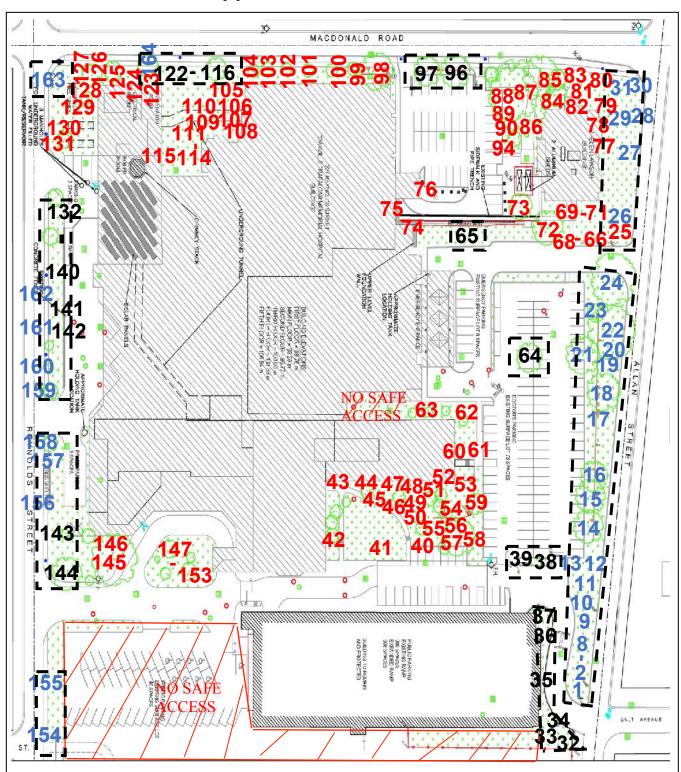
				ı		1	1			1		1			
Tree No.	Tree Species	Latin Name	Municipal Address	DВН (cm)	Height (m)	Crown Reserve (m)	Crown Height (m)	Biological Health	Structural Conditions	Minimum Required TPZ	Municipal Tree	Recommendation Based on Health & Structure	Recommendation Based on Development Impacts	Final Recommendation	Observations / Comments
86	Oak Bur	Quercus macrocarpa	327	17	9	5	8	M	M	2.4	N	Р	R	R	ML, DC, ST
87	Oak Red	Quercus rubra	327	75	17	0	0	L	L	4.8	N	R	R	R	DEAD
88	Oak Red	Quercus rubra	327	76	17	10	15	М	М	4.8	N	Р	R	R	SC, RP, UW, ST, PP, WNC
89	Mulberry Common	Morus spp.	327	18	6	5	6	М	М	2.4	N	Р	R	R	SC, RP, ML
90	Mulberry Common	Morus spp.	327	18	6	5	6	М	М	2.4	N	Р	R	R	SC, RP, ML
91	Catalpa Northern	Catalpa speciosa	327	17	9	3	6	М	М	2.4	N	Р	R	R	DC, RP, ML, PP, WC
92	Alder	Alnus spp.	327	20	4	5	3	L	L	2.4	N	Р	R	R	PC, RP, ML, VC
93	Elm Chinese	Ulmus parvifolia	327	41	11	7	7	М	М	3	N	Р	R	R	PP, WC, SC, ML
94	Catalpa Northern	Catalpa speciosa	327	23	10	5	8	М	М	2.4	N	Р	R	R	PP, WMC, ST, CT, ML
95	Locust Honey	Gleditsia triacanthos	327	23	10	7	8	Н	Н	2.4	N	Р	R	R	DC, RP, ML
96	Locust Honey	Gleditsia triacanthos	327	35	10	7	8	Н	Н	2.4	N	Р	Р	Р	PP, WC, DC, SC
97	Locust Honey	Gleditsia triacanthos	327	41	10	9	8	Н	Н	3	N	Р	Р	Р	ER, RP, ML, DC, PP, WNC
98	Linden Little Leaf	Tilia cordata	327	48	14	11	11	M	M	3	N	Р	R	R	ER, RP, DC, ML
99	Linden Little Leaf	Tilia cordata	327	50	14	12	12	М	М	3	N	Р	R	R	ER, GR, RP, ML, PP, WNC

Tree No.	Tree Species	Latin Name	Municipal Address	DBH (cm)	Height (m)	Crown Reserve (m)	Crown Height (m)	Biological Health	Structural Conditions	Minimum Required TPZ	Municipal Tree	Recommendation Based on Health & Structure	Recommendation Based on Development Impacts	Final Recommendation	Observations / Comments
	Linden														LN (L,
100	Little Leaf	Tilia cordata	327	30	9	7	6	M	M	2.4	N	Р	R	R	RP, ML, ER
101	Linden Little Leaf	Tilia cordata	327	50	13	10	11	M	M	3	N	Р	R	R	ER, GR, RP, ML, DC
102	Linden Little Leaf	Tilia cordata	327	38	13	10	10	M	M	2.4	N	Р	R	R	GR, ER, RP, ML
103	Linden Little Leaf	Tilia cordata	327	48	14	12	12	Н	Н	3	N	Р	R	R	ER, GR, SG, ML
104	Linden Little Leaf	Tilia cordata	327	47	14	11	11	M	М	3	N	Р	R	R	GR, ER, RP, ML
105	Maple Norway	Acer platanoides	327	17	10	4	8	M	M	2.4	N	Р	R	R	DC, RP, ML
106	Linden Little Leaf	Tilia cordata	327	19	10	5	9	M	M	2.4	N	Р	R	R	RP, ML, PP, WC
107	Elm Chinese	Ulmus parvifolia	327	51	14	7	8	M	М	3.6	N	Р	R	R	PP, WNC, RP, ML
108	Locust Honey	Gleditsia triacanthos	327	28	14	6	6	M	M	2.4	N	Р	R	R	DC, RP, ML
109	Locust Black	Robina pseudoacacia	327	52	15	8	9	Н	Н	3.6	N	Р	R	R	DC, ML, PP, WC
110	Maple Norway	Acer platanoides	327	39	13	10	10	Н	Н	2.4	N	Р	R	R	PP, WNC, DC, ML
111	Maple Norway	Acer platanoides	327	25	13	8	12	M	M	2.4	N	Р	R	R	CT, TW, RP, ML
112	Locust Black	Robina pseudoacacia	327	20	12	5	8	M	M	2.4	N	Р	R	R	RP, ML, TOB
113	Locust Black	Robina pseudoacacia	327	22	12	6	8	M	M	2.4	N	Р	R	R	RP, ML, ER, TOB
114	Locust Black	Robina pseudoacacia	327	24	12	4	8	M	M	2.4	N	Р	R	R	TOB, RP, ML
115	Locust Black	Robina pseudoacacia	327	23	13	5	7	М	M	2.4	N	Р	R	R	VC, RP, ML, TW, WNC

