

PHASE TWO ENVIRONMENTAL SITE ASSESSMENT

217 & 227 Cross Avenue, and 571 Argus Road, Oakville, Ontario

Client

Mr. Clarence Zichen Qian Oakville Argus Cross LP 1-90 Wingold Avenue Toronto, Ontario M6B 1P5

Project Number

BIGC-ENV-349B

Prepared By:

B.I.G. Consulting Inc. 12-5500 Tomken Road Mississauga, Ontario, L4W 2Z4 T: 416.214.4880

www.bigconsultinginc.com

Date Submitted

February 17, 2021

Executive Summary

B.I.G. Consulting Inc. (BIG) was retained by Mr. Clarence Zichen Qian on behalf of Oakville Argus Cross LP (Client), to complete a Phase Two Environmental Site Assessment (ESA) at the property located at 217 & 227 Cross Avenue, and 571 Argus Road, in Oakville, Ontario (the Site).

This Phase Two ESA was conducted in accordance with the Phase Two ESA standard defined by Ontario Regulation 153/04 (O.Reg.153/04), as amended.

The objective of the Phase Two ESA was to assess the areas of potential environmental concern (APECs) identified in the Phase One ESA completed by BIG in January 2021; and, to obtain soil and groundwater data to characterize the Site to support the filing of a Record of Site Condition (RSC) on the Ontario Ministry of the Environment, Conservation and Parks (MECP) Brownfields Environmental Site Registry (BESR).

The findings of the Phase Two ESA conducted at the Site are summarized as follows:

- 1. The general stratigraphy at the Site, as revealed in the borehole logs, consists of a surficial material consisting of asphalt, granular or topsoil underlain by fill materials comprised of clayey silt and sandy silt, followed by native materials comprised of clayey silt till with trace gravels and shale fragments. Below native soil was a highly weathered shale bedrock with interbedded limestone which was encountered in all boreholes.
- 2. The groundwater depths across the entire Site ranged between approximately 1.72 m and 4.77 m below ground surface (bgs) in shallow wells and 17.91 to 21.09 m bgs in the deep wells on February 08, 2021.
- 3. The soil analytical results indicated that select parameters were detected at concentrations above the applicable MECP (2011) Table 2 Site Condition Standards in a Potable Groundwater Condition for Residential/Parkland/Institutional land use and coarse textured soils were:

Parameter	MECP (2011a) Table 2 SCS	Number of Soil Samples Submitted	Number of Soil Samples Exceeding the applicable SCS	Maximum concentration detected		
Metals						
Copper	140 μg/g	17	2	493 μg/g		

4. The groundwater analytical results indicated that all groundwater samples submitted for PHCs, BTEX, VOCs, PAHs, metals and inorganics analyses were either non-detected or detected below the applicable MECP (2011) Table 2 SCS; and all laboratory RDLs were below the applicable SCS.

Conclusions and Recommendations

The soil COC present at the Site comprised of copper at concentrations in exceedance of the MECP Table 2 Site Condition Standards for coarse textured soil in BH101 and BH106. Based on the former activities on-Site, the impacts are likely associated with the importation of fill material of unknown quality.

In order to proceed with the Record of Site Condition (RSC), the following is recommended:

- 1. Vertically and laterally delineate the copper exceedances identified in BH101 and BH106.
- 2. Excavate the impacted soil and dispose of off Site at a registered landfill facility.
- 3. Conduct confirmatory soil sampling.
- 4. Prepare a report documenting remedial activities.
- 5. Update Phase Two ESA.
- 6. File RSC.

Table of Contents

1	ı	Introduction	1
:	1.1	Site Description	
:	1.2	Legal Description and Property Ownership	1
:	1.3	Current and Proposed Future Uses	2
:	1.4	Applicable Site Condition Standards	2
2	E	Background Information	4
2	2.1	Physical Setting	4
2	2.2	Past Environmental Investigations	4
3	9	Scope of the Investigation	7
3	3.1	Overview of Site Investigation	7
3	3.2	Media Investigated	7
3	3.3	Phase One Conceptual Site Model	7
3	3.4	Deviations from Sampling and Analysis Plan	14
3	3.5	Impediments	
4	ı	Investigation Method	15
4	4.1	General	15
4	4.2	Borehole Drilling	15
4	4.3	Soil Sampling	15
4	4.4	Field Screening Measurements	16
4	4.5	Groundwater: Monitoring Well Installation	16
4	4.6	Monitoring Well Development	17
4	4.7	Groundwater Monitoring	17
4	4.8	Monitoring Well Purging	17
4	4.9	Field Measurements of Water Quality Parameters	17
4	4.10	Groundwater Sampling	17
4	4.11	Sediment Sampling	18
4	4.12	Analytical Testing	18
4	4.13	Elevation Survey	19
4	4.14	Quality Assurance and Quality Control Measures	19
5	F	Review and Evaluation	21
Į	5.1	Geology	21
Į	5.2	Groundwater Elevations and Flow Direction	22
ļ	5.3	Soil Texture	22
ļ	5.4	Soil Field Screening	22
Į	5.5	Soil Quality	22
ļ	5.6	Groundwater Quality	24
Į	5.7	Sediment Quality	25
ļ	5.8	Quality Assurance and Quality Control Measures	25
į	5.9	Phase Two Conceptual Site Model	26
6	9	Summary of Findings	40
7	(Conclusions and Recommendations	41
8	(General Limitations	42
_		Defendance	42

List of Appendices

Appendix A
 Appendix B
 Appendix C
 Appendix D
 Appendix D
 Appendix E
 Appendix F
 Appendix F
 Site Sampling and Analysis Plan (SSAP)
 Analytical Tables
 Borehole Logs
 Conceptual Site Models
 Survey Plan
 Laboratory Certificates of Analysis

List of Figures

Figure 1	Site Location Plan
Figure 2	Site Layout and Utilities Plan
Figure 3	Phase Two Study Area and Potentially Contaminating Activities (PCAs)
Figure 4	Borehole/Monitoring Well Location Plan
Figure 5	Borehole/Monitoring Well Location Plan with Areas of Potential Environmental
	Concern (APECs)
Figure 6	Groundwater Contour Plan
Figure 7A	Geologic Cross Section A-A'
Figure 7B	Cross Section A-A' with Metals in Soil
Figure 8	Geologic Cross Section B-B'
Figure 9	PHC and BTEX Concentrations in Soil
Figure 10	VOC Concentrations in Soil
Figure 11	PAH Concentrations in Soil
Figure 12	Metal Impacts in Soil
Figure 13	EC and SAR Impacts in Soil
Figure 14	PHCs and BTEX Concentrations in Groundwater
Figure 15	VOCs Concentrations in Groundwater
Figure 16	PAH Concentrations in Groundwater
Figure 17	Metals Concentrations in Groundwater
Figure 18	Sodium and Chloride Concentrations in Groundwater

1 Introduction

B.I.G. Consulting Inc. (BIG) was retained by Mr. Clarence Zichen Qian on behalf of Oakville Argus Cross LP (Client), to complete a Phase Two Environmental Site Assessment (ESA) at the property located at 217 & 227 Cross Avenue, and 571 Argus Road, Oakville, Ontario (the Site).

The objective of the investigation was to support the filing of a Record of Site Condition (RSC) in accordance with Ontario Regulation 153/04 (O.Reg.153/04), as amended. It is BIG's understanding that the Client is planning on redeveloping the Site with a mid-rise residential building in the future, which would require a land use change and a Record of Site Condition (RSC). Contact information for the Client is provided in Section 1.2.

The objective of the Phase Two ESA was to assess the areas of potential environmental concern (APECs) identified in the Phase One ESA completed by BIG in January 2021 and, to obtain soil and groundwater data to characterize the Site to support the preparation of the filing of an RSC on the Ontario Ministry of the Environment, Conservation and Parks (MECP) Brownfields Environmental Site Registry (BESR).

1.1 Site Description

The Site is located to the south of the Queen Elizabeth Way, north of Cross Avenue and east of Argus Road in Oakville, Ontario, as shown on Figure 1. The Site measures 8,779 m² in size. The Site is currently occupied by three (3) restaurants; McDonalds, Swiss Chalet and Harveys with associated asphalt car parking with an undeveloped portion of the Site at 571 Argus Road.

The Site is bordered by commercial properties to the north east and north west, Argus Road to the south west and Cross Ave to the south east. The surrounding properties are shown on Figure 1.

1.2 Legal Description and Property Ownership

Information regarding the Site identification is provided in the table below:

Site Details				
Municipal Addresses	217, 227 Cross Avenue and 571 Argus Road, Oakville, Ontario			
Current Owner	Distrikt Capital			
Owner Address	1-90 Wingold Avenue, Toronto, Ontario, M6B 1P5			
Owner Contact Person	Clarence Zichen Qian			
Legal Description	• 217 Cross Avenue - Part Lot 13, 14, concession 3 Trafalgar, South of Dundas Street, Town of Oakville.			
	 227 Cross Avenue - Part Lot 13, Concession 3 Trafalgar, South of Dundas Street, Town of Oakville. 			
	• 517 Argus Road - Part Lots 13 & 14, Concession 3 Trafalgar South of Dundas Street, Town of Oakville			
Property Identification Numbers (PINs)	217 Cross Avenue - 24816-0044 (LT) 227 Cross Avenue - 24816-0043 (LT) 571 Argus Road - 24816-0114 (LT)			
Property Size	8,779 m ²			
Approximate Universal	Zone: 17			
Transverse Mercator	Easting: 606480			
(UTM) coordinates	Northing: 4812428			
	(1m, NAD83, QGIS)			

1.3 Current and Proposed Future Uses

At the time of the Phase Two ESA investigation, the Site was zoned for commercial land use. And is used for commercial purposes. The proposed redevelopment of the Site will include two (2) residential condominium towers with six (6) levels of underground parking. Section 168.3.1 of the *Environmental Protection Act* does not prohibit the proposed future use of the Property. Current surrounding land uses are provided in Figure 3.

1.4 Applicable Site Condition Standards

Analytical results obtained for Site soil and groundwater samples were assessed against Site Condition Standards (SCS) as established under subsection 169.4(1) of the Environmental Protection Act, and presented in the document MECP "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act', ("SGWS" Standards), (MECP). Tabulated background SCS (Table 1) applicable to environmentally sensitive sites and effects based generic SCS (Tables 2 to 9) applicable to non-environmentally sensitive sites are provided in MECP. The effects based SCS (Tables 2 to 9) are protective of human health and the environment for different groundwater conditions (potable and non-potable), land use scenarios (residential, parkland, institutional, commercial, industrial, community and agricultural/other), soil texture (coarse or medium/fine) and restoration depth (full or stratified).

Tables 1 to 9 of MECP are summarized as follows:

- a) Table 1 applicable to sites where background concentrations must be met (full depth), such as sensitive sites where site-specific criteria have not been derived;
- b) Table 2 applicable to sites with potable groundwater and full depth restoration;
- c) Table 3 applicable to sites with non-potable groundwater and full depth restoration;
- d) Table 4 applicable to sites with potable groundwater and stratified restoration;
- e) Table 5 applicable to sites with non-potable groundwater and stratified restoration;
- f) Table 6 applicable to sites with potable groundwater and shallow soils;
- g) Table 7 applicable to sites with non-potable groundwater and shallow soils;
- h) Table 8 applicable to sites with potable groundwater and that are within 30 m of a water body; and,
- i) Table 9 applicable to sites with non-potable groundwater and that are within 30 m of a water body.

Application of the generic or background SCS to a specific site is based on a consideration of site conditions related to soil pH (i.e., surface and subsurface soil), thickness and extent of overburden material, (i.e., shallow soil conditions), and proximity to an area of environmental sensitivity or of natural significance. For some chemical constituents, consideration is also given to soil textural classification with SCS having been derived for both coarse and medium/fine textured soil conditions.

For assessment purposes, BIG selected the MECP Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition for Residential Property Use and coarse textured soil. The selection of this category was based on the following factors:

- a) More than two-thirds of the Site has an overburden thickness greater than 2 m.
- b) The Site is not located within 30 m of a surface water body or an area of natural significance.
- c) The soil at the Site has a pH value between 5 and 9 for surficial soils; and, between 5 and 11 for subsurface soils.
- d) The property is not within an area of natural significance; does not include, nor is it adjacent to an area of natural significance, nor is it part of such an area; and, it does not include land that is within 30 m of an area of natural significance, nor is it part of such an area.

- e) The Site is considered as potable for the following reasons: The Site is located within an area designated in a municipal official plan as a well-head protection area or other designation identified by the municipality for the protection of groundwater. The property, and all other properties located, in whole or in part, within 250 m of the boundaries of the property are supplied by a municipal drinking water system, as defined in the *Safe Drinking Water Act*, 2002.
- f) The future land use of the Site is residential.
- g) The predominant soil type on the Site was considered to be coarse textured.
- h) There was no intention to carry out a stratified restoration at the Site.

2 Background Information

2.1 Physical Setting

The following physiographic, geological and soil maps were reviewed as part of this Phase Two ESA:

- a) Atlas of Canada Toporama Topographic Map, 2012 (Toporama).
- b) Ontario Base Map (OBM).
- c) Ontario Ministry of Northern Development and Mines website, Bedrock Geology of Ontario, 2011 MRD 126; and Paleozoic Geology of Southern Ontario, 2007 MRD 219 (KML format).
- d) Ontario Ministry of Northern Development and Mines website, Surficial Geology of Southern Ontario, 2010. (KML format).
- e) Ontario Ministry of Northern Development and Mines website, Physiography of Southern Ontario 2007.

The following information was obtained from these maps:

The Site has an elevation of approx. 102 m above sea level (asl), similar elevation to surrounding properties.

- a) The physiography of the site is within the Iroquois Plains characterized as the Shale Plains.
- b) The surficial geology of the Site is described as a Paleozoic Bedrock.
- c) The bedrock in the general area of the Site consists of shale, limestone, dolostone and siltstone of the Georgian Bay formation; Blue Mountain formation; Billings formation, Collingwood Member and Eastview member.
- d) No water bodies are located on the Site. The nearest water body is a tributary to Morrison Creek which is located approximately 335 m east and Lake Ontario is located approximately 2.0 km to the southeast.
- e) Based on the review of available resources from the City of Toronto and the Ministry of Natural Resources and Forestry (MNRF) on January 29, 2021, no areas of natural significance were identified at the Site or within the Phase I Study Area.

2.2 Past Environmental Investigations

Previous environmental investigations have been conducted at the Site, including two (2) hydrogeological investigations, a Phase II environmental site assessment (ESA) and a Phase One ESA.

The following environmental investigation was reviewed in support of this Phase Two ESA report:

- 1. Terrapex (2018) Phase I and Phase II Environmental Site Assessment, 217 Cross Avenue and 571 Argus Road, Oakville, Ontario. Terrapex Environmental Ltd. September 28, 2018.
- 2. BIG (2019) Preliminary Geotechnical Investigation, 217 Cross Avenue and 571 Argus Road, Oakville Ontario. B.I.G Consulting Inc., December 3, 2019.
- 3. BIG (2020) Draft Phase One Environmental Site Assessment, 227 Cross Avenue Road, Oakville Ontario. B.I.G Consulting Inc., December 22, 2020.

A summary of previous investigations is provided below:

Terrapex (2019) Phase I and II ESA				
Objective	PGL assessed groundwater conditions at the Site and potential impacts on			
Objective	groundwater from dewatering during the excavation and operation of the Site			

Terrapex (2019) Phase I	and II ESA			
Dotontial	Possible presence of Polychlorinated biphenyls (PCBs) in surface soils in			
Potential	the vicinity of a transformer located on-site;			
Environmental	Possible fill of unknown quality used for grading purposes on-site			
Concerns Identified	Possible soil and groundwater contaminant migration from off-site sources.			
	1. Advancement of five (5) boreholes (MW101, MW102, BH103, MW104, MW105, and BH106) up to a maximum depth of 3.05 m below ground surface (bgs).			
	Installation of four (4) monitoring wells (MW101, MW102, MW104, and MW105).			
Field Program	3. Soil samples submitted for the analyses of petroleum hydrocarbons (PHCs), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), metals and inorganics.			
	 Groundwater samples submitted for the analyses of PHCs, VOCs, metals and inorganics. 			
Site Condition Standards	MECP (2011) Table 2 Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for industrial/commercial/community (ICC) property use with coarse textured soil.			
Groundwater Observations	Measured at a depth of between 2.29 – 2.45 mbgl (September 2018).			
Soil Conditions	Below SCS, with exception of Sodium adsorption ratio (SAR) exceeded the Table 2 SCS at MW105-1a.			
Groundwater Conditions	Below SCS except for Chloride at MW105 and Sodium at MW104 and MW105 (Table 2 SCS).			

Terrapex (2019) Phase I Environmental Site Assessment Update				
Objective	To verify that no significant changes occurred within the Site or surrounding			
	areas since the Phase I and II were conducted.			
Potential new	A de-greasing tank within the kitchen area of the restaurant, which is used to			
environmental	clean large stainless steel cooking utensils and equipment parts (i.e. rotisserie			
impacts identified	spits, vent hood). The degreasing tank was installed within the last year and is			
	maintained and cleaned by a third party, every two weeks. No signs of leakage			
	or staining were observed, and the tank appeared to be in excellent conditions			
Conclusions	The Phase I ESA update work program did not identify any evidence to suggest			
	that, since the report date of the previous Phase I and II ESAs, there is any new			
	or materially changed potential environmental concerns at the Site.			

BIG (2019) Geotechnical Investigation					
Objective	Investigate subsurface conditions for the Site and give geotechnical recommendations and identify potential geotechnical hazards.				
Field Program	 Advancement of six (6) boreholes (BH1 to BH6) the depths ranged between 2.3 m to 17.7 m bgs. BH3, BH4 and BH6 had piezometers installed for long term groundwater level observations. 				

BIG (2019) Geotechnical Investigation			
Site Stratigraphy	The general stratigraphy at the site consists of topsoil or asphalt, granular fill, fill, silty to clayey silt, glacial till deposits overlying shale bedrock conditions.		
	 Shale was encountered at depths ranging between 1.8 to 3.1 m bgs. 		
Groundwater	 Measured at a depth of between 1.7 m to 3.6 m bgs (November 29, 2019) 		
Observations			

BIG (2020) Draft Phase One Environmental Site Assessment				
Objective	The objectives of the project were to identify actual and potential sources of contamination at the Site associated with current and/or historical activities at the Site and on neighboring properties; and, to investigate the potential for soil and groundwater impacts at the Site related to the historical and current use of the Site and adjacent properties. Note, this report is focused on a portion of the Site (227Cross Ave), not the entire Site.			
Potential Environmental Concerns Identified	 On-site De-icing salt usage (Soil and groundwater EC, SAR, sodium and chloride) Unknown fill material (Soil and groundwater PAHs, metals and inorganics) Potential impacts on Site from surrounding properties Eastern Portion - current dry cleaner (Groundwater VOCs) Western Portion - Tannery (Groundwater - VOCs, PAHs) Eastern Portion - Gasoline Service Station - (Groundwater - PHCs, BTEX) Eastern Portion - Commercial Autobody Shop (Groundwater - PHCs, BTEX) Eastern Portion - Transformer (Groundwater - PCBs) 			
Conclusions and Recommendations	Conduct a Phase II ESA consisting of borehole drilling and monitoring well installation including soil and groundwater sampling to assess the soil and groundwater quality to investigate identified potential on-Site and off-Site sources of environmental concern at the Site.			

3 Scope of the Investigation

3.1 Overview of Site Investigation

The objective of the Phase Two ESA was to assess the APECs identified in BIG's Phase One ESA; and, to obtain soil and groundwater data to characterize the Site to support the filing of an RSC on the MECP's BESR.

3.1.1 Scope of Work

The scope of work for the Phase Two ESA was as follows:

- a) Request public utility locating companies (e.g., cable, telephone, gas, hydro, water, sewer and storm water) to mark any underground utilities present at the Site;
- b) Advance a total of fifteen (15) boreholes (BH101 to BH115) up to a maximum depth of 23.4 m bgs;
- c) Instrument all fifteen (15) boreholes as monitoring wells (MW101 to MW115);
- d) Collect representative soil samples for laboratory chemical analysis of PHCs, benzene, toluene, ethylbenzene and xylenes (BTEX), VOCs, PAHs, metals and inorganics.
- e) Develop both the previously and newly installed groundwater monitoring wells;
- f) Collect groundwater levels from both the previously and newly installed monitoring wells;
- g) Collect groundwater samples from both the previously and newly installed monitoring wells for laboratory chemical analysis of PHCs, BTEX, VOCs, PAHs, metals and inorganics;
- h) Complete an elevation survey of all newly installed monitoring wells to determine the groundwater flow direction in the overburden aguifer beneath the Site;
- i) Analyze the data and prepare a report of the findings.

3.2 Media Investigated

The focus of the Phase Two ESA was on the environmental conditions of the surficial topsoil, overburden materials and groundwater beneath the Site. As there was no surface water body on the Site, no sediment sampling was required.

A copy of the Site Sampling and Analysis Plan (SSAP) prepared for the Site is provided in Appendix A.

3.3 Phase One Conceptual Site Model

This section presents the Phase One Conceptual Site Model (P1CSM) providing a narrative, graphical and tabulated description integrating information related to the Site geologic and hydrogeologic conditions, areas of potential environmental concern/potential contaminating activities, and the presence and distribution of potential contaminants of concern. These components are discussed in the following sections.

Surface Features

The Site is located to the south of the Queen Elizabeth Way, north of Cross Avenue and east of Argus Road Oakville, Ontario, as shown on Figure 1. The Site measures 8,779 m² in size (according to Site survey). The Site is currently occupied by three (3) restaurants; McDonalds, Swiss Chalet and Harveys with associated asphalt car parking with an undeveloped area at 571 Argus Road.

The legal description of the Site as obtained from the chain of title is "Part Lot 13, 14, concession 3 Trafalgar, South of Dundas Street, Town of Oakville. Part Lot 13, Concession 3 Trafalgar, South of Dundas Street, Town of Oakville. Part Lots 13 & 14, Concession 3 Trafalgar South of Dundas Street, Town of Oakville".

The legal survey plans are included in Appendix B.

Surrounding Land Use

The Site is bordered by commercial properties to the north east and north west, Argus Road to the south west and Cross Ave to the south east. A Site Plan is provided in Figure 1.

Geological and Hydrogeological Conditions

The Site is at an elevation of approximately 102 m above sea level (asl), generally at the same elevation as properties surrounding the Site.

The bedrock in the general area of the Site consists of shale, limestone, dolostone and siltstone of the Georgian Bay formation; Blue Mountain formation; Billings formation, Collingwood Member and Eastview member. The physiography of the site is within the Iroquois Plains characterized as the Shale Plains. The physiography of the site is within the Iroquois Plains characterized as the Shale Plains.

The nearest water body is a tributary to Morrison Creek which is located approximately 335 m east and Lake Ontario is located approximately 2.0 km to the southeast. The inferred groundwater flow direction is likely towards the south/southeast.

Based on the review of available resources from the City of Toronto and the Ministry of Natural Resources and Forestry (MNRF) on January 29, 2021, no areas of natural significance were identified at the Site or within the Phase One Study Area.

Underground Utilities

The Site utilities and services were identified at the Site based on the relevant utility infrastructure observed during the Site reconnaissance and are summarized in the table below. It is noted that the precise underground location of the utilities cannot be determined without professional locate services.

Utility	Source	Location	Site Entry	
Storm Sewer	Town of Oakville	Entrance of	A catch basin is located at the entrance of Site as	
Storm Sewer	TOWITOT GARVIIIE	Site	well throughout the parking lots.	
Sanitary Sewer	Town of Oakville	Cross Avenue	A manhole in front of Site on Cross Avenue	
Natural Gas	Enbridge Gas	South	Given that the Site is located in a mixed residential and commercial area, the natural gas lines are anticipated to run along Cross Avenue and Argus Road.	
Electricity	Oakville Hydro	South	Overhead hydro lines were observed along Cross Avenue and Argus Road.	

Potentially Contaminating Activities

The identification of the potentially contaminating activities (PCAs) both on-Site and off-Site within the Phase One study area are provided in Figure 3. Based on the rationale provided, it is the opinion of the Qualified Person (QP) that seven (7) PCAs are considered APECs at the Site. Further discussion is provided below.

The Phase One ESA conducted by BIG in 2021 identified the following PCAs:

PCA Identifier	Address	PCA	PCA Location	Contributing to APEC at the Site?	Rationale
1.	217 - 227 Cross Avenue	De-icing salt usage (PCA#48 – Salt Manufacturing, Processing and Bulk Storage)	On-Site	Yes	On-Site
2.	and 571 Argus Road	Unknown Fill Material (PCA#30 – Importation of Fill Material of Unknown Quality)	On-Site	Yes	On-Site
3.	568 Argus Road	Former Metal Fabrication (PCA#34 metal fabrication)	Off-Site (21 m west)	Yes	Located trans- gradient Adjacent
4.		Former Metal Fabrication (PCA#34 metal fabrication)			
5.	570 Argus Road	PCA#10 commercial auto body shops	Off-Site (21 m west)	Yes	Located trans- gradient Adjacent
6.		PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks			
7.	572 Argus Road	Former Metal Fabrication (PCA#34 metal fabrication)	Off-Site (21 m west)	Yes	Located trans- gradient Adjacent
8.	187 Cross Avenue	Former dry cleaner (PCA#37 – Operation of Dry Cleaning Equipment (Where Chemicals are Used))	Off-Site (29 m south west)	No	Inferred down-gradient
9.	233 Cross Avenue	Former dry cleaner (PCA#37 – Operation of Dry Cleaning Equipment (Where Chemicals are Used))	Off-Site (32 m east)	No	Located trans- gradient
10.		PCA#55 Transformer Manufacturing and Processing			
11.	185 Cross Avenue	Tanning (PCA#53 Tanning)	Off-Site (67 m south, south west)	No	Inferred down- gradient
12.	570 Trafalgar Road	(PCA#28 Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site (75 m north, north east)	No	Inferred trans- gradient

PCA Identifier	Address	PCA	PCA Location	Contributing to APEC at the Site?	Rationale
13.	546 Cross Avenue	Former UST (PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site (80 m east)	No	Located trans- gradient
14.	218 Cross Avenue	Former service station (PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site (90 m south)	No	Inferred down- gradient
15.	562 Trafalgar Road	PCA#54 textile manufacturing and processing	Off-Site (124 m east)	No	Inferred trans- gradient
16.	165 Cross Avenue	PCA# 10 Commercial Autobody Shops	Off-Site (141 m south west)	No	Inferred down- gradient
17.	580 Argus Road	Former Paint Manufacturing (PCA#39 Paints Manufacturing, Processing and Bulk Storage)	Off-Site (150 m west)	Yes	Located trans- gradient Adjacent
18.	547 Trafalgar Road	(PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks) (PCA#28 – Gasoline and Associated Products	Off-Site (159 m east)	No	Located trans- gradient
19.		Storage in Fixed Tanks)			
20.	200 Cross Avenue	Former USTs (PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site (174 m south east)	No	Located down- gradient
21.		Former Leather Manufacturing (PCA#53 Tannery)			
22.	125 Cross Avenue	Former Tire and Rubber Manufacturing (PCA#47 Rubber Manufacturing and Processing)	Off-Site (190 m west)	No	Located trans- gradient
23.		Former Auto Body Shop (PCA#10 Commercial Auto Body Shops)			

PCA Identifier	Address	PCA	PCA Location	Contributing to APEC at the Site?	Rationale
24.		Former Dry Cleaner (PCA#37 Operation of Dry- Cleaning Equipment)			
25.		(PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)			
26.	1.10.0	(PCA#32 Iron and Steel Manufacturing and Processing)	Off-Site		
27.	148 Cross Avenue	Former USTs (PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	(206 m south, south west)	No	Located down- gradient
28.	489 Trafalgar Road	Former service station (PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site (215 m south)	No	Located down- gradient
29.	2 Dundas Street North	(PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site (215 m south)	No	Inferred down- gradient
30.	485	Lumber Yard (PCA#59 wood treating, and preservative facility and bulk storage of treated and preserved wood products)	Off-Site		Inferred down-
31.	Trafalgar Road	(PCA#39 Paints Manufacturing)	(219 m east southeast)	No	gradient
32.		(PCA#43 Plastics (including Fibreglass) Manufacturing and Processing)			
33.		PCA#53 Tannery			
34.	166 South Service Road	Coal Yard (PCA#9 Coal Gasification)	Off-Site (226 m north west)	No	Inferred down-gradient
35.	590 Dundas North	Wood Yard (PCA#59 wood treating and preservative facility and bulk storage of treated and preserved wood products)	Off-Site (230 m south)	No	Inferred down- gradient