Tree No.	Tree Species	Latin Name	Municipal Address	DBH (cm)	Height (m)	Crown Reserve (m)	Crown Height (m)	Biological Health	Structural Conditions	Minimum Required TPZ	Municipal Tree	Recommendation Based on Health & Structure	Recommendation Based on Development Impacts	Final Recommendation	Observations / Comments
116	Pine Red	Pinus resinosa	327	62	12	8	7	Н	Н	4.2	N	Р	Р	Р	DC, RP, ML
117	Maple Norway	Acer platanoides	327	18	11	6	8	M	М	2.4	N	Р	Р	Р	DC, LS ML RP
118	Maple Norway	Acer platanoides	327	18	11	7	8	M	М	2.4	N	Р	Р	Р	RP, ML, DC
119	Maple Manitoba	Acer negundo	327	18	10	5	8	M	М	2.4	N	Р	Р	Р	LN (M), RP, ML
120	Maple Norway	Acer platanoides	327	19	11	8	8	М	М	2.4	N	Р	Р	Р	RP, ML, ST, SC
121	Maple Norway	Acer platanoides	327	23	12	7	10	M	М	2.4	N	Р	Р	Р	CT, RP, ML, PP, WC
122	Elm Chinese	Ulmus parvifolia	327	33	12	8	10	М	М	2.4	Ν	Р	Р	Р	LN (L), RP, ML, SC
123	Maple Norway	Acer platanoides	327	22	13	6	12	M	M	2.4	N	Р	R	R	ER, RP, ML, PP, WC
124	Pine Red	Pinus resinosa	327	61	13	9	8	Н	Н	4.2	N	Р	R	R	VC, RP, ML, DC
125	Walnut Black	Juglans nigra	327	23	12	7	9	M	M	2.4	N	Р	R	R	RP, ML, RP, DC
126	Maple Norway	Acer platanoides	327	20	12	5	8	M	M	2.4	N	Р	R	R	VC, RP, PP, WC
127	Maple Norway	Acer platanoides	327	15	10	5	8	M	M	2.4	N	Р	R	R	DC, VC, RP
128	Oak Bur	Quercus macrocarpa	327	18	10	6	7	M	M	2.4	N	Р	R	R	VC, RP, ML, PP, WC
129	Walnut Black	Juglans nigra	327	33	12	9	10	M	M	2.4	N	Р	R	R	VC, RP, ML, DC
130	Maple Norway	Acer platanoides	327	36	11	9	9	M	M	2.4	N	Р	R	R	PP, WC, ML, RP
131	Maple Norway	Acer platanoides	327	44	13	10	11	Н	Н	3	N	Р	R	R	PP, WC, ER, GR, ML

Tree No.	Tree Species	Latin Name	Municipal Address	DBH (cm)	Height (m)	Crown Reserve (m)	Crown Height (m)	Biological Health	Structural Conditions	Minimum Required TPZ	Municipal Tree	Recommendation Based on Health & Structure	Recommendation Based on Development Impacts	Final Recommendation	Observations / Comments
									S	Ē		Re o	Re	Fi	
132	Oak Red	Quercus rubra	327	35	11	8	9	М	М	2.4	N	Р	Р	Р	UW, RP, ML
133	Spruce White	Picea glauca	327	18	11	4	10	М	М	2.4	N	Р	Р	Р	UW, DC, RP
134	Spruce White	Picea glauca	327	18	11	4	10	М	М	2.4	N	Р	Р	Р	DC, UW, RP
135	Spruce White	Picea glauca	327	16	8	4	7	М	М	2.4	N	Р	Р	Р	VC, RP, ML
136	Maple Norway	Acer platanoides	327	27	11	8	8	М	М	2.4	N	Р	Р	Р	VC, UW, RP
137	Pine Red	Pinus resinosa	327	26	10	6	9	М	М	2.4	N	Р	Р	Р	DC, RP
138	Maple Norway	Acer platanoides	327	18	11	7	8	М	М	2.4	N	Р	Р	Р	RP, ML, PP, WC
139	Pine Eastern White	Pinus strobus	327	26	11	7	8	М	М	2.4	N	Р	Р	Р	PP, WNC, RP
140	Oak Red	Quercus rubra	327	28	11	9	9	М	М	2.4	N	Р	Р	Р	UW, RP, MI
141	Pine Eastern White	Pinus strobus	327	19	11	6	9	М	М	2.4	N	Р	Р	Р	DC, PP
142	Oak Red	Quercus rubra	327	21	11	8	9	М	М	2.4	N	Р	Р	Р	VC, RP, ML, UW
143	Maple Norway	Acer platanoides	327	56	10	7	6	L	L	3.6	N	Р	Р	Р	PP, UW, WNC, 15%LC
144	Maple Norway	Acer platanoides	327	53	10	9	8	М	М	3.6	N	Р	Р	Р	RP, ML, PP, WNC, ER
145	Oak Bur	Quercus macrocarpa	327	68	15	12	13	Н	Н	4.2	N	Р	R	R	PP, WNC, RP, DC, SF
146	Maple Norway	Acer platanoides	327	33	13	11	9	M	M	2.4	N	Р	R	R	RP, ML, RC1