PCA Identifier	Address	PCA	PCA Location	Contributing to APEC at the Site?	Rationale	
	151	(PCA#28 – Gasoline and	Off-Site		Located down-	
36.	Dundas	Associated Products	(230 m	No		
	North	Storage in Fixed Tanks)	south)		gradient	
37.	462 Trafalgar Road	(PCA #40 Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications)	Off-Site (230 m southeast)	No Located do		
38.		(PCA#28 Gasoline and Associated Products Storage in Fixed Tanks)				
39.	312 Davis Road	(PCA#28 Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site (232 m northeast)	No	Inferred trans- gradient	
40.	457 Reynolds Street	(PCA #40 Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Off-Site		No	Inferred trans- gradient	
41.		(PCA#37 operation of dry- cleaning equipment)	255 211			
42.	152 Cross Avenue	Former Autobody shop (PCA#10 Commercial Auto Body Shops)	Off-Site (239 m west)	No	Located trans- gradient	
43.	142 Cross Avenue	Tire and Rubber (PCA#47 Rubber Manufacturing and Processing)	Off-Site (245 m west)	No	Inferred trans- gradient	
44.	541 Dundas North	Tire and Rubber (PCA#47 Rubber Manufacturing and Processing)	Off-Site (250 m south)	No	Located down- gradient	

Areas of Potential Environmental Concern

Based on the evaluation of the PCAs located on- and off-Site, seven (7) APECs were identified, as presented below:

Area of Potential Environmental Concern (APEC) ¹	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA) ²	Location of PCA (On-Site or Off-Site) ²	Potential Contaminants of Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 1: De-icing salt usage	Entire Site, excluding building footprints	PCA#48 – Salt Manufacturing, Processing and Bulk Storage	On-Site	Electrical Conductivity, SAR, Sodium and Chloride	Soil and Groundwater
APEC 2: Unknown fill materials	Entire Site, excluding building footprints	PCA#30 – Importa tion of Fill Material of Unknown Quality	On-Site	PAHs, metals, As, Sb, Se, Cr (VI), Hg, B-HWS, CN-, low or high pH	Soil and Groundwater
APEC 3: Former Metal Fabrication	Western portion	Former Metal Fabrication (PCA#34 metal fabrication)	Off-Site (west adjacent)	VOCs, metals, As, Sb, Se, Cr (VI), Hg, B-HWS, CN-, low or high pH	Groundwater
APEC 4: Former Metal Fabrication	Western portion	Former Metal Fabrication (PCA#34 metal fabrication)	Off-Site (west adjacent)	VOCs, metals, As, Sb, Se, Cr (VI), Hg, B-HWS, CN-, low or high pH	Groundwater
APEC 5: Commercial Auto Body Shop	Western portion	PCA#10 commercial auto body shops	Off-Site (west adjacent)	VOCs, PHCs, BTEX	Groundwater
APEC 6: Automotive shop	Western portion	PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks	Off-Site (west adjacent)	PHCs and BTEX	Groundwater
APEC 7: Former metal fabrication	Western portion	Former Metal Fabrication (PCA#34 metal fabrication)	Off-Site (west adjacent)	VOCs, metals, As, Sb, Se, Cr (VI), Hg, B-HWS, CN-, low or high pH	Groundwater

- 1. Area of Potential Environmental Concern (APEC) means the area on, in or under a Phase One Study Area where one or more contaminants are potentially present, as determined through the Phase One ESA, including through:

 a) identification of post or current uses on, in or under the phase one property, and
 - b) identification of potentially contaminating activities.
- 2. Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a Phase One Study Area.
 - $PHCs = petroleum\ hydrocarbons;\ BTEX = benzene,\ toluene,\ ethylbenzene\ and\ toluene;\ VOCs = volatile\ organic\ compounds;\ PAHs = polycyclic\ aromatic\ hydrocarbons;\ As = arsenic,\ Sb = antimony,\ Se = selenium;\ Cr\ (VI) = chromium\ hexavalent;\ Hg = mercury;\ B-HWS = boron\ hot\ water\ soluble;\ CN- = cyanide;\ EC = electrical\ conductivity;\ SAR = sodium\ adsorption\ ratio$

3.4 Deviations from Sampling and Analysis Plan

The field investigative and sampling program was carried out following the requirements of the SSAP, shown in Appendix A. No deviations from the SSAP were reported, which affected the sampling and data quality objectives for the Site.

3.5 Impediments

The entire Site was accessible at the time of the investigation, and no physical impediments were encountered during the field investigation.

4 Investigation Method

4.1 General

The Site investigative activities consisted of the drilling of fifteen (15) boreholes to facilitate the collection of soil samples for geologic characterization and chemical analysis; and, the installation of monitoring wells for hydrogeologic property characterization and the collection of groundwater samples for chemical analysis.

Boreholes were advanced in the surficial fill and overburden soils by a licensed drilling company under the full-time supervision of BIG staff. The drilling equipment used to advance the boreholes is described below. No petroleum-based greases or solvents were used during drilling activities. Monitoring wells were installed in the boreholes by a MECP licensed well contractor in accordance with Ontario Regulation 903/90, as amended (O.Reg.903) using manufactured well components (i.e., riser pipes and screens) and materials (i.e., sand pack and grout) from documented sources.

4.2 Borehole Drilling

Prior to the commencement of drilling activities, the locations of underground utilities including cable, telephone, natural gas, electrical lines, as well as water, sewer, storm water and sanitary lateral conduits were marked out by public locating companies. In addition, a private utility locating service was also retained to clear the individual borehole locations.

The fieldwork for the soil investigative portion of the Phase Two ESA was carried out between January 13 to 26, 2021.

The boreholes were advanced by Canadian Soil Drilling under full-time supervision of BIG staff using a truck-mounted drill rig to a maximum depth of 23.4 m bgs to sufficiently assess the APECs identified in the Phase One ESA. The approximate locations of the boreholes and monitoring wells are shown on Figure 4.

BIG continuously monitored the drilling activities to record the physical characteristics of the soil, depth of soil sample collection and total depth of boreholes. Field observations are summarized on the borehole logs provided in Appendix C. Representative soil samples were recovered at regular intervals using a stainless-steel split spoon sampler in all boreholes.

4.3 Soil Sampling

Soil samples for geologic characterization and chemical analysis were collected on a discrete basis in the overburden materials using 5 cm diameter, 60 cm long, split spoon samples advanced in to the subsurface using a truck mounted drill rig. The soil cores were extruded from the samplers upon retrieval by drilling personnel. Geologic details of the recovered cores were logged by BIG field staff and samples were collected from selected cores for chemical analysis. Field observations are summarized on the borehole logs prepared from the field logs and provided in Appendix C.

Measures were taken in the field and during transport to preserve sample integrity prior to chemical analysis. Recommended volumes of soil samples selected for chemical analysis were collected from the recovered cores into pre-cleaned, laboratory-supplied glass sample jars/vials identified for the specified analytical test group. All soil samples were placed in clean coolers containing ice prior to and during transportation to the subcontract laboratory, AGAT Laboratories (AGAT) of Mississauga, Ontario. The samples were transported/submitted within the acceptable holding time to AGAT following Chain of Custody protocols for chemical analysis.

Decontamination and other protocols were followed during sample collection and handling to minimize the potential for sample cross-contamination. New disposable nitrile gloves were used for the handling

Oakville Argus Cross LP Phase Two Environmental Site Assessment 217, 227 Cross Avenue and 571 Argus Road, Oakville, Ontario BIGC-ENV-349B February 2021

and sampling of each retrieved soil core. Drill cuttings were placed in labeled, sealed drums upon completion of sampling. All fifteen (15) of the boreholes that were advanced were completed as monitoring wells (MW101 to MW115).

Soil samples submitted for specific chemical analysis were selected on the basis of visual inspection of the recovered cores, sample location and depth interval.

Geologic interpretation of the recovered soil cores from the boreholes are provided in boreholes logs provided in Appendix C.

4.4 Field Screening Measurements

A portion of each soil core was placed in a sealed "Ziploc®" plastic bag and allowed to reach ambient temperature prior to field screening using a MiniRae 3000 Photo Ionization Detection (PID) instrument, calibrated with isobutulene gas. The measurements were made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These readings provide a real-time indication of the relative concentration of combustible vapours encountered in the subsurface during drilling and are used to aid in the assessment of the vertical and horizontal extent of contamination and the selection of soil samples for analysis.

The field screening measurements, in parts per million (ppm) isobutylene equivalents, are presented on the borehole logs in Appendix C.

Each sample was additionally examined for visual, textural and olfactory classification at the time of sampling.

4.5 Groundwater: Monitoring Well Installation

Fifteen (15) boreholes were instrumented with groundwater monitoring wells at the Site (MW101 to MW115). The monitoring wells were installed in general accordance with the Ontario Water Resources Act - R.R.O. 1990, Regulation 903/90 - amended to O.Reg.128/03 and were installed by a licensed well contractor.

All monitoring wells consisted of a 3 m length, 32 mm diameter PVC screen, and an appropriate length of PVC riser pipe. All pipe connections were factory machined threaded flush couplings. The annular space around the wells was backfilled with sand to an average h of 0.3 m above the top of the screen. A bentonite seal was added from the top of the sand pack to approximately 0.3 m below ground surface.

When the monitoring wells are no longer required, they must be decommissioned in accordance with the procedure outlined in the Ontario Water Resources Act - R.R.O. 1990, Regulation 903 - amended to O.Reg.128/03. Monitoring well completion details are summarized in Table 3.

Measures taken to minimize the potential for cross contamination or the introduction of contaminants during well construction included:

- a) The use of well pipe components (e.g., riser pipe and well screens) with factory machine threaded flush coupling joints;
- b) Construction of wells without the use of glues or adhesives;
- c) Removing the protective plastic wraps from well components at the time of borehole insertion to prevent contact with the ground and other surfaces; and
- d) Cleaning of augers between sampling locations;

4.6 Monitoring Well Development

Upon completion of monitoring well installation, the new monitoring wells were developed to remove fine sediment particles from the sand pack and enhance hydraulic communication with the surrounding formation waters. The monitoring wells were developed on February 1, 2021 using dedicated bailers and/or submersible pump to disturb the water column and recover groundwater containing dislodged sediment particles.

4.7 Groundwater Monitoring

Groundwater monitoring activities, which consisted of measuring the depths to groundwater in each monitoring well, were conducted on newly installed monitoring wells so that groundwater flow and direction below the Site could be assessed and groundwater samples can be collected. These groundwater monitoring activities were conducted between February 1 - 3, 2021. Water levels were measured with respect to the top of casing by means of an electronic water level meter. The water level measurements were recorded on water level log sheets or in a bound field notebook. The water level meter probe was decontaminated between monitoring well locations.

4.8 Monitoring Well Purging

Monitoring wells were purged prior to groundwater sample collection. Approximately three (3) water column well volumes of water were purged from each well to remove standing water and draw in fresh formation water. Water levels and wetted well volumes were determined by means of an electronic water level meter.

Well purging was monitored by taking field measurements of turbidity, redox, pH, specific conductance and temperature and water level for every standing well (i.e., wetted casing) volume removed. Well purging continued until the purged water had chemically stabilized as indicated by field parameter measurements, and the water was of sufficient clarity as indicated by turbidity measurements. The groundwater was considered to be chemically stable when the pH measurements of three (3) successive purge well volumes agreed to within \pm 1 pH units, the specific conductance within \pm 10%, and turbidity \pm 10% of the average value of the three readings with the temperature within \pm 3%. Field parameters including pH, conductivity and temperature were monitored during monitoring well purging using a Hanna HI 9829 multiparameter water quality meter. All development water was collected and stored on-Site in labeled, sealed containers.

Equipment used during groundwater monitoring were thoroughly cleaned and decontaminated between wells. Well purging details were documented on a log sheet or in a bound hard cover notebook.

4.9 Field Measurements of Water Quality Parameters

Field parameters including pH, conductivity and temperature were monitored during well development using a calibrated Hanna HI 9829 multiparameter water quality meter.

4.10 Groundwater Sampling

Upon completion of purging, the newly installed monitoring wells MW101, 103, 104, 107, 108, 111, 112, 113 and 115, were sampled on February 3, 2021. Recommended groundwater sample volumes were collected into laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. The samples were placed in an insulated cooler pre-chilled with ice immediately upon collection. The groundwater samples were transported to AGAT under Chain of Custody protocols, within 24 hours of sample collection or approved holding times. A summary of analysis is provided in the table below:

Soil Sample ID	Rationale	Requested Analyses	Consultant
MW101	APEC 1 & 2 characterization	PHCs, VOCs, metals and inorganics	BIG
MW103	APEC 1 & 2 characterization	Sodium & Chloride	BIG
MW104	APEC 1 & 2 characterization	PHCs, VOCs, PAHs	BIG
MW107	APEC 1 & 2 characterization	Sodium & Chloride	BIG
MW108	APEC 1 & 2 characterization	Metals and inorganics	BIG
MW111	APEC 3-8 characterization	PAHs	BIG
MW112	APEC 3-8 characterization	PHCs, VOCs, PAHs, metals and inorganics	BIG
MW113	APEC 3-8 characterization	PAHs	BIG
MW115	APEC 1 & 2 Characterization	Sodium & Chloride	BIG

4.11 Sediment Sampling

As no water body was present at the Site, sediment sampling was not part of the Phase Two ESA.

4.12 Analytical Testing

All analytical testing was performed by AGAT, which is an accredited laboratory. AGAT is accredited under the Standards Council of Canada/Canadian Association of Environmental Analytical Laboratories (Accredited Laboratory No. A3200) in accordance with ISO/IEC 17025:2005 - "General Requirements for the Competence of Testing and Calibration Laboratories".

4.12.1 Soil Sampling

Representative soil samples from each borehole were selected for laboratory analysis based on field screening results, sample location and depth interval. The requested laboratory analysis was based on the identified contaminants of concern. The representative soil samples selected for laboratory analysis, the rationale for each sample and the requested analyses are summarized below.

Table 2: Summary of Soil Samples Submitted for Chemical Analyses

Soil Sample ID	Rationale	Requested Analyses	Consultant
BH101-SS1	APEC 1 & 2 characterization	PAHs, metals and inorganics	BIG
BH101-SS2	APEC 1 & 2 characterization	PHCs and VOCs	BIG
BH102-SS1	APEC 1 & 2 characterization	PAHs, metals and inorganics	BIG
BH102-SS2	APEC 1 & 2 characterization	PHCs and VOCs	BIG
BH103-SS1	APEC 1 & 2 characterization	PAHs, metals and inorganics	BIG
BH104-SS1	APEC 1 & 2 characterization	PAHs, metals and inorganics	BIG
BH105-SS1	APEC 1 & 2 characterization	PAHs, metals and inorganics	BIG
BH105-SS3	APEC 1 & 2 characterization	PHCs and VOCs	BIG
BH106-SS1	APEC 1 & 2 characterization	PHCs and VOCs	BIG
BH106-SS2	APEC 1 & 2 characterization	PAHs, metals and inorganics	BIG
BH107-SS1	APEC 1 & 2 characterization	PAHs, metals and inorganics	BIG
BH108-SS1	APEC 1 & 2 characterization	PAHs, metals and inorganics	BIG
BH109-SS1	APEC 1 & 2 characterization	PAHs, metals and inorganics	BIG
BH110-SS1	APEC 1 & 2 characterization	PAHs, metals and inorganics	BIG
BH110-SS2	APEC 1 & 2 characterization	PHCs and VOCs	BIG
BH111-SS1	APEC 3-8 characterization	PAHs, metals and inorganics	BIG
BH112-SS1	APEC 3-8 characterization	PAHs, metals and inorganics	BIG
BH112-SS2	APEC 3-8 characterization	PAHs, metals and inorganics	BIG

Soil Sample ID	Rationale	Requested Analyses	Consultant
BH113-SS1	APEC 3-8 characterization	PAHs, metals and inorganics	BIG
BH113-SS2	APEC 3-8 characterization	PHCs and VOCs	BIG
BH114-SS1	APEC 3-8 characterization	PAHs, metals and inorganics	BIG
BH114-SS2	APEC 1 & 2 characterization	PAHs, metals and inorganics	BIG
BH115-SS1	APEC 1 & 2 characterization	PAHs, metals and inorganics	BIG
BH115-SS2	APEC 1 & 2 characterization	PAHs, metals and inorganics	BIG

4.13 Elevation Survey

The ground surface geodetic elevations at the borehole locations were surveyed by BIG personnel and referenced to BH6 (103.615 m asl), previously referenced off the top of MH28 located on Argus Road. A geodetic elevation of 102.35 m asl for top of MH28 was obtained from the Halton Region drawing titled "Watermain and Sanitary Sewer Replacement on Argus Road in the Town of Oakville from Cross Ave. to 180 m North" dated January 2003.

Table 4: Summary of Groundwater Levels and Elevations

Monitoring Well ID	Ground Surface Elevation ¹	Groundwater Level (m bgs) ²	Groundwater Elevation (AMSL) ²	Groundwater Sampling Date
BH/MW101	103.04	3.38	99.66	3 Feb 2021
BH/MW102	102.55	3.67	98.88	-
BH/MW103	101.78	2.79	98.99	3 Feb 2021
BH/MW104	100.96	2.45	98.51	3 Feb 2021
BH/MW105	102.38	21.09	81.29	-
BH/MW106	102.83	3.32	99.51	-
BH/MW107	102.40	3.61	98.79	3 Feb 2021
BH/MW108	102.55	3.90	98.65	3 Feb 2021
BH/MW109	102.89	4.20	98.69	-
BH/MW110	101.82	3.08	98.74	-
BH/MW111	101.94	3.37	98.57	3 Feb 2021
BH/MW112	102.78	4.23	98.55	3 Feb 2021
BH/MW113	103.45	4.77	98.68	3 Feb 2021
BH/MW114	103.30	18.87	84.43	-
BH/MW115	101.72	17.91	83.81	3 Feb 2021
MW/BH6	102.74	dry	dry	-
MW/BH3	102.87	1.72	101.15	-
BH/MW4	102.32	2.21	98.52	-
MW105 ³	-	2.28	-	-

¹ Elevation survey was completed using BIG's own Sokkia B40. The survey equipment was calibrated by BIG personnel prior to use.

4.14 Quality Assurance and Quality Control Measures

Quality Assurance/Quality Control (QA/QC) measures, as set out in the Sampling and Analysis Plan, were implemented during sample collection, storage and transport to provide accurate data representative of conditions in the surficial fill and upper overburden soils and the water table aquifer. The QA/QC measures included decontamination procedures to minimize the potential for sample cross contamination, the execution of standard operating procedures to collect representative and unbiased samples, the collection

² Groundwater level measured by BIG on February 8, 2021

of quality control samples to evaluate sample precision and accuracy, and the implementation of measures to preserve sample integrity.

Decontamination protocols were followed during sample collection and handling to minimize the potential for cross-contamination. During the collection of soil samples, split-spoon samplers were scraped and decontaminated between sampling intervals by washing with a potable water/phosphate-free detergent solution followed by a rinse with potable water. New disposable nitrile gloves were used for the handling and collection of samples from each soil core and for sample collection from each borehole.

Soil samples selected for chemical analyses were collected from the retrieved soil cores and placed directly into pre-cleaned, laboratory-supplied glass jars or vials. Sample volumes were consistent with analytical test group requirements as specified by the receiving laboratory.

Groundwater samples were collected into pre-cleaned laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. Recommended analytical test group specific sample volumes were collected as specified by the contractual laboratory. Sample vials for analysis of BTEX were inspected for the presence of gas bubbles and the presence of head space, where volatiles may partition into.

Measures were followed to preserve sample integrity between collection and receipt by the contractual laboratory. All samples, both soil and groundwater, immediately upon collection were placed in insulated coolers pre-chilled with ice for storage and transport to the contractual laboratory. Samples were received by the contractual laboratory within specific analytical test group holding time requirements.

Documentation procedures were followed to confirm sample identification and tracked sample movement. Each sample was assigned a unique identification ID number, which was recorded along with the date, time of sampling and requested analyses on labels affixed to the sampling containers, and in a bound field notebook. Chain of Custody protocols were followed to track sample handling and movement until receipt by the contractual laboratory.

Field QA/QC samples were collected during the soil and groundwater sampling. Duplicate samples were collected to evaluate sampling precision.

Two (2) duplicate soil samples were collected for QA/QC purposes as summarized below.

Borehole	Duplicate Sample Identification	Analytical Test Group
BH110-SS2	DUP011002	PHCs, VOCs
BH114-SS2	DUP011402	PAHs, Metals & Inorganics

One (1) duplicate groundwater sample was collected for QA/QC purposes as summarized below.

Monitoring Well	Duplicate Sample Identification	Analytical Test Group
MW112	DUP11201	PHCs, VOCs, PAHs Metals and Inorganics

There were no significant deviations from the SSAP.

5 Review and Evaluation

5.1 Geology

The soil investigation conducted at the Site consisted of the advancement of fifteen (15) boreholes into the surficial soil and the underlying native materials to a maximum depth of 23.4 m bgs. Borehole logs describing geologic details of the soil cores recovered during the Site drilling activities are presented in Appendix C. Boundaries of soil indicated on the log sheets are intended to reflect transition zones for the purpose of environmental assessment and should not be interpreted as exact planes of geological change.

The general stratigraphy at the Site, as revealed in the borehole logs, consists of asphalt with granular base, underlain by fill comprising of clayey silt to sandy silt with inclusions of gravel, rootlets/organics and variable organic staining and topsoil inclusions underlain by fill materials comprised followed by native materials comprised of clayey silt till and shale bedrock with limestone bedding.

A brief description of the soil stratigraphy at the Site, in order of depth, is summarized in the following sections. The interpreted Site geology is shown on the enclosed cross sections (Figures 7A and 8).

5.1.1 Surficial Material

Except 3-boreholes BH/MW112 to BH/MW114, the remaining 12-boreholes were advanced through the existing asphalt pavement, consisting of approximately 75 to 150 mm thick asphalt concrete over 150 to 300 mm thick granular bases.

Borehole BH/MW113 was advanced through an approximately 50 mm thick gravel. Similarly, boreholes BH/MW112 and BH/MW114 were advanced through an existing ground surface cover consisting of approximately 150 mm thick topsoil. Topsoil, in general, consists of high contents of organics and rootlets. It should be noted that topsoil thickness may also vary between and beyond the borehole locations, and thickness could also have changed significantly due to some on-site activities. Therefore, it is recommended that allowance should be made for possible variations when making construction estimates.

5.1.2 Fill Material

Below the ground surface cover, existing fill material, predominantly consisting of clayey silt and sandy silt, were encountered at all borehole locations that extended to depths varying between 0.5 and 1.7 m bgs. Earth fills also contained trace sand, trace gravel, trace rootlets and trace organics.

5.1.3 Native Material

Clayey Silt Till

Below the fill material, a native deposit of glacial clayey silt till was encountered in all boreholes that extended to depths varying between 1.7 and 2.8 m bgs. Clayey silt till deposit also contained trace sand, trace gravel and occasional fragments of Shale.

Due to the nature of till formation, cobbles and boulders should be anticipated within the glacial till deposit.

5.1.4 Shale Bedrock

Below clayey silt till, a highly weathered Georgian Bay Formation grey Shale with interbedded limestone bedrock was encountered in all boreholes. All boreholes were drilled into the Shale bedrock and sampled up to the borehole termination depths.

5.2 Groundwater Elevations and Flow Direction

The monitoring well network advanced at the Site consists of fifteen (15) newly installed monitoring wells and three (3) existing monitoring wells advanced by BIG between 2019 and 2021 and one (1) monitoring well installed by previous consultant Terrapex. The 3 m long screens were installed within shale bedrock aquifer for BIG wells and overburden in the Terrapex installed well.

Based on the topography and the distance of the Site to the Sixteen Mile Creek and Lake Ontario, the inferred groundwater flow direction was considered to be to the south/southwest in the Phase One ESA. The groundwater data collected from across the Site on February 1 and 8, 2021 inferred that the groundwater flow direction is to the south.

5.2.1 Groundwater: Hydraulic Gradients

The horizontal hydraulic gradient, between each monitoring well pair, is calculated using the following equation:

i = Ah/As*100

Where,

i = horizontal hydraulic gradient;

Ah (m) = groundwater elevation difference; and,

As (m) = separation distance.

The horizontal hydraulic gradient in groundwater, based on groundwater measurements collected on February 09, 2021 was 1.16 % between BH/MW106 and BH/MW112 and 1.64 % between BH/MW101 and BH/MW107 with a geomean of 1.38%.

It is noted that vertical hydraulic gradients were not evaluated for this Site as a second water bearing unit was not identified at the depths investigated at the Site.

5.2.2 Groundwater: Hydraulic Conductivity

Hydraulic conductivity testing was completed in the hydrogeological investigation conducted by BIG (2021). Single Well Response Test (SWRT) analysis was conducted at selected monitoring wells (BH/MW104, 106, 110, 113, 114 and 115). The hydraulic conductivity values for each of the tested wells were calculated from the SWRT data using Aqtesolv Software and the Hvorlsev solution for unconfined conditions. The hydraulic conductivity (K) ranged from 5.34×10^{-5} to 1.58×10^{-8} m/s, with a geometric mean of 3.95×10^{-7} m/s.

5.3 Soil Texture

The native materials encountered, are comprised of clayey silt till with fragments of weathered shale. Soil samples were found to be medium/fine textured, however, as many samples are collected in heterogenous fill near the surface, a more stringent coarse textured standards were applied as part of this Phase Two ESA.

5.4 Soil Field Screening

All soil samples were submitted for chemical analyses based on field observations, location and depth.

5.5 Soil Quality

In accordance with the scope of work, chemical analyses were performed on selected soil samples recovered from the boreholes. The selection of representative "worst case" soil samples was based on

field screening, visual and/or olfactory evidence of impacts, and the presence of potential water bearing zones. Copies of the laboratory Certificates of Analysis for the analyzed soil samples are provided in Appendix F.

5.5.1 PHCs

The soil samples submitted for metals analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and, all laboratory RDLs were below the applicable SCS.

Refer to Appendix B for a summary of the soil results analyzed for PHCs.

5.5.2 VOCs

The soil samples submitted for VOCs analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and, all laboratory RDLs were below the applicable SCS.

Refer to Appendix B for a summary of the soil results analyzed for VOCs.

5.5.3 PAHs

The soil samples submitted for PAHs analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and, all laboratory RDLs were below the applicable SCS.

Refer to Appendix B for a summary of the soil results analyzed for PAHs.

5.5.4 Metals

The soil samples submitted for metals analysis indicated that select parameters were detected at concentrations above the MECP Table 3 SCS:

Parameter	MECP (2011a) Table 2 SCS	Number of Soil Samples Submitted	Number of Soil Samples Exceeding the applicable SCS	Maximum concentration detected	
	Metals				
Copper	140 μg/g	17	2	493 μg/g	

The remaining parameters were all detected below the applicable MECP Table 3 SCS and all laboratory RDLs were below the applicable SCS.

Refer to Appendix B for a summary of the soil results analyzed for metals.

5.5.5 Inorganics

Electrical conductivity (EC) and sodium adsorption ratio (SAR) were detected in soil in exceedance of the applicable MECP Table 2 SCS in five (5) samples. However, under the newly amended O.Reg.153/04 (O.Reg.407/19), if a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under the conditions of snow or ice or both (i.e., application of de-icing salts), its related parameters are not deemed to be in exceedance of the MECP Table 2 SCS. As de-icing salts were used at the Site EC and SAR are not considered as contaminants of concern.

The remaining parameters were all detected below the applicable MECP Table 2 SCS and all laboratory RDLs were below the applicable SCS.

Refer to Appendix B for a summary of the soil results analyzed for inorganics.

5.5.6 Chemical Transformation and Soil Contaminant Sources

Few parameters were identified in soil at concentrations in exceedance of the applicable MECP Table 2 SCS. However, given the nature of the compounds it is not expected that any chemical transformation (i.e.,

presence of parent compounds and daughter products) has occurred on the property. Further assessment would need to be conducted to assess whether any natural attenuation processes have occurred.

5.5.7 Evidence of Non-Aqueous Phase Liquid

Inspection of the soil cores retrieved from the boreholes did not indicate the presence of non-aqueous phase liquid (NAPL), staining or sheen.

5.6 Groundwater Quality

Representative groundwater samples were collected from nine (9) of the newly installed monitoring wells to assess groundwater quality at the Site. Evidence of free product (i.e., visible film or sheen), and odour was not observed during well purging (noted in Section 5.6.6).