Tree No.	Tree Species	Latin Name	Municipal Address	DBH (cm)	Height (m)	Crown Reserve (m)	Crown Height (m)	Biological Health	Structural Conditions	Minimum Required TPZ	Municipal Tree	Recommendation Based on Health & Structure	Recommendation Based on Development Impacts	Final Recommendation	Observations / Comments
147	Oak Red	Quercus rubra	327	16	12	6	10	М	M	2.4	N	Р	R	R	DC, RP, ML
148	Yew Canada	Taxus canadensis	327	13, 14	7	7	5	М	М	2.4	N	Р	R	R	PC, RP
149	Oak Columnar	Quercus robur 'Fastigiata'	327	20	12	9	9	М	М	2.4	N	Р	R	R	BR, RP, ML, SC
150	Maple Norway	Acer platanoides	327	18	12	7	9	М	M	2.4	N	Р	R	R	DC, RP, ML, ER
151	Maple Norway	Acer platanoides	327	16	12	7	9	М	M	2.4	N	Р	R	R	ER, ML, RP
152	Oak Bur	Quercus macrocarpa	327	53	13	10	8	M	M	3.6	N	Р	R	R	VC, RP, ML
153	Oak Red	Quercus rubra	327	77	13	15	8	Н	Н	4.8	N	Р	R	R	PP, WC, DC, SF
154	Maple Manitoba	Acer negundo	327	22, 22	9	7	7	L	L	2.4	Υ	Р	Р	Ρ	UW, RP, ML, TK2, RW
155	Oak Red	Quercus rubra	327	25	9	6	7	М	M	2.4	Υ	Р	Р	Р	UW, RP, ML, PC
156	Oak Red	Quercus rubra	327	26	11	8	9	М	М	2.4	Υ	Р	Р	Р	UW, PP, WC, RP
157	Horseche stnut	Aesculus hippocastanum	327	27	10	6	6	L	L	2.4	Υ	Р	Р	Р	UW, RP, ML, DE
158	Maple Norway	Acer platanoides	327	27	10	4	7	L	L	2.4	Υ	Р	Р	Р	UW, RP, ML, PP, WNC
159	Oak Red	Quercus rubra	327	26	11	6	8	М	М	2.4	Υ	Р	Р	Р	UW, DC, RP, ML, ER
160	Oak Red	Quercus rubra	327	34	11	5	9	М	М	2.4	Υ	Р	Р	Р	PP, WNC, ER, GR, ML



Tree No.	Tree Species	Latin Name	Municipal Address	DBH (cm)	Height (m)	Crown Reserve (m)	Crown Height (m)	Biological Health	Structural Conditions	Minimum Required TPZ	Municipal Tree	Recommendation Based on Health & Structure	Recommendation Based on Development Impacts	Final Recommendation	Observations / Comments
161	Oak Red	Quercus rubra	327	24	11	7	9	М	М	2.4	Υ	Р	Р	Ъ	UW, RP, PP, WNC, LN (L)
162	Cedar White	Thuja occidentalis	327	10	2	1	2	М	М	1.8	Υ	Р	Р	Р	TK10, RP, ML
163	Maple Norway	Acer platanoides	327	28	12	6	9	Н	Н	2.4	Υ	Р	Р	Р	UW, RP, VC, PP, WC
164	Pine Red	Pinus resinosa	327	52	12	8	7	Н	Н	3.6	Υ	Р	Р	Р	UW, ML, PP, WC, VC

Items highlighted in yellow are recommended for removal Trees highlighted in green are municipally owned

Appendix 2 Tree Locations

Note: The proposed Tree Protection Zone (TPZ) hoarding shown as — — lines and are not to scale on this drawing

Appendix 3 Tree Inventory Methodology

DBH (cm) Diameter at breast height, 1.4m above ground, measured in centimeters.

Height (m) Height of tree from ground to top of crown.

Crown Reserve (m) Crown diameter (tree's canopy) measured at intervals of 1, 3, 5, 7.5, 10, 15 meters.

Biological Health Related to presence and extent of disease/disease symptoms and the vigour of the tree.

H (high) - No disease or disease symptoms present, moderate to high vigour. **M** (Moderate) - Presence of minor diseases/disease symptoms, and/or moderate

vigour.

L (Low) - Presence of diseases/disease symptoms, and/or severely poor vigour.

Structure Condition Related to defects in a tree's structure, (i.e., lean, co dominant stems).

H (High) - No structural defects, well-developed crown. **M (Moderate)** - Presence of minor structural defects.

L (Low) - Presence of major structural defects.

Position on Site AP—above ground planter; ED - edge of forest or woodland; IN– interior of forest or

woodland; HR - hedgerow, or group of trees in a line; OG-open grown; PI - planting island.

Preservation Priority A rating of each tree's projected survival related to existing conditions.

1 (high) - high to moderate biological health, and well developed crown. Well suited as a shade tree of screen planting. Will survive existing conditions indefinitely.

2 (moderate) - one or more moderate to severe defects in biological health and/or structural condition. Marginally suited as a shade tree or screen planting. Can survive at least 3 - 5 years under existing conditions. This category also includes stock planted within past 2 years that is not yet established.

3 (low) - low biological health and/or severely damaged/defective structural condition, and/or unsuitable for urban uses. If biologically defective, survival for more than 1 - 3 years under existing conditions is unlikely.

Tree Location Tree is located on Subject Property – S; Tree is located on neighbouring property – N; Tree is

located on property line – PL

Municipal tree Tree is located on the property of the local municipality/town. Y = Municipal tree.

Site Dev. Impact Impact to tree is anticipated from proposed development at or near the tree, and/or grade

changes (cut/fill) of which the tree is not likely to survive. 1 - Site dev. impact.

Rec. Action A recommendation to preserve or remove a tree based on i) anticipated impacts from

proposed development, ii) the tree's current biological health and structural condition, and

iii) having a moderate to high hazard potential.

P (preserve) - tree having moderate to high biological health and moderate to low structural

defects. Tree is likely to survive at least 3-5 years.

R (remove) - tree having low biological health and/or severe structural defects, and is not likely to survive more than 1-3 years, and/or will not survive proposed development.

C (conditional) - tree's preservation or removal is related to potential relocation/modification of the limit of construction, and/or known treatments that will likely improve the biological health and/or structural condition of the tree. May require review of tree's condition, e.g.,

roots, at time of construction/excavation. Also applies to trees that may require further or

regular evaluation.

Action Priority A rating, which relates to the urgency of treatment(s). H - high (immediate), M - moderate

(within 2 years), L - low (little or no action required)

Appendix 4 Tree Inventory Methodology

1-SD=	1 SIDED CROWN	PL=	POOR LEADER DEVELPOMENT
BC=	BROKEN CROWN	PP=	PAST PRUNING
BN=	BARK NECROSIS	PTH=	PLANTED TO HIGH
BR=	BROKEN BRANCH	PTL=	PLANTED LOW
BSD=	BASAL TRUNK DAMAGE	RAC=	REVIEW ACTION DURING CONSTRUCTION
BT=	BENT TRUNK	RB=	REMOVE BASKET/ BURLAP
CD=	CROWN DIEBACK	RC (#)	= REQUIRES CABLING AND NUMBER
CK=	CHLORONIC LEAVES	RM=	REMOVE PLANT
CL=	CROWN NECROSIS	RP=	REQUIRES PRUNING AND/OR THINNING
CT=	CROOKED CROWN	RS=	REMOVE STRING/ TAG/ WIRE
DC=	DELEVOPED CROWN FORM	RU=	REMOVE TREE TO PROMOTE
			UNDERSTORY
DE=	DISEASED	SB=	SPROUTS AT TRUNK BASE
DED=		SC=	SPROUTS IN CROWN
DF=	DEFOLIATED	SF=	SUPERIOR TREE FORM
DL=		ST=	SPROUTS ON TRUNK
DW=		TC=	THIN CROWN (REDUCED FOLIAGE)
	EXPOSED ROOTS	TD=	TRUNK DECAY
	ENLARGED TRUNK BASE	TG=	TRUNK/ STEM GIRDLING ROOT
FK#@	XM= # OF TRUNKS, HT. ABOVE GROUND	TK (#):	 MULTIPLE TRUNKS AT OR BELOW GROUND
FC=	FROST CRACKS	TOB=	
GC=	ANTICIPATED IMPACT FROM GRADE CHANGE	TP=	
GR=	GIRDLING ROOT (S)	TNR=	
HP=	HAZARD POTENTAIL OF TREE	TRS=	TRANSPLANT STRESS
IU=	INSPECT UNDER SOIL FOR WIRES/ STRINGS/ETC	TS=	TRUNK SPLIT
LC=	LIVE CROWN, LC 20%- 20% LIVE CROWN	TT=	TWISTED TRUNK
LN=	LEAN: L (LOW, <5°), M (MODERATE, 5-15°),	TW=	TRUNK WOUND
	(HIGH, >15°); (N, E, S, W) INDICATES DIRECTION OF LEAN		
LS=	LIGHT SUPPRESSED	UC=	UNBALANCED CROWN (N, E, S, W)
			INDICATES WEIGHTED SIDE OF CROWN
MB=	MULTI-BRANCH NODE ON TRUNK	UW=	TREE UNDER/ OVER POWER WIRES
ML=	MULTIPLE LEADERS	VC=	VINE COVERED
OS=	OFF SITE TREE	WC=	WOUND COMPARMENTALIZED
PC=	POLLARDED CROWN	WNC=	WOUND NOT COMPARTMENTALIZED

Directions (N, S, E, W) (L-S) = minor lean to the south Quantified Conditions (defects, diseases) e.g. LN

L (low, minor), M (moderate), H (high, severe) e.g. CT (H) = severely crooked stem

Appendix 5 Management Recommendations

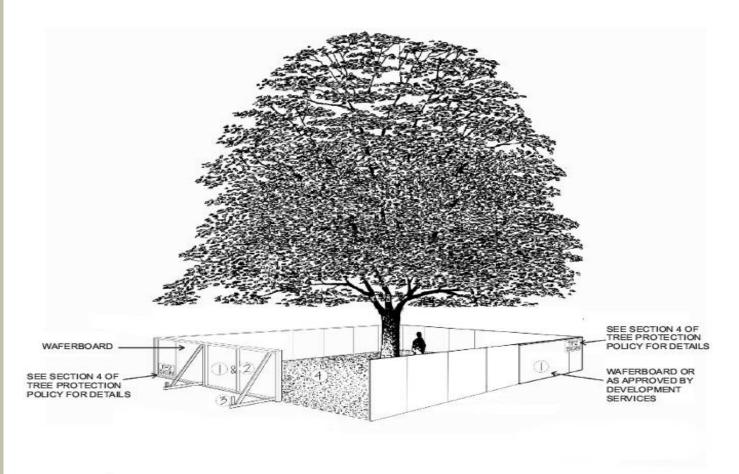
The following steps should be taken to remove trees, to assess the conditions of trees at time of tree works and excavation, and to protect trees identified for preservation. A qualified arborist or professional forester should oversee implementation of tree works.

A. Prior to Construction:

- 1 Mark trees for treatments as outlined in the detailed tree assessment descriptions. Ensure that branches and/or trees are removed so as not to damage trees to be preserved. Prune trees to correct/improve structure; remove deadwood, snags, and clear limbs that are likely to be impacted from proposed structures. Treatments are to be carried out prior to commencement of construction. Details of tree pruning and thinning recommendations are to be provided at the time of tree work activities.
- 2 Erect tree protection fencing (1.5 meter high plywood hoarding, paige wire fencing or equivalent) around trees to be preserved approximately 1 meter outside the drip line of the trees. Where this is not possible and changes to grades will occur within the tree's drip line, onsite inspection is required to identify the full and precise extent of disturbance to each tree and to determine additional protection measures. However if more than 25% of the root system is to be compromised, preservation is not recommended.
- 3 Identify areas on site to be used to stockpile and store soils, supplies and materials so that they do not impact trees to be preserved. Do not pile materials within the drip line of the trees to be preserved.
- 4 Identify and locate routes to be used by large, heavy excavation and building machinery. Do not drive equipment within the drip line of trees to be preserved.

B. During Construction:

- Excavation works near trees to be preserved must be conducted carefully so as to minimize impacts. Where necessary, pruning of excavated or damaged roots and limbs should be conducted by qualified personnel. All exposed roots of trees to be preserved must be kept moist and covered at all times.
- 2 On-site guidance to preserve/remove trees based on underground findings at time of excavation is recommended.

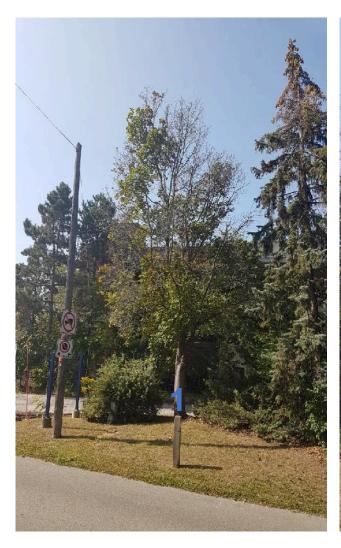

C. Following Construction Including Lot Grading:

- 1 Fertilize trees that receive crown/root pruning with a slow release fertilizer. In the absence of soil and/or foliar nutrient analysis, a fertilizer ratio of 3:1:1 should be used.
- Where possible and in consultation with the arborist/landscape architect apply a mixture of wood chips and ¾ clear gravel over tree root zones that may be encroached. Depth of cover and extent of area covered shall be determined on a per case basis.
- 3 Use light soils where fill is required up to a depth of 6 inches. Where depth of fill is greater than 6 inches, retaining wall structures and/or vertical mulching are recommended. Local drainage patterns within the root zones of trees to be preserved should be maintained as existing.
- 4 Monitor the health and condition of trees annually for 5 years.