Analytical results summary tables are provided in Appendix B and copies of the laboratory Certificates of Analysis for the analyzed groundwater samples are provided in Appendix F.

5.6.1 PHCs

Groundwater samples submitted for PHCs analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and all laboratory RDLs were below the applicable SCS.

Refer to Appendix B for a summary of the groundwater results analyzed for PHCs.

5.6.2 BTEX

Groundwater samples submitted for BTEX analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and all laboratory RDLs were below the applicable SCS.

Refer to Appendix B for a summary of the groundwater results analyzed for BTEX.

5.6.3 **VOCs**

Groundwater samples submitted for VOCs analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and all laboratory RDLs were below the applicable SCS.

Refer to Appendix B for a summary of the groundwater results analyzed for VOCs.

5.6.4 PAHs

Groundwater samples submitted for PAHs analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and all laboratory RDLs were below the applicable SCS.

Refer to Appendix B for a summary of the groundwater results analyzed for PAHs.

5.6.5 Metals

Groundwater samples submitted for metals analysis indicated that all parameters were detected below the applicable MECP Table 2 SCS; and all laboratory RDLs were below the applicable SCS.

Refer to Appendix B for a summary of the groundwater results analyzed for metals.

5.6.6 Inorganics

Groundwater samples submitted for inorganics analysis indicated that chloride was detected in groundwater at one (1) monitoring well in exceedance of the applicable MECP Table 2 SCS. However, under the newly amended O.Reg.153/04 (O.Reg.407/19), if a substance has been applied to surfaces for the safety of vehicular or pedestrian traffic under the conditions of snow or ice or both (i.e., application of deicing salts), its related parameters are not deemed to be in exceedance of the MECP Table 2 SCS. As deicing salts were used at the Site chloride is not considered as a contaminant of concern in groundwater at

the Site.

The remaining parameters were all detected below the applicable MECP Table 2 SCS and all laboratory RDLs were below the applicable SCS.

Refer to Appendix B for a summary of the groundwater results analyzed for inorganics.

5.6.7 Chemical Transformation and Contaminant Sources

The inorganic chemical constituent detected in groundwater comprised of chloride. Given the nature of the compound, it is not expected that any chemical transformation has occurred on the property. However, further assessment would need to be completed to assess whether any natural attenuation processes have occurred.

5.6.8 Evidence of Non-Aqueous Phase Liquid

Inspection of the purged groundwater retrieved from the monitoring wells did not indicate the presence of NAPL, staining, sheen, or odour in groundwater.

5.7 Sediment Quality

As no surface water body was located on-Site, the Phase Two ESA did not include sediment sampling.

5.8 Quality Assurance and Quality Control Measures

QA/QC measures were taken during the field activities to meet the objectives of the sampling and QA plan to collect unbiased and representative samples to characterize existing conditions in the fill/upper overburden materials and water table aquifer unit at the Site. QA/QC measures included:

- a) The collection of soil and groundwater samples following standard operating procedures;
- b) The implementation of decontamination procedures to minimize the potential for sample cross contamination;
- c) The collection of recommended analytical test group specific volumes into pre-cleaned laboratory supplied containers provided with necessary preservatives as required;
- d) Sample preservation in insulated coolers pre-chilled with ice and meeting holding time requirements;
- e) Sample documentation including Chain of Custody protocols; and
- f) The collection of QC samples.

Review of field activity documentation indicated that recommended sample volumes were collected from soil and groundwater for each analytical test group into appropriate containers and preserved with proper chemical reagents in accordance with the protocols set out in the "Protocol for Analytical Methods used in the Assessment of Properties under Part XV.1 of the *Environmental Protection Act'*, dated March 9, 2004, amended as of July 1,2011. Samples were preserved at the required temperatures in pre-chilled insulated coolers and met applicable holding time requirements, when relinquished to the receiving laboratory.

Field QA/QC samples were collected during the soil and groundwater sampling. Duplicate samples were collected to evaluate sampling precision.

Two (2) duplicate soil samples were collected for QA/QC purposes as summarized below.

Borehole	Duplicate Sample Identification	Analytical Test Group
BH110-SS2	DUP011002	PHCs, VOCs
BH114-SS2	DUP011402	PAHs, Metals & Inorganics

One (1) duplicate groundwater sample were collected for QA/QC purposes as summarized below.

Borehole	Duplicate Sample Identification	Analytical Test Group	
MW112	DUP11201	PHCs, VOCs, PAHs Metals and Inorganics	

The field duplicate sample results were quantitatively evaluated by calculating the relative percent difference (RPD). Assessment of the duplicate soil samples, where quantifiable, showed that the results met analytical test group specific acceptance criteria. The overall assessment indicates that the soil samples were collected within an acceptable level of precision, and the data is acceptable quality for meeting the objectives of the Phase Two ESA.

The subcontract laboratory used during this investigation, AGAT. AGAT is accredited by the Standards Council of Canada/Canadian Association of Environmental Analytical Laboratories (Accredited Laboratory No. A3200) in accordance with ISO/IEC 17025:2005 - "General Requirements for the Competence of Testing and Calibration Laboratories".

Certificates of Analysis were received from AGAT reporting the results of all the chemical analyses performed on the submitted soil and groundwater samples. Copies of the AGAT Certificates of Analysis are provided in Appendix F. Review of the Certificates of Analysis prepared by AGAT indicates that they were in compliance with the requirements set out under subsection 47(3) of O.Reg.153/04.

The analytical program conducted by AGAT included analytical test group specific QA/QC measures to evaluate the accuracy and precision of the analytical results and the efficiency of analyte recovery during solute extraction procedures. The laboratory QA/QC program consisted of the preparation and analysis of laboratory duplicate samples to assess precision and sample homogeneity, method blanks to assess analytical bias, spiked blanks and QC standards to evaluate analyte recovery, matrix spikes to evaluate matrix interferences and surrogate compound recoveries (VOCs only) to evaluate extraction efficiency. The laboratory QA/QC results are presented in the Quality Assurance Report provided in the Certificate of Analysis prepared by AGAT. The QA/QC results are reported as percent recoveries for matrix spikes, spike blanks and QC standards, RPDs for laboratory duplicates and analyte concentrations for method blanks.

The AGAT QA/QC results were assessed against test group control limits in the case of spiked blanks, matrix spikes and surrogate recoveries and alert criteria in the case of method blanks and laboratory duplicates. Review of the laboratory QA/QC results reported by AGAT indicated that they were within acceptable control limits or below applicable alert criteria for the sampled media and analytical test groups. Based on the assessment of the QA/QC, the analytical results reported by AGAT are of acceptable quality and data qualifications are not required.

5.9 Phase Two Conceptual Site Model

This section presents a Conceptual Site Model (CSM) providing a narrative, graphical and tabulated description integrating information related to the Site geologic and hydrogeologic conditions, areas of potential environmental concern/potential contaminating activities, the presence and distribution of potential contaminants of concern, contaminant fate and transport, and potential exposure pathways.

5.9.1 Introduction

The Site is located to the south of the Queen Elizabeth Way, north of Cross Avenue and east of Argus Road in Oakville, Ontario, as shown on Figure 1. The Site measures 8,779 m² in size. The Site is currently occupied by three (3) restaurants; McDonalds, Swiss Chalet and Harveys with associated asphalt car parking with an undeveloped area at 571 Argus Road.

The Site is bordered by commercial properties to the north east and north west, Argus Road to the south west and Cross Ave to the south east. The surrounding properties are shown on Figure 1.

Table 1: Site Information

Site Details	
Municipal Addresses	217, 227 Cross Avenue and 571 Argus Road, Oakville, Ontario
Current Owner	Distrikt Capital
Owner Address	1-90 Wingold Avenue, Toronto, Ontario, M6B 1P5
Owner Contact Person	Clarence Zichen Qian
Legal Description	• 217 Cross Avenue - Part Lot 13, 14, concession 3 Trafalgar, South of Dundas Street, Town of Oakville.
	• 227 Cross Avenue - Part Lot 13, Concession 3 Trafalgar, South of Dundas Street, Town of Oakville.
	• 517 Argus Road - Part Lots 13 & 14, Concession 3 Trafalgar South of Dundas Street, Town of Oakville
Property Identification Numbers (PINs)	217 Cross Avenue - 24816-0044 (LT) 227 Cross Avenue - 24816-0043 (LT) 571 Argus Road - 24816-0114 (LT)
Property Size	8,779 m ²
Approximate Universal	Zone: 17
Transverse Mercator (UTM)	Easting: 606480
coordinates	Northing: 4812428
	(1m, NAD83, QGIS)

5.9.2 Potentially Contaminating Activities and Areas of Potential Environmental Concern

A Phase One ESA, in accordance with O. Reg. 153/04, as amended, has been conducted by BIG for the Site. The surrounding land use plan and PCAs identified On-Site and in the Phase One ESA Study Area are shown on Figure 2. A list of all PCA's identified at the Site and within the Phase One ESA Study Area are presented below:

Table 2: Potentially Contaminating Activities in the Phase One Study Area

PCA Identifier	Address	PCA	PCA Location	Contributing to APEC at the Site?	Rationale
1.	217 - 227 Cross Avenue	De-icing salt usage (PCA#48 – Salt Manufacturing, Processing and Bulk Storage)	On-Site	Yes	On-Site
2.	and 571 Argus Road	Unknown Fill Material (PCA#30 – Importation of Fill Material of Unknown Quality)	On-Site	Yes	On-Site
3.	568 Argus Road	Former Metal Fabrication (PCA#34 metal fabrication)	Off-Site (21 m west)	Yes	Located trans- gradient Adjacent
4.	570 Argus Road	Former Metal Fabrication (PCA#34 metal fabrication)	Off-Site (21 m west)	Yes	Located trans- gradient Adjacent

PCA Identifier	Address	PCA	PCA Location	Contributing to APEC at the Site?	Rationale
5.		PCA#10 commercial auto body shops			
6.		PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks			
7.	572 Argus Road	Former Metal Fabrication (PCA#34 metal fabrication)	Off-Site (21 m west)	Yes	Located trans- gradient Adjacent
8.	187 Cross Avenue	Former dry cleaner (PCA#37 – Operation of Dry Cleaning Equipment (Where Chemicals are Used))	Off-Site (29 m south west)	No	Inferred down-gradient
9.	233 Cross Avenue	Former dry cleaner (PCA#37 – Operation of Dry Cleaning Equipment (Where Chemicals are Used))	Off-Site (32 m east)	No	Located trans- gradient
10.		PCA#55 Transformer Manufacturing and Processing			
11.	185 Cross Avenue	Tanning (PCA#53 Tanning)	Off-Site (67 m south, south west)	No	Inferred down- gradient
12.	570 Trafalgar Road	(PCA#28 Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site (75 m north, north east)	No	Inferred trans- gradient
13.	546 Cross Avenue	Former UST (PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site (80 m east)	No	Located trans- gradient
14.	218 Cross Avenue	Former service station (PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site (90 m south)	No	Inferred down- gradient
15.	562 Trafalgar Road	PCA#54 textile manufacturing and processing	Off-Site (124 m east)	No	Inferred trans- gradient
16.	165 Cross Avenue	PCA# 10 Commercial Autobody Shops	Off-Site (141 m south west)	No	Inferred down- gradient

PCA Identifier	Address	PCA	PCA Location	Contributing to APEC at the Site?	Rationale
17.	580 Argus Road	Former Paint Manufacturing (PCA#39 Paints Manufacturing, Processing and Bulk Storage)	Off-Site (150 m west)	Yes	Located trans- gradient Adjacent
18.	547 Trafalgar	(PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site	No	Located trans-
19.	Road	(PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	(159 m east)	No	gradient
20.	200 Cross Avenue	Former USTs (PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site (174 m south east)	No	Located down- gradient
21.		Former Leather Manufacturing (PCA#53 Tannery)	Off-Site (190 m west)	No	Located trans- gradient
22.		Former Tire and Rubber Manufacturing (PCA#47 Rubber Manufacturing and Processing)			
23.	125 Cross Avenue	Former Auto Body Shop (PCA#10 Commercial Auto Body Shops)			
24.		Former Dry Cleaner (PCA#37 Operation of Dry-Cleaning Equipment)			
25.		(PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)			
26.	26. 148 Cross Avenue 27.	(PCA#32 Iron and Steel Manufacturing and Processing)	Off-Site (206 m		Located down-
27.		Former USTs (PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	south, south west)	No	gradient
28.	489 Trafalgar Road	Former service station (PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site (215 m south)	No	Located down- gradient

PCA Identifier	Address	PCA	PCA Location	Contributing to APEC at the Site?	Rationale
29.	2 Dundas Street North	(PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site (215 m south)	No	Inferred down- gradient
30.	485	Lumber Yard (PCA#59 wood treating, and preservative facility and bulk storage of treated and preserved wood products)	Off-Site		Inferred down-
31.	Trafalgar Road	(PCA#39 Paints Manufacturing)	(219 m east southeast)	No	gradient
32.	Nodu	(PCA#43 Plastics (including Fibreglass) Manufacturing and Processing)	Southeasty		
33.	166 South	PCA#53 Tannery	Off-Site		
34.	Service Road	Coal Yard (PCA#9 Coal Gasification)	(226 m north west)	No	Inferred down-gradient
35.	590 Dundas North	Wood Yard (PCA#59 wood treating and preservative facility and bulk storage of treated and preserved wood products)	Off-Site (230 m south)	No	Inferred down- gradient
36.	151 Dundas North	(PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site (230 m south)	No	Located down- gradient
37.	462 Trafalgar Road	(PCA #40 Pesticides (including Herbicides, Fungicides and Anti- Fouling Agents) Manufacturing, Processing, Bulk Storage and Large-Scale Applications)	Off-Site (230 m southeast)	No	Located down- gradient
38.		(PCA#28 Gasoline and Associated Products Storage in Fixed Tanks)			
39.	312 Davis Road	(PCA#28 Gasoline and Associated Products Storage in Fixed Tanks)	Off-Site (232 m northeast)	No	Inferred trans- gradient

PCA Identifier	Address	PCA	PCA Location	Contributing to APEC at the Site?	Rationale
40.	457 Reynolds Street	Reynolds Processing, Bulk Storage Street and Large-Scale Applications)		No	Inferred trans- gradient
41.		Former dry cleaner (PCA#37 operation of dry- cleaning equipment)			
42.	152 Cross Avenue	Former Autobody shop (PCA#10 Commercial Auto Body Shops) Off-Site (239 m west)		No	Located trans- gradient
43.	142 Cross Avenue	Tire and Rubber (PCA#47 Rubber Manufacturing and Processing)	Off-Site (245 m west)	No	Inferred trans- gradient
44.	541 Dundas North	Tire and Rubber (PCA#47 Rubber Manufacturing and Processing)	Off-Site (250 m south)	No	Located down- gradient

¹⁾ Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a phase one study area.

The identification of the PCAs both on-Site and off-Site within the Phase One study area are shown on Figure 3.

Based on the rationale provided, it is the opinion of the Qualified Person (QP) that seven (7) PCAs are considered APECs at the Site. Further discussion is provided below.

5.9.3 Areas of Potential Environmental Concern

Based on the evaluation of the PCAs located on- and off-Site, seven (7) APECs were identified, as presented below:

Table 2: Areas of Potential Environmental Concern (APECs)

Area of Potential Environmental Concern (APEC) ¹	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA) ²	Location of PCA (On-Site or Off-Site) ²	Potential Contaminants of Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 1: De-icing salt usage	Entire Site, excluding building footprints	PCA#48 – Salt Manufacturing, Processing and Bulk Storage	On-Site	Electrical Conductivity, SAR, Sodium and Chloride	Soil and Groundwater

Area of Potential Environmental Concern (APEC) ¹	Location of APEC on Phase One Property	Potentially Contaminating Activity (PCA) ²	Location of PCA (On-Site or Off-Site) ²	Potential Contaminants of Concern	Media Potentially Impacted (Groundwater, soil and/or sediment)
APEC 2: Unknown fill materials	Entire Site, excluding building footprints	PCA#30 – Importation of Fill Material of Unknown Quality	On-Site	PAHs, metals, As, Sb, Se, Cr (VI), Hg, B-HWS, CN-, low or high pH	Soil and Groundwater
APEC 3: Former Metal Fabrication	Western portion	Former Metal Fabrication (PCA#34 metal fabrication)	Off-Site (west adjacent)	VOCs, metals, As, Sb, Se, Cr (VI), Hg, B-HWS, CN-, low or high pH	Groundwater
APEC 4: Former Metal Fabrication	Western portion	Former Metal Fabrication (PCA#34 metal fabrication)	Off-Site (west adjacent)	VOCs, metals, As, Sb, Se, Cr (VI), Hg, B-HWS, CN-, low or high pH	Groundwater
APEC 5: Commercial Auto Body Shop	Western portion	PCA#10 commercial auto body shops	Off-Site (west adjacent)	VOCs, PHCs, BTEX	Groundwater
APEC 6: Automotive shop	Western portion	PCA#28 – Gasoline and Associated Products Storage in Fixed Tanks	Off-Site (west adjacent)	PHCs and BTEX	Groundwater
APEC 7: Former metal fabrication	Western portion	Former Metal Fabrication (PCA#34 metal fabrication)	Off-Site (west adjacent)	VOCs, metals, As, Sb, Se, Cr (VI), Hg, B-HWS, CN-, low or high pH	Groundwater

- 1) Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a phase one study area
- 2) Potentially contaminating activity means a use or activity set out in Column A of Table 2 of Schedule D that is occurring or has occurred in a phase one study area.

 $PHCs = petroleum\ hydrocarbons;\ BTEX = benzene,\ toluene,\ ethylbenzene\ and\ toluene;\ VOCs = volatile\ organic\ compounds;\ PAHs = polycyclic\ aromatic\ hydrocarbons;\ As = arsenic,\ Sb = antimony,\ Se = selenium;\ Cr\ (VI) = chromium\ hexavalent;\ Hg = mercury;\ B-HWS = boron\ hot\ water\ soluble;\ CN- = cyanide;\ EC = electrical\ conductivity;\ SAR = sodium\ adsorption\ ratio$

Refer to Figures 4 and 5 for the Site plan illustrating the borehole/monitoring well locations and APECs.

5.9.4 Underground Utilities

The Site utilities and services were identified at the Site based on the relevant utility infrastructure observed during the Site reconnaissance and are summarized in the table below. It is noted that the precise underground location of the utilities cannot be determined without professional locate services.

Utility	Source	Location	Site Entry
Storm Sewer	Town of Oakville	Entrance of Site	A catch basin is located at the entrance of Site as well throughout the parking lots.
Sanitary Sewer	Town of Oakville	Cross Avenue	A manhole in front of Site on Cross Avenue

Utility	Source	Location	Site Entry
Natural Gas	Enbridge Gas	South	Given that the Site is located in a mixed residential and commercial area, the natural gas lines are anticipated to run along Cross Avenue and Argus Road.
Electricity	Oakville Hydro	South	Overhead hydro lines were observed along Cross Avenue and Argus Road.

5.9.5 Physical Site Description

The Phase Two CSM provides a narrative and graphical interpretation of the Site surface features, near surface geologic and hydrogeologic conditions, potential contaminants of concern, contaminant fate and transport mechanisms and relevant receptors and exposure pathways. These components are discussed in the following sections.

Surface Features

The Site is currently occupied by three (3) restaurants; McDonalds, Swiss Chalet and Harveys with associated asphalt car parking with an undeveloped area at 571 Argus Road.

Geologic Setting

Information on the overburden and bedrock geology of the general Site area was obtained during the Phase One ESA. Based on the review, the following was summarized:

The physiography of the site is within the Iroquois Plains characterized as the Shale Plains. The surficial geology of the Site is described as a Paleozoic Bedrock. Bedrock in the general area of the Site consists of shale, limestone, dolostone and siltstone of the Georgian Bay formation; Blue Mountain formation; Billings formation, Collingwood Member and Eastview member.

Based on the review of the OBM and Toporama map, the Site is at an elevation of approximately 102 metres above sea level (m asl), generally at the same elevation to surrounding properties.

Based on the review of available resources from ERIS, Ontario Ministry of Natural Resources (MNR), Natural Heritage Information Centre (NHIC) database and the City of Toronto environmentally significant areas map (City of Toronto), no areas of natural significance were identified at the Site or within the Phase One study area.

The general stratigraphy at the Site, as observed in the boreholes, consisted of Asphalt over a granular base, fill material comprised of clayey silt underlain by native material characterized by clayey silt till with shale fragments varying in thickness and depths. As previously indicated, more than two-thirds (2/3) of the Site consisted of soil equal to or greater than 2 m in depth. Bedrock was encountered at the Site in all boreholes at depths of between 1.7- 2.8 m bgs.

A brief description of the soil stratigraphy at the Site, in order of depth, is summarized in the following sections. The interpreted Site geology is shown on the enclosed cross sections.

Surface Material

Except 3-boreholes BH/MW112 to BH/MW114, remaining all 12-boreholes were advanced through the existing asphalt pavement, consisting of approximately 75 to 150 mm thick asphalt concrete over 150 to 300 mm thick granular bases.

Borehole BH/MW113 was advanced through an approximately 50 mm thick gravel. Similarly, boreholes BH/MW112 and BH/MW114 were advanced through an existing ground surface cover consisting of

Oakville Argus Cross LP Phase Two Environmental Site Assessment 217, 227 Cross Avenue and 571 Argus Road, Oakville, Ontario BIGC-ENV-349B February 2021

approximately 150 mm thick topsoil. Topsoil, in general, consists of high contents of organics and rootlets. It should be noted that topsoil thickness may also vary between and beyond the borehole locations, and thickness could also have changed significantly due to some on-site activities. Therefore, it is recommended that allowance should be made for possible variations when making construction estimates.

Fill

Below the ground surface cover, existing fill material, predominantly consisting of clayey silt and sandy silt, were encountered at all borehole locations that extended to depths varying between 0.5 and 1.7 m bgs. Fill material also contained trace sand, trace gravel, trace rootlets and trace organics.

Clayey Silt Till

Below the fill material, a native deposit of glacial clayey silt till was encountered in all boreholes that extended to depths varying between 1.7 and 2.8 m bgs. Clayey silt till deposit contained trace sand, trace gravel and occasional fragments of Shale.

Due to the nature of till formation, cobbles and boulders should be anticipated within the glacial till deposit.

Shale Bedrock

Below clayey silt till, a highly weathered Georgian Bay Formation grey Shale with interbedded limestone bedrock was encountered in all boreholes. All boreholes were drilled into the Shale bedrock and sampled up to the borehole termination depths.

Refer to the geological cross sections in Figures 7A and 8 for an overview of the Site stratigraphy.

Hydrogeologic Setting

One (1) hydrostratigraphic unit was encountered at the Site which acts as an aquifer.

The on-Site monitoring well network consists of a total of eighteen (18) monitoring wells advanced by BIG (between 2019-2021) screened within the bedrock and one (1) monitoring wells installed by previous consultant screened within the overburden.

Groundwater depths within the groundwater table across the Site ranged between approximately 1.72 m and 4.77 m bgs in shallow boreholes, and 17.91 - 21.09 m bgs in deeper boreholes based on measurements recorded on February 8, 2021.

Based on the static water levels observed, the interpreted predominant groundwater flow was towards the south. The interpreted groundwater flow direction is presented on Figure 6.

Hydraulic conductivity testing was completed in the hydrogeological investigation conducted by BIG (2021). Single Well Response Test (SWRT) analysis was conducted at selected monitoring wells (BH/MW104, 106, 110, 113, 114 and 115). The hydraulic conductivity values for each of the tested wells were calculated from the SWRT data using Aqtesolv Software and the Hvorlsev solution for unconfined conditions. The hydraulic conductivity (K) ranged from 5.34×10^{-5} to 1.58×10^{-8} m/s, with a geometric mean of 3.95×10^{-7} m/s.

The horizontal hydraulic gradient in groundwater, based on groundwater measurements collected on February 09, 2021 was 1.16 % between BH/MW106 and BH/MW112 and 1.64 % between BH/MW101 and BH/MW107 with a geomean of 1.38%.

It is noted that vertical hydraulic gradients were not evaluated for this Site as a second water bearing unit was not identified at the depths investigated at the Site.

5.9.6 Site Sensitivity

The Site Sensitivity classification with respect to the conditions set out under Section 41 and 43.1 of O.Reg.153/04 were evaluated to determine if the Site is sensitive, as presented in the table below:

Table 4: Site Sensitivity

Sensitivity	Classification	Does Sensitivity Apply to Site?
	(i) property is within an area of natural significance	No
	(ii) property includes or is adjacent to an area of natural significance or part of such an area	No
	(iii) property includes land that is within 30 m of an area of natural significance or part of such an area	No
Section 41	(iv) soil at property has a pH value for surface soil less than 5 or greater than 9	No
applies if	(v) soil at property has a pH value for sub-surface soil less than 5 or greater than 11	No
	(vi) a qualified person is of the opinion that, given the characteristics of the property and the certifications the qualified person would be required to make in a record of site condition in relation to the property as specified in Schedule A, it is appropriate to apply this section to the property	No
Section	(i) property is a shallow soil property	No
43.1 applies if	(ii) property includes all or part of a water body or is adjacent to a water body or includes land that is within 30 m of a water body	No

A total of seventeen (17) plus one (1) duplicate soil samples were collected and submitted from across the Site for pH analysis. All samples were within the SCS Table 2 range with average pH from the soil samples being 7.66 which is within the MECP acceptable pH range for surficial soil of 5 to 9.

5.9.7 Remediation

No remediation has occurred on-Site.

5.9.8 Soil Importation

Fill can be used to re-grade a property and to backfill excavations. Based on the historical information reported in the Phase One ESA, fill material may have been imported to the Site to regrade the Site for car park.

5.9.9 Land Use

The Site is currently occupied by three (3) restaurants; McDonalds, Swiss Chalet and Harveys with associated asphalt car parking with an undeveloped area at 571 Argus Road. The proposed redevelopment of the Site will include two (2) residential condominium towers with six (6) levels of underground parking. The building footprint of the future development will extend to the property boundaries.

5.9.10 Contaminants of Concern

The MECP (2011a) Table 2: Full Depth Generic Site Condition Standards in a Non-Potable Ground Water Condition for Residential/Parkland/Institutional Land Use and coarse textured soils were considered applicable for determining contaminants of concern (COCs), based on the reasons presented below:

Table 5: Site Condition Standards

Descriptor	Site-Specific Condition
Section 41 Site Sensitivity	 Not applicable The soil at the Site has pH values between 5 and 9 for surficial soil; and, between 5 and 11 for subsurface soil. The Site is not located within, or adjacent to, an area of natural significance, or part of such an area; and, the Site does not include land that is within 30 m of an area of natural significance, or part of such an area.
Section 43.1 Site Sensitivity	Not applicable O The Site is not considered a shallow soil property, based on the recovered soil cores, which indicated that more than two-thirds of the Site has an overburden thickness in excess of 2 m; and, O The Site is not located within 30 m of a surface water body; The nearest water body is a tributary to Morrison Creek which is located approximately 335 m east and Lake Ontario is located approximately 2.0 km to the southeast
Ground Water	 Potable The Site is supplied by the Halton Region municipal water system. The RSC property is not located within an area designated in a municipal official plan as a well-head protection area or other designation identified by the municipality for the protection of groundwater. The property, and all other properties located, in whole or in part, within 250 metres of the boundaries of the property, are supplied by a municipal drinking water system, as defined in the Safe Drinking Water Act, 2002.
Land Use	Residential/Parkland/Institutional o The future use of the Site will be residential land use.
Soil Texture	Coarse O The predominant texture of soils at the Site is considered to be medium/fine textured, however due to heterogenous fill at surface and the depth to bedrock, a more stringent coarse textured classification was adopted.

The COCs identified in soil prior to remediation are presented in the tables below. No groundwater COCs were identified at the Site.

Table 6: Contaminants of Concern in Soil

Parameter Analyzed	Maximum concentration	Site Condition Standard ⁽¹⁾	Maximum Concentration Above Applicable SCS
Copper	493	140	Yes

¹⁾ MECP (2011a) Table 2 Site Condition Standards in Residential/Parkland/Institutional property use and coarse textured soil.

5.9.11 Soil Impacts Prior to Remediation

Information regarding the reasons for discharge, distribution and delineation of the impacts detected in soil are summarized in the below tables.