Appendix 6 Tree Protection Barriers

Tree Protection Procedure EN-TRE-001-001

- Tree protection barriers must be 1.2m (4ft.) high, waferboard hoarding or an equivalent approved by Development Services.
- Where earthworks material is to be temporarily located near a tree protection barrier, plywood must be used to ensure no material enters the Tree Protection Zone.
- 3 All supports and bracing should be outside the Tree Protection Zone. All such supports should minimize damaging roots outside the Tree Protection Barrier.
- 4 No construction activity, grade changes, surface treatment, or excavations of any kind is permitted within the Tree Protection Zone.


Tree Protects Trunk Diameter	Minimum Protection
(DBH)	Distances Required
Less than 10cm	1.8m
11-40cm	2.4m
41-50cm	3.0m
51-60cm	3.6m
61-70cm	4.2m
71-80cm	4.8m
81-90cm	5.4m
91-100+cm	6.0m

Appendix 7 Municipal Tree Photo(s)

Tree Number 1

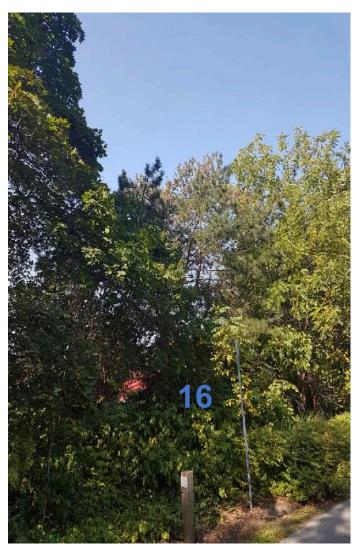
Tree Numbers 2 to 7

Tree Number 8

Tree Numbers 9 and 10

Tree Numbers 11 to 13

Tree Numbers 14 and 15



Tree Number 16


Tree Number 18

Tree Number 19 and 20

Tree Number 21 and 22 Tree Numbers 23

Tree Number 24

Tree Number 25

Tree Number 26

Tree Number 27

Tree Number 28

Tree Number 29

Tree Number 30

Tree Number 31

Tree Number 154

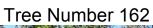
Tree Number 155

Tree Number 156

Tree Number 157

Tree Number 158

Tree Number 159


Tree Number 160

Tree Number 161

Tree Number 163

Tree Number 164



Appendix 8 Appraisal Calculations

Appendix 9 Staff Credentials and Qualifications

Appendix 10 Limitations of Assessment

It is the policy of Arborcorp Tree Experts Ltd. to attach the following clause regarding limitations. We do this to ensure that developers, agencies, municipalities and owners are clearly aware what is technically and professionally realistic in retaining trees.

The assessment of the trees presented in this report has been made using accepted arboricultural techniques. These include a visual examination of the above ground parts of each tree for structural defects, scars, external indications of decay such as fungal fruiting bodies, evidence of insect attack and crown dieback, discolored foliage, the condition of any visible root structures, the degree and direction of lean, the general condition of the trees and the surrounding site, and the proximity of property and people. Except where specifically noted in the report, none of the trees examined were dissected, cored, probed, or climbed, and detailed root crown examinations involving excavation were not undertaken.

Trees greater than 100 mm in DBH have been assessed for structural integrity by following the methodology in the International Society of Arboriculture's (ISA) "Evaluation of Hazard Trees in Urban Areas", Second Edition. Monetary values for trees have been determined using the Guide for Plant Appraisal 9th Edition's replacement cost method.

Notwithstanding the recommendations and conclusions made in this report, it must be realized that trees are living organisms, and their health and vigour constantly change over time. They are not immune to changes in site conditions, or seasonal variations in the weather conditions, including severe storms with high-speed winds.

While reasonable efforts have been made to ensure that the trees recommended for retention are healthy no guarantees are offered, or implied, that these trees, or any parts of them, will remain standing. It is both professionally and practically impossible to predict with absolute certainty the behavior of any single tree or group of trees or their component parts in all circumstances. Inevitably, a standing tree will always pose some risk. Most trees have the potential for failure in the event of adverse weather conditions, and this risk can only be eliminated if the tree is removed.

Although every effort has been made to ensure that this assessment is reasonably accurate, the trees should be re-assessed periodically. The assessment presented in this report is valid at the time of the inspection.

This?? Page report was prepared by

Stephen W. Shelton Arborcorp Tree Experts

ISA Certified Arborist ON-0542AT

Appendix I Development Cost Calculations
GHD Functional Servicing Report, Former Oakville Trafalgar Memorial Hospital Lands 11148742 (1)

Former Oakville Trafalgar Memorial Hospital Site

Preliminary Development Proforma Estimate for Town of Oakville

Date: Jan 18-2018

Project No: 11148742

Prepared by: Scott Passmore Checked by: Muhammad Paracha

No.	Item	Description	Quantity	Unit	Unit Rate	Total	Assumptions
1.0	INTERNAL	Description	Quantity	Onic	One rate	Total	Pasinipuons
1.1	Rough Grading						
1.1.1	Clearing/Grubbing	Clearing and removal of existing trees and vegetation	1	ls	\$50,000.00	\$50,000.00	Does not include demolition or removals of existing buildings or structures
1.1.1	Erosion and Sediment Control (ESC)	Includes temporary ESC pond, silt fence, diversion swales, mud mat and street cleaning	1	ls	\$150,000.00	\$150,000.00	Street cleaning allowance until undergrounds and base works have been completed
1	• • •			m ³			
1.1.3	Export Allowance	All export of topsoil stripping, removals and surplus fill from rough grading activities	34,000		\$50.00	\$1,700,000.00	Estimated based on stripping depths and pregrades listed in GHD FSR Section 2
1.1.4	Rough Grading (Cut/Fill)	Required cutting to fill areas to meet design pregrades (scraper only)	15,000	m ³	\$7.00	\$105,000.00	Remediation completed by others to assumed pregrades
1.1.5	Topsoil Import Allowance	All topsoil to be imported for 0.3m depth for all required areas shown on development concept	8,000	m ³	\$5.00	\$40,000.00	Clean topsoil import includes builder requirements to finish lots
					Sub-Total =	\$2,045,000.00	
1.2	Servicing						
1.2.1	Municipal Watermain	Includes all watermains, hydrants, valves, chambers, cleaning and testing	260	m	\$350.00	\$91,000.00	Only proposed watermains within new subdivision road
1.2.2	Water Services	Individual 25mm dia water services to property line curb stop	35	ea	\$950.00	\$33,250.00	All individual service connections including road restoration along existing MacDonald Road, Allan Street and Reynolds Street
1.2.3	Municipal Sanitary	Includes all sanitary mains and manholes	255	m	\$250.00	\$63,750.00	Only proposed sanitary within new subdivision road and easement to Lawson Street connection
1.2.4	Sanitary Services	Individual 125mm dia sanitary services to property line	35	ea	\$1,300.00	\$45,500.00	All individual service connections within new subdivision road only
1.2.5	Municipal Storm	Includes all storm sewers, manholes and catchbasins but excludes Superpipe	255	m	\$650.00	\$165,750.00	Assumes standard Town of Oakville sizing for municipal storm sewers
1.2.6	Storm Services	Individual 125mm dia storm services to property line	35	ea	\$1,300.00	\$45,500.00	All individual service connections within new subdivision road only
1.2.7	Rear Yard Catchbasins	Rear yard catchbasin structure only	4	ea	\$1,500.00	\$6,000.00	Storm sewers to RYCB connection included in municipal storm sewer estimate
					Sub-Total =	\$450,750.00	
1.3	Municipal Road					·	
1.3.1	Base Works	Includes fine grading, granulars, base curb and base asphalt	255	m	\$650.00	\$165,750.00	Based on 17.0m ROW width for new subdivision road
1.3.2	Surface Works	Includes top curb and top asphalt, sidewalks, line painting and signage	255	m	\$625.00	\$159,375.00	Does not include any street trees or landscaping
					Sub-Total =	\$325,125.00	
1.4	Stormwater Management (SWM)						
1.4.1	SWM Quality	Includes OGS downstream of control pipe from Superpipe	1	ea	\$75,000.00	\$75,000.00	Assumes OGS style treatment for 80% TSS removal approved by Town
1.4.2	SWM Quantity (Superpipe)	Underground oversized "Superpipe" for quantity control	165	m	\$1,500.00	\$247,500.00	Assumes 1200mm dia storm sewer for underground storage
					Sub-Total =	\$322,500.00	
1.5	Privacy Fence	1.8m high wood privacy fence	560	m	\$150.00	\$84,000.00	Assumes privacy fence surrounding all low density and medium density development
					Sub-Total =	\$84,000.00	
1.6	Street Lighting	Municipal LED streetlights in new subdivision road	1	ls	\$73,000.00	\$73,000.00	Assumes LED lighting as per Town of Oakville standards
					Sub-Total =	\$73,000.00	
1.7	Utilities						
1.7.1	Hydro and Utilitiy Servicing	Includes switchgears, transformers, road crossings and service tails	1	ls	\$200,000.00	\$200,000.00	
1.7.2	Hydro Offer to Connect (OTC)	Oakville Hydro charges for design and inspection	1	ls	\$150,000.00	\$150,000.00	Addresses Oakville Hydro design and inspection fees as infrastructure captured in external budget estimate
					Sub-Total =	\$350,000.00	
					Total Internal =	\$3,650,375.00	
					+ 25% Contingency =	\$912,593.75	
				TOTAL	INTERNAL ESTIMATE =	\$4,600,000.00	Rounded
2.0	EXTERNAL						
2.1	Non-Recoverable Costs						
2.1.1	Boulevard Reconstruction Works	Urban design boulevard reconstruction along MacDonald Road and Allan Street	575	m	\$200.00	\$115,000.00	Assumes reconstructed curb, road patchwork, positive sloping boulevard and sidewalks, does not include streetscaping
2.1.2	Utility Relocations	Provisional budget for external utility relocations	1	ls	\$75,000.00	\$75,000.00	Provisional budget for any unforseen above and/or below relocation work
2.1.3	Municipal Watermain Connections	2 municipal water connections for new subdivision road to MacDonald Road and Allan Street	2	ea	\$30,000.00	\$60,000.00	Includes unshrinkable fill backfill and connections and testing completed in accordance to Region of Halton standards
2.1.4	Individual Perimeter Servicing Connections	water, storm and sanitary connections for 19 lots adjacent to MacDonald Road and Allan Street	19	ea	\$14,000.00	\$266,000.00	Includes native backfill and shared trenches wherever possible and road restoration
2.1.4	Existing Municipal Servicing Upgrades	Provisional budget for reconstruction of existing storm/sanitary services to Lawson Street	1	ls	\$50,000.00	\$50,000.00	Assumes open cut constructed required to replace exisiting storm and/or sanitary services within ROW after CCTV inspection
2.1.5	Allan Street Storm Sewer	New foundation drain collector to trunk sewer connection point at Galt Avenue	155	m	\$450.00	\$69,750.00	Assumes 300mm dia PVC foundation drain collector pipe at required depth to gravity drain basements
2.1.6	Streetlight Works	Implement new streetlights for compliance on Reynolds Street, MacDonald Road and Allan Street	1	ls	\$150,000.00	\$150,000.00	Budget for any new streetlights along existing roads to meet current photometric standards
		p = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 =		.5	Sub-Total =	\$785,750.00	, , , , , , , , , , , , , , , , , , ,
2.2	Potential Front End Costs with Possible Recoveries				540 10441-	Ţ. 55,7 5 0.00	1
2.2.1	Hydro Feed	Additional required external hydro works	1,000	m	\$1,000.00	\$1,000,000.00	Assumes 1km of new feedermain, chambers and 2 switchgears required for the development
	,		1,000		Sub-Total =	\$1,000,000.00	
	+				Sub-Total =	71,000,000.00	1
					Total External =	\$1,785,750.00	
					+25 % Contingency =	\$446,437.50	
				TOTAL	EXTERNAL ESTIMATE =	\$2,300,000.00	Rounded
				IOIAL		72,300,000.00	noonded
<u> </u>	1	I					

NOTES:

- 1 Assumes any requried environmental remediation or structrual demolition works have been completed prior to rough grading activities
- 2 Based on findings in GHD FSR that water and sanitary capacity is available within Region of Halton municipal system without any external upgrades required
- 3 Assumes SWM measures proposed in GHD FSR are acceptable to Town and Conservation Authority
- 4 Does not include any landscaping, street trees, or chain link fencing
- 5 No allowances have been made for any special vegetation or heritage features to be maintained
- 6 Any costs associated with potential loss of property such as blocks dedicated to Region of Halton are not included
- 7 Does not include any development charges or consultant fees
- 8 Park block works include grading only and do not include any lighting or servicing works
- 9 Estimate based on current rates seen for Town of Oakville