Table 7: Reasons for Discharge of Soil Impacts

Parameter Group and Media	Contaminants associated with each parameter group	Reason for Discharge	
Metal parameters in soil	Copper	Likely associated with the importation of fill material of unknown quality at the Site	

Table 8: Distribution of Soil Impacts

Parameter group and media	Contaminants associated with each group	Distribution	
Metal parameters in soil	Copper	Northern portion of the Site	

Table 9: Delineation of Soil Impacts

Parameter group and media	Contaminant associated with each group	Horizontal Delineation	Associated Figures	Vertical Delineation	Associated Figures
Metals in soil	Copper	North east and north west site boundary. BH/MW102, BH/MW105 and BH/MW109 in the south	7B	Not Completed	7B

5.9.12 Contaminant Fate and Transport

Soil Media

The soil COCs that were present at the Site prior to remediation was copper.

Based on the former activities on-Site, the impacts are likely associated with importation of fill material of unknown quality for regrading.

A variety of physical, chemical and biochemical mechanisms affect the fate and transport of the potential COCs in soil, the contribution of which is dependent on the soil conditions and the chemical/physical properties of the COCs. Relevant fate and transport mechanisms are natural attenuation mechanisms, including advection mixing, mechanical dispersion/molecular diffusion, phase partitions (i.e., sorption and volatilization), and possibly abiotic or biotic chemical reactions, which effectively reduce COC concentrations.

As a result of the various natural attenuation mechanisms in the soil environment, the concentrations of COCs in soil are expected to reduce at the Site in the long-term.

There are no known preferential pathways for contaminants present in soil media.

Groundwater Media

No COCs were present in the groundwater at the Site.

5.9.13 Preferential Pathways

The preferential pathways for contaminants present in soil and groundwater media typically include various underground utilities, building footings and surface features.

Buildings or underground utilities were identified at the Site however preferential pathways may have been present in the past when there were utilities and buildings present at the Site.

The soil at the Site is localised in the north and no groundwater COCs were identified, as such preferential pathways are not considered further.

5.9.14 Climatic Conditions

It is noted that climatic or meteorological conditions may have influenced the distribution and migration of COCs at the Site. Seasonal fluctuations in groundwater due to cyclical increases and decreases in precipitation can affect groundwater recharge. Groundwater levels may be elevated in the spring and fall due to snow melt and/or increases in precipitation; and, groundwater levels may be lowered in the winter and summer due to snow storage and/or increased evaporation. Such fluctuations can increase the vertical distribution of COCs in the capillary zone, as well as alter the direction of groundwater flow paths based on changes in infiltration rates. However, based on the conditions observed at the Site, it is not anticipated that the climatic or meteorological changes will have resulted in significant alterations in the distribution of contaminants previously present at the Site. As no COCs remain at the Site following remediation climatic conditions are not considered further.

5.9.15 Soil Vapour Migration

No PHCs or VOCs were present at the Site. Soil vapour intrusion is unlikely to have occurred on the Site due to site history. As no volatile COCs were detected at the Site in soil and no COCs are present in groundwater, soil vapour migration is no longer possible at the Site and is not considered further.

5.9.16 Receptors and Exposure Pathways

Human Health Receptors and Exposure Pathways

As COCs remain in soil at the Site and no COCs were identified in groundwater there are a few complete human receptor exposure pathways at the Site.

Scenario	Receptor	Exposure Pathways
	Adult	Soil Inhalation
Property Residents	(including pregnant female), Teen, Child,	Soil Skin Contact
	Toddler, Infant	Soil Ingestion
Workers – Long Term (indoor)	Adult (including pregnant female)	none
Workers – Short Term	Adult	Soil Inhalation
(outdoor)	(including pregnant female)	Soil Skin Contact
(outdoor)	(including pregnant female)	Soil Ingestion
Proporty Visitor	Adult	Soil Inhalation
Property Visitor - Recreational	(including pregnant female), Teen, Child,	Soil Skin Contact
Recreational	Toddler, Infant	Soil Ingestion
Droporty Visitor	Adult	Soil Inhalation
Property Visitor -	(including pregnant female), Teen, Child,	Soil Skin Contact
Trespassers	Toddler, Infant	Soil Ingestion
Workers –	Adult	Soil Inhalation
		Soil Skin Contact
Construction/Remediation	(including pregnant female)	Soil Ingestion

The human health conceptual on-Site model is included as Appendix D.

Ecological Receptors and Exposure Pathways

As COCs are limited to the north of the Site and no COCs were identified in groundwater there are no complete ecological receptor exposure pathways at the Site.

Primary Source	Secondary Source	Receptor	Exposure Pathway
	Impacted soil/air	Vogetation	Root Uptake of Soil
		Vegetation	Stem and Foliar Uptake
			Soil Inhalation
		Soil invertebrates	Soil Dermal Contact
			Soil Ingestion
			Soil Inhalation
Impacted soil		Animals	Soil Dermal Contact
impacted soil			Soil Ingestion
	Impacted plant/animal tissue		Soil Inhalation
		Soil invertebrates	Soil Dermal Contact
			Soil Ingestion
		Terrestrial birds and	Soil Inhalation
		mammals	Soil Dermal Contact
		ilialillidis	Soil Ingestion

The ecological health conceptual on-Site model is included as Appendix D.

6 Summary of Findings

The findings of the Phase Two ESA conducted at the Site are summarized as follows:

- 1. The general stratigraphy at the Site, as revealed in the borehole logs, consists of a surficial material consisting of asphalt, granular or topsoil underlain by fill materials comprised of clayey silt and sandy silt, followed by native materials comprised of clayey silt till with trace gravels and shale fragments. Below native soil was a highly weathered shale bedrock with interbedded limestone which was encountered in all boreholes.
- 2. The groundwater depths across the entire Site ranged between approximately 1.72 m and 4.77 m below ground surface (bgs) in shallow wells and 17.91 to 21.09 m bgs in the deep wells on February 08, 2021.
- 3. The soil analytical results indicated that select parameters were detected at concentrations above the applicable MECP (2011) Table 2 Site Condition Standards in a Potable Groundwater Condition for Residential/Parkland/Institutional land use and coarse textured soils were:

Parameter	MECP (2011a) Table 2 SCS	Number of Soil Samples Submitted	Number of Soil Samples Exceeding the applicable SCS	Maximum concentration detected		
Metals						
Copper	140 μg/g	17	2	493 μg/g		

4. The groundwater analytical results indicated that all groundwater samples submitted for PHCs, BTEX, VOCs, PAHs, metals and inorganics analyses were either non-detected or detected below the applicable MECP (2011) Table 2 SCS; and all laboratory RDLs were below the applicable SCS.

7 Conclusions and Recommendations

The soil COC present at the Site comprised of copper at concentrations in exceedance of the MECP Table 2 Site Condition Standards for coarse textured soil in BH101 and BH106. Based on the former activities on-Site, the impacts are likely associated with the importation of fill material of unknown quality.

In order to proceed with the Record of Site Condition (RSC), the following is recommended:

- 1. Vertically and laterally delineate the copper exceedances identified in BH101 and BH106.
- 2. Excavate the impacted soil and dispose of off Site at a registered landfill facility.
- 3. Conduct confirmatory soil sampling.
- 4. Prepare a report documenting remedial activities.
- 5. Update Phase Two ESA.
- 6. File RSC

8 General Limitations

The information presented in this report is based on a limited investigation designed to provide information to support an assessment of the current environmental conditions within the subject property. The conclusions and recommendations presented in this report reflect Site conditions existing at the time of the investigation.

This report was prepared for the exclusive use of the Client and may not be reproduced in whole or in part, without the prior written consent of BIG, or used or relied upon in whole or in part by other parties for any purposes whatsoever. Any use which a third party makes of this report, or any part thereof, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. BIG. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

Yours truly,

B.I.G. Consulting Inc.