Appendix J Additional Correspondence

October 3, 2017

Subject/Client:	Town of Oakville FSR's – OTMH Lands, Brantwood School & Trafalgar Works Yard	Ref. No.	11148742
From:	Scott Passmore	Tel:	905-814-4383
Venue/Date/Time:	Town of Oakville Offices, October 3, 2017 @	9:00 a.m.	
Copies To:	All attendees and others listed		
Attendees:	Phil Kelly (Town of Oakville) George Trenkler (Town of Oakville) Richard Renaud (Town of Oakville) Gabe Charles (Town of Oakville) Rita Juliao (Town of Oakville) Kristina Parker (Town of Oakville) Cindy Toth (Town of Oakville) Jeffrey Lee (Town of Oakville) Domenic Lunardo (Town of Oakville) Ron MacKenzie (Region of Halton) Craig Jordan (Region of Halton) Scott Passmore (GHD) Muhammad Paracha (GHD)	Email:	philip.kelly@oakville.ca george.trenkler@oakville.ca richard.renaud@oakville.ca gabe.charles@oakville.ca rita.juliao@oakville.ca kristina.parker@oakville.ca cindy.toth@oakville.ca jeffrey.lee@oakville.ca domenic.lunardo@oakville.ca ronald.mackenzie@halton.ca craig.jordan@halton.ca Scott.Passmore@ghd.com Muhammad.Paracha@ghd.com
Others to Copy:	Adolfo Emer (GHD) Laura Lawlor (GHD) Robert Przyslupski (GHD) Sergey Yunyaev (GHD)		Adolfo.Emer@ghd.com Laura.Lawlor@ghd.com Robert.Przyslupski@ghd.com Sergey.Yunyaev@ghd.com

Item Description		
1.0	Introduction	
1.1	The objective behind the meeting was to start up the Functional Servicing Reports (FSRs) for the former Oakville Trafalgar Memorial Hospital (OTMH) Lands, the former Brantwood School Site and the former Oakville Trafalgar Works Yard.	INFO
1.2	The current status of each site was discussed and an overview of each contemplated development concept was reviewed.	INFO
1.3	The Town has forwarded background information on each site including Phase 1 and Phase 2 ESA documents. The ESA's may be helpful in reviewing earthwork budget allowances within the proforma development cost estimate.	INFO
2.0	Stormwater Management	
2.1	The Town is currently undertaking a Master Drainage Plan with consultant Foster Wheeler.	INFO

Item [Description	Action
2.2	There is an external drainage area to the OTMH Lands located at the north east corner and an existing low point within the OTMH site that will require careful attention.	GHD
2.3	No consultation is required with Conservation Halton staff at this point since all 3 sites are well out of the regulation areas.	INFO
2.4	Soil conditions within the OTMH lands were discussed. Any recommended Low Impact Development (LID) measures (i.e. infiltration) will be carefully reviewed in these areas.	GHD
3.0	Region Requirements	
3.1	The Region will require hydrant flow testing to verify available flow and pressures against the proposed fire protection water demand. GHD to get quotes for hydrant flow testing and forward to Town for approval.	GHD
3.2	The Region requires the demands from each development to be completed in accordance to the latest Region standards and unit rates, not using OBC calculations. The capacity of the downstream sanitary system to handle the proposed development flows to be addressed in the reports. Muhammad to contact Craig for any available capacity or design sheet information for sanitary sewers downstream.	GHD
3.3	The Region will require and drainage and/or stormwater management (SWM) impacts to Regional Roads to be very clearly outlined in the reports.	GHD
3.4	Craig Jordan will be point contact person for Region documents and information requests.	INFO
4.0	Tree Assessments	
4.1	Trees are a very sensitive component of these redevelopment applications and a very high level of interest for residents.	INFO
4.2	The reporting needs to address the following for each site: 1) existing tree inventory, 2) impact from proposed development and 3) what can be removed. Any recommended removals should be done in one single phase by Town.	GHD
4.3	The Town has a GIS system with tree inventory information where some of this information can be provided to GHD.	INFO
4.4	The site with the most internal trees to be maintained may be the Brantwood School site and should be evaluated carefully in that regard.	GHD
5.0	Moving Forward	
5.1	Scott and Muhammad from GHD have scheduled site visit for all three sites on Friday, October 6. The Contractor for OTMH Lands will be given advanced notice of site visit and required safety equipment will be worn by GHD staff.	GHD
5.2	Top priority is to review existing condition drainage patterns vs post development drainage plans with preliminary vision for SWM strategy as this drives the grading design. Once the SWM vision is discussed with Town staff a meeting will be set up with Foster Wheeler.	GHD

Item Description		
5.3	George Trenkler will be engineering contact person for documents related to the OTMH Lands and Brantwood School. Richard Renaud will be contact for the Trafalgar Works Yard site. Gabe Charles and Phil Kelly are to be copied on Town correspondence.	INFO
5.4	Muhammad to connect with George and Richard from Town for AutoCAD copies of latest documents and Craig from Region for remaining Region drawings.	GHD
5.5	Next meeting is to be scheduled for approximately 3 weeks timeframe.	INFO

This confirms and records GHD's interpretation of the discussions which occurred and our understanding reached during this meeting. Unless notified in writing within 7 days of the date issued, we will assume that this recorded interpretation or description is complete and accurate.

November 6, 2017

Subject/Client:	Town of Oakville FSR's – OMTH Lands, Brantwood School & Trafalgar Works Yard	Ref. No.	11148742
From:	Scott Passmore - GHD	Tel:	(905) 814-4383
Venue/Date/Time:	Town of Oakville Offices, October 24, 2017	@ 9:00 a.n	٦.
Copies To:	All attendees and others listed		
Attendees:	Phil Kelly – Town of Oakville George Trenkler - Town of Oakville Richard Renaud – Town of Oakville Gabe Charles – Town of Oakville Rita Juliao – Town of Oakville Domenic Lunardo – Town of Oakville Scott Passmore – GHD	Email:	Philip.kelly@oakville.ca George.trenkler@oakville.ca Richard.renaud@oakville.ca Gabe.charles@oakville.ca Rita.Juliao@oakville.ca Domenic.Lunardo@oakville.ca Scott.Passmore@ghd.com
Others to Copy:	Kristina Parker – Town of Oakville Cindy Toth – Town of Oakville Jeffrey Lee – Town of Oakville Ron MacKenzie – Region of Halton Craig Jordan – Region of Halton Adolfo Emer – GHD Laura Lawlor – GHD Robert Przyslupski – GHD Sergey Yunyaev – GHD Muhammad Paracha – GHD	Email:	Kristina.Parker@oakville.ca Cindy.Toth@oakville.ca Jeffrey.Lee@oakville.ca Ronald.MacKenzie@halton.ca Craig.Jordan@halton.ca Adolfo.Emer@ghd.com Laura.Lawlor@ghd.com Robert.Przyslupski@ghd.com Sergey.Yunyaev@ghd.com Muhammad.Paracha@ghd.com

Item	Description	Action
1.0	Objective	
1.1	The objective behind the meeting was to provide Town staff with a status of GHD's progress on the Functional Servicing Reports (FSR's) for the former Oakville Trafalgar Memorial Hospital (OTMH) Lands, the former Brantwood School Site and the former Oakville Trafalgar Works Yard.	INFO
2.0	Pre-Development Drainage	
2.1	The site visit was completed by GHD staff for the civil works on Friday, October 6 and the key findings from the site visit were reviewed.	INFO
2.2	The external drainage tributary to the OMTH was discussed which encompasses a portion of MacDonald Road and Allan Street to the north. This external drainage is to be considered in the storage calculations and not as "by-pass" since it may already be controlled under existing conditions (by default). The Town also noted some existing storm servicing may capture and direct flows north to MacDonald Road. GHD to confirm with record site plan drawings provided by Town.	GHD

Item	Description	Action
2.3	The pre-development drainage for the former Brantwood School site was discussed including the two major overland outlet points.	GHD
2.4	The pre-development drainage from the former Works Yard shows a significant amount of drainage conveyed in the east direction to the Trafalgar Road culverts. GHD to confirm the storm drainage allowance included in the MMM subdivision design for the lands to the west of Taunton Road.	Info
3.0	Preliminary Grading	
3.1	The preliminary grading design for the former OMTH lands was discussed. The public road is to be 17.0 m ROW with maximum slope 6 percent for preliminary design purposes. The existing low point adjacent to the parking structure near Allan Street is to be considered as option for primary sag capture point for 100-year storm capture. The east side of the parking structure will be redeveloped which will give GHD an opportunity to direct storm drainage (and emergency overflow) from public road to the trunk sewer in the easement to the south.	
3.2	The Town is anxious to coordinate the public road grading and SWM with the MTE's Community Centre site plan design. GHD to prepare Preliminary Grading for OMTH lands by end of week and send to Town for coordination and set up meeting with MTE.	
3.3	The preliminary grading for the former Brantwood School site was discussed which included isolating the Residential Conversion site to drain solely west to Allan Street (no drainage east to single detached dwellings). The Town has arranged for a topo survey for the former Brantwood School site which is to include "Z" elevations so that GHD can create 3D surfaces.	
3.4	The preliminary grading for the Works Yard was discussed including the possible phasing of development and underground parking requirements.	
4.0	Region Requirements	
4.1	GHD has obtained quotes for the hydrant flow tests from Corix and sent information to Town. Town has started arrangements for payment to Corix to commence the flow tests. Once flow test results have been obtained they will be reviewed against the peak demands plus the worst case fire protection requirements for each site.	Corix/GHD
4.2	The downstream sanitary system for each site was discussed to the trunk sanitary sewer connection points. GHD to prepare the sanitary demand calculations per each connecting sanitary leg and per phase (if applicable) and identify locations for increases to post development demands.	GHD
4.3	The pre-development drainage plan for the Works Yard was discussed as there is a significant portion of the property that drains east to the existing Trafalgar Road culverts. GHD to send the predevelopment plan with the culvert information to Town so they can coordinate with RV Anderson as part of the Region's Trafalgar Road design.	GHD
5.0	Tree Assessments	

Item	Description	Action
5.1	The first of the tree assessment site visits was completed by GHD staff on October 23. The preliminary grading designs will be reviewed in concert with the tree assessments.	Info
5.2	The Town requests that trees be classified with red ("take out"), yellow ("may have to take out"), green ("can most likely save") for colour coding tree assessment to correspond with Town's past presentation approach.	GHD
6.0	Other Items	
6.1	Amec Foster Wheeler is currently looking to finish the draft modelling results from the Master Drainage Plan by end of October. When completed they will be reviewed by GHD for impact to the post-development drainage design.	Info
6.2	Next meeting is to be scheduled for approximately 2 weeks' timeframe.	Info

This confirms and records GHD's interpretation of the discussions which occurred and our understanding reached during this meeting. Unless notified in writing within 7 days of the date issued, we will assume that this recorded interpretation or description is complete and accurate.

MEETING MINUTES

PROJECT NAME:	SECC	MTE FILE NO.:	43124-100
		DATE:	2017.11.07
LOCATION:	1225 Trafalgar Rd, Oakville, ON L6H	TIME:	9:30am to 11:30 am

ATTENDEES:

Town of Oakville: Rita Juliao, Philip Kelly, Domenic Lunardo, George Trenkler, Kristina Parker

GHD: Scott Passmore

MTE: Kayam Ramsewak, Wesley Taylor

REVIEW OF FSR FINDINGS BY GHD

- After reviewing of the topographic survey and given there is no record that the hospital flooded, MTE believes that surface ponding does not occur in the depression at the hospital entrance. The proposed SWM design of the campus will reduce post development flows to less than or equal to existing therefore, attenuation and storage of overland flow from Allaen Street will not be required.
- Overland flow along the west and east sides of Allaen Street is believed to be independent. The west side has a small drainage area delineated by GHD and to be confirmed with Town/AMEC.
- GHD to revise the grading at the intersection between Allaen Street and L Street to convey Allaen Street overland flows past the L Street in southerly direction.
- We can possibly convey overland flow from the west side of Allen Street to Reynolds
 Street along south side of parking garage. GHD (through consultation with Town/AMEC)
 to provide flow rates anticipated from Allen Street for all design storms.
- GHD to revise the L Street grading to include low point at the park for local overland flow to be conveyed through the park to Reynolds. MTE to confirm grading. <u>This will</u> require a reverse sloping boulevard in that area and to be shown on GHD's preliminary grading plan.
- The low point on the L Street should be = 93.50, and the <u>high point</u> grade at the L Street bulb = 93.7660. to provide min 0.6% slope.
- GHD notes that the grades at north side of the park can be lowered to accommodate
 the park design. This could provide lookout or walkout basements within the low density
 residential blocks. The maximum longitudinal slope along L Street be 6%.

Page 1 of 2

MEETING MINUTES

- MTE to provide a cross section for the interface between the existing parking garage and L Street to show space requirements to satisfy grading.
- MTE to provide concept of grading at intersection of L Street, SECC, and the existing parking garage.
- GHD (with <u>Town/AMEC</u>) to confirm flow rates to be conveyed along south side of parking garage.
- The property line along south side of the parking garage is not fixed. Additional space can be taken to provide sufficient cross section for conveyance of the external overland flows.
- The municipal sanitary sewers and/or watermains from the L Street cannot be designed through the park block. GHD to coordinate within preliminary servicing design.

Minutes recorded by WST Please report any errors or omissions

www.mte85.com