Rebecca Morrison, M.Env.Sc

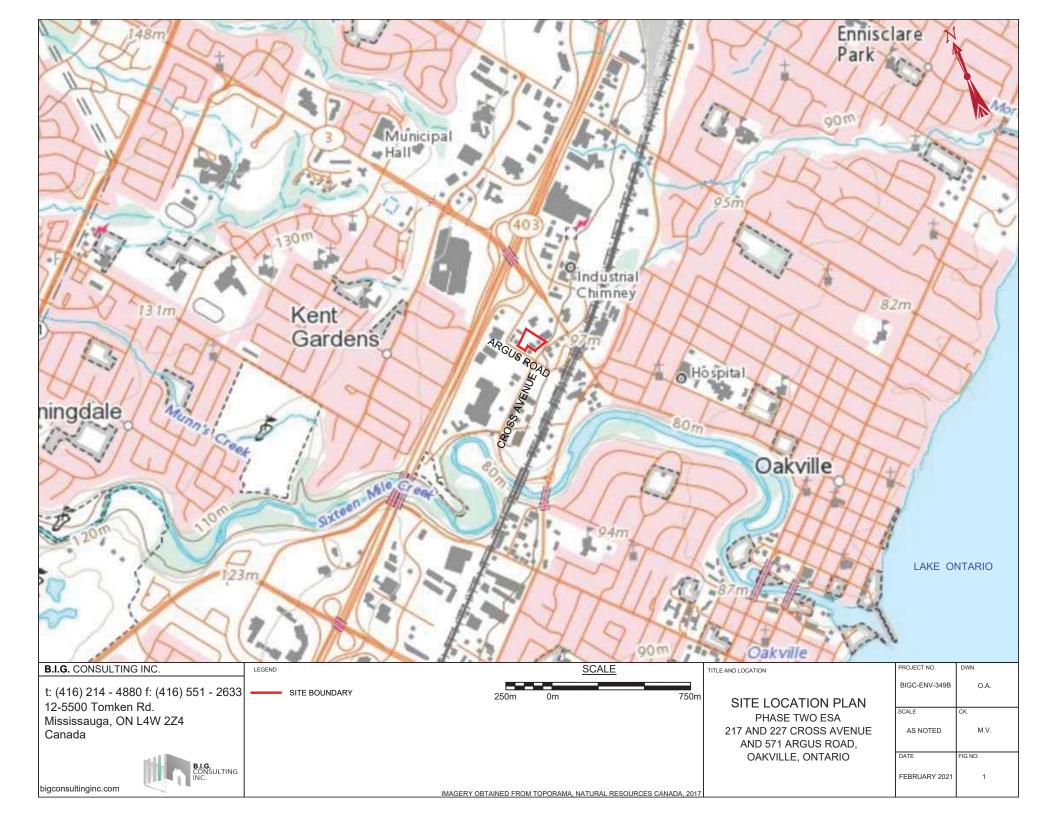
Project Manager

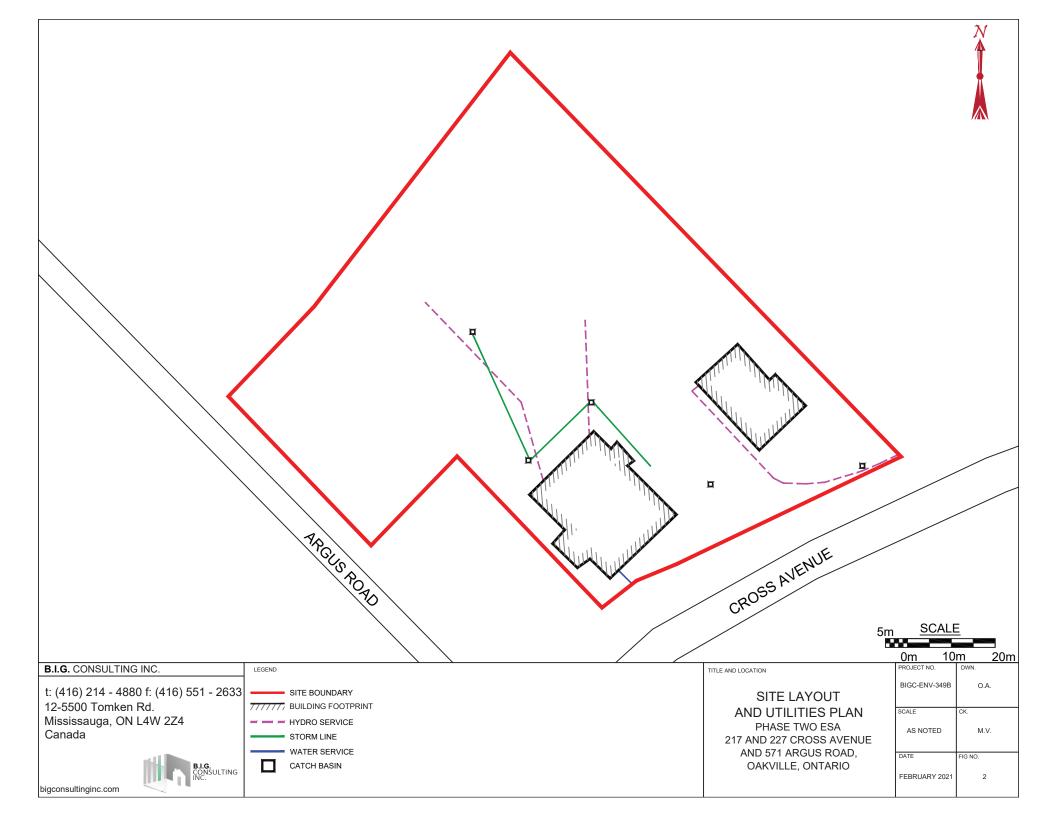
Darko Strajin, P.Eng., QP_{ESA}

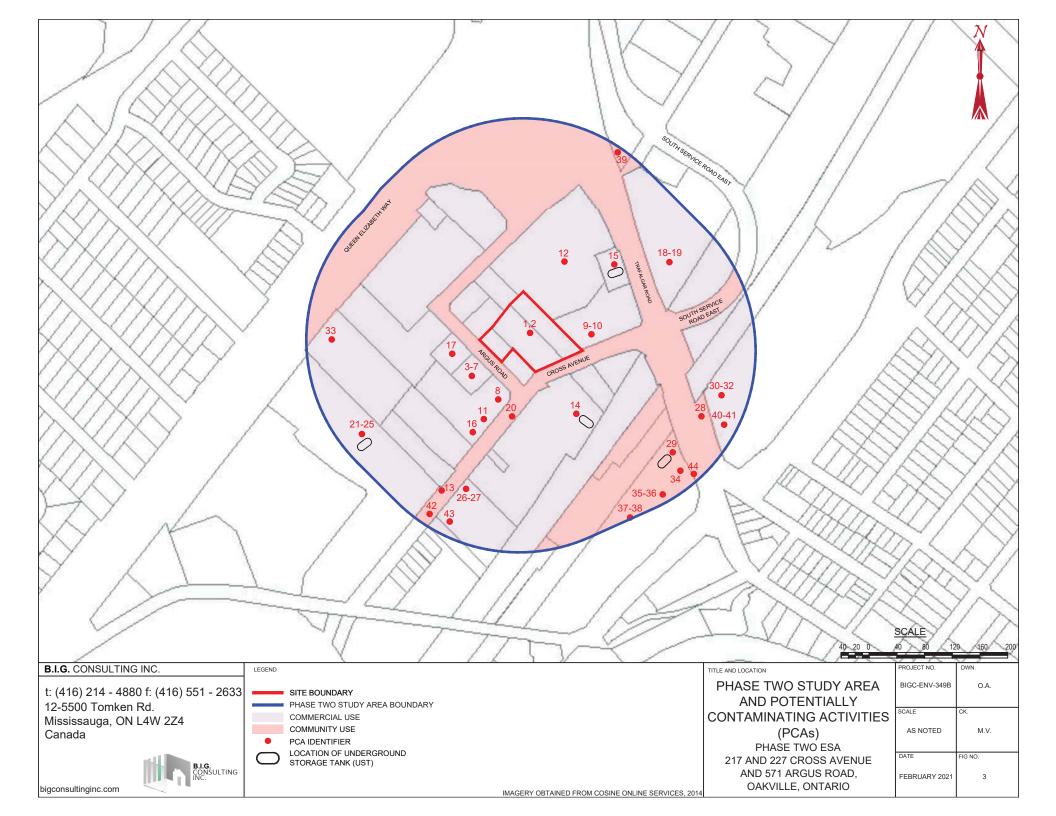
Managing Partner

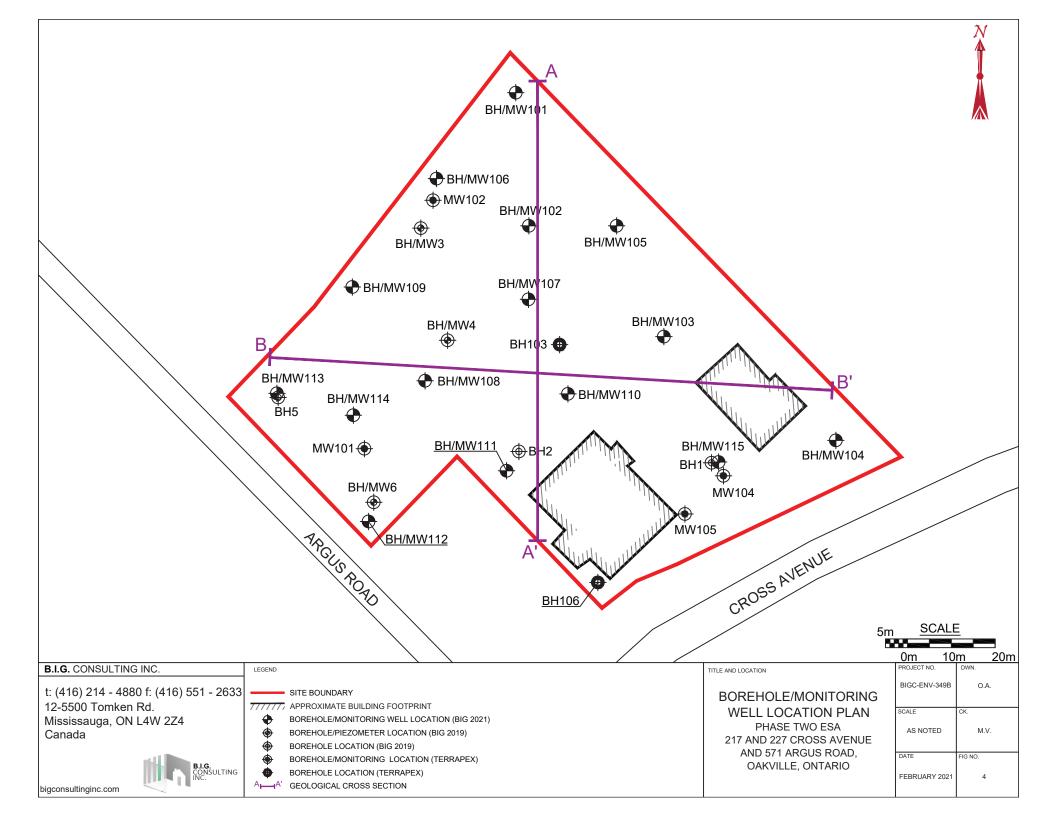
9 References

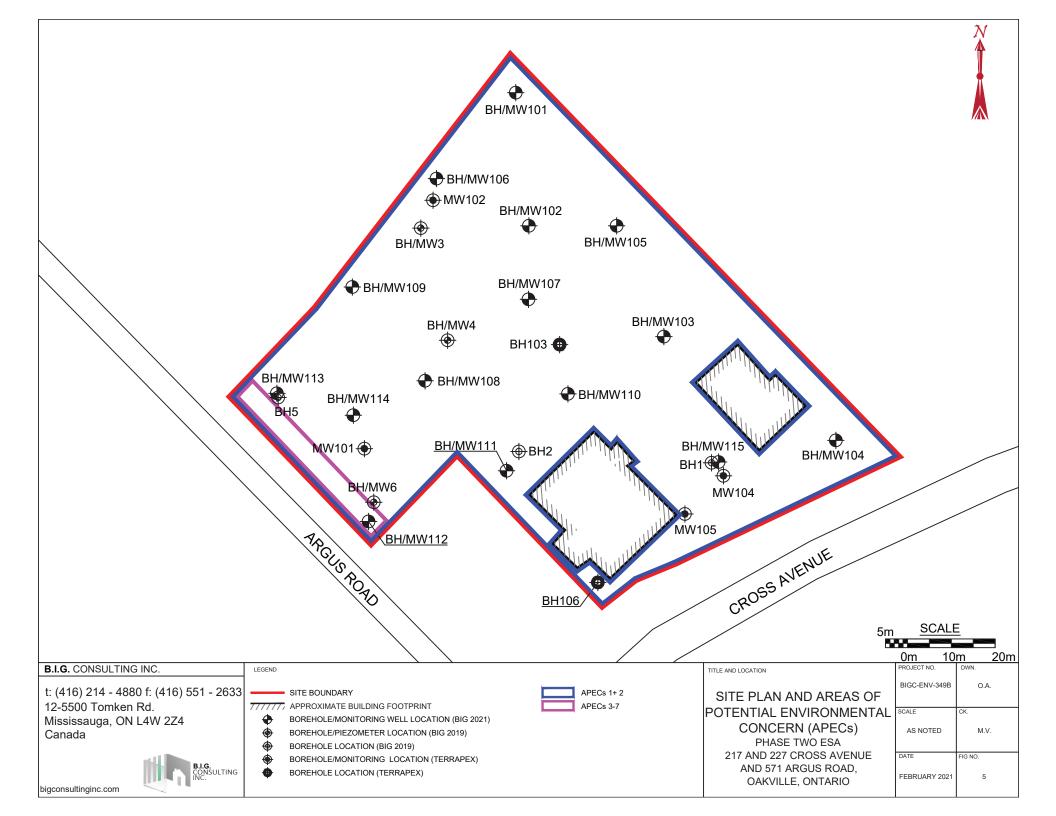
- 1. MECP (2011a) "Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act";
- 2. MECP (2011b) Protocol for Analytical Methods Used in the Assessment of Properties under Prt XV.1 of the *Environmental Protection Act*. PIBS 4696e01
- 3. MECP (2018); Well Records Map. Retrieved from https://www.ontario.ca/environment-and-energy/map-well-records
- 4. City of Toronto (2017); Environmentally Significant Areas Interactive Map. Retrieved from http://map.toronto.ca/maps/map.jsp?app=ESA
- 5. NHIC (2017); Make a Natural Heritage Map. Retrieved from http://www.gisapplication.lrc.gov.on.ca/mamnh/Index.html?site=MNR_NHLUPS_NaturalHeritage &viewer=NaturalHeritage&locale=en-US
- 6. Toporama. Retrieved from http://www.atlas.gc.ca/toporama/en/index.html

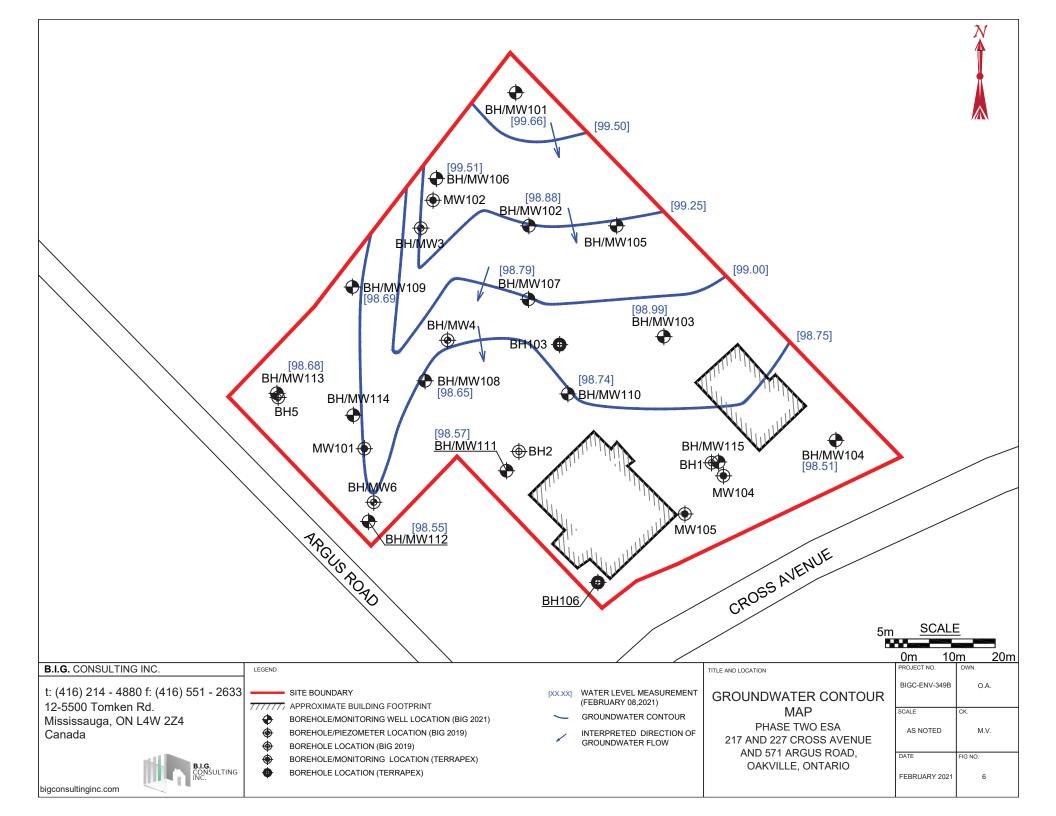

The following is a list of the Site investigations reviewed in support of this report:

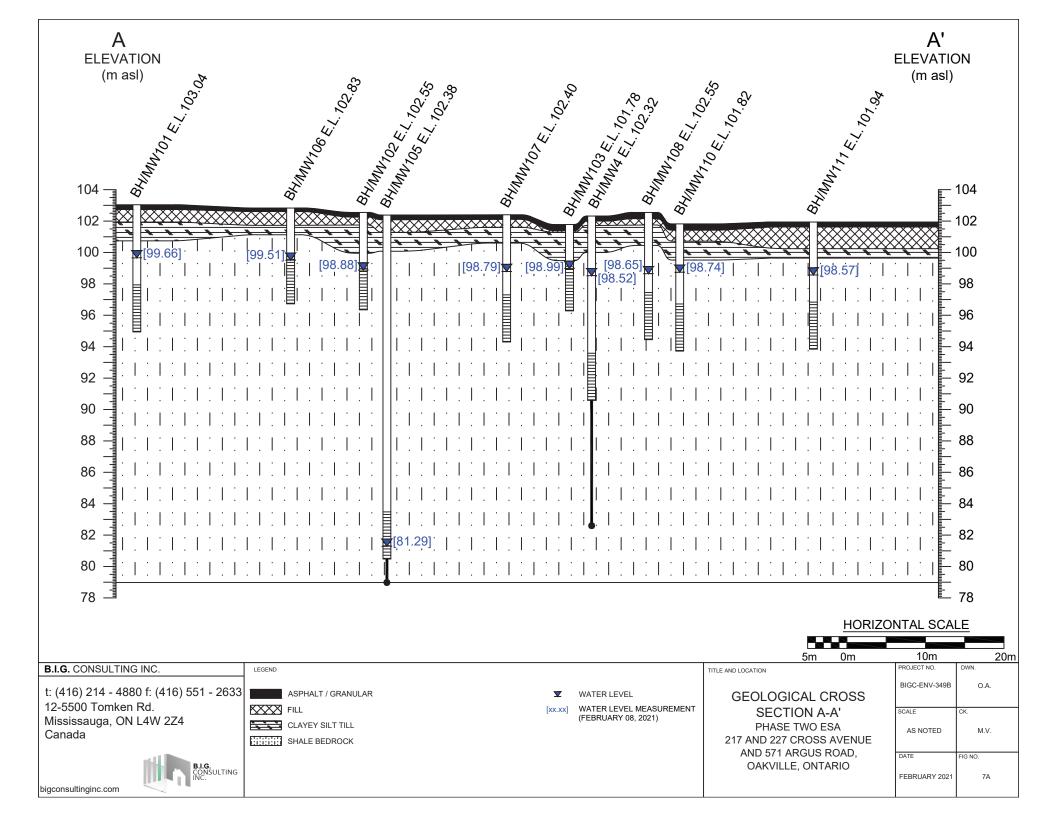

- 1. Terrapex (2018) Phase I and Phase II Environmental Site Assessment, 217 Cross Avenue and 571 Argus Road, Oakville, Ontario. Terrapex Environmental Ltd. September 28, 2018.
- 2. BIG (2019) Preliminary Geotechnical Investigation, 217 Cross Avenue and 571 Argus Road, Oakville Ontario. B.I.G Consulting Inc., December 3, 2019.
- 3. BIG (2020) Draft Phase One Environmental Site Assessment, 227 Cross Avenue Road, Oakville Ontario. B.I.G Consulting Inc., December 22, 2020.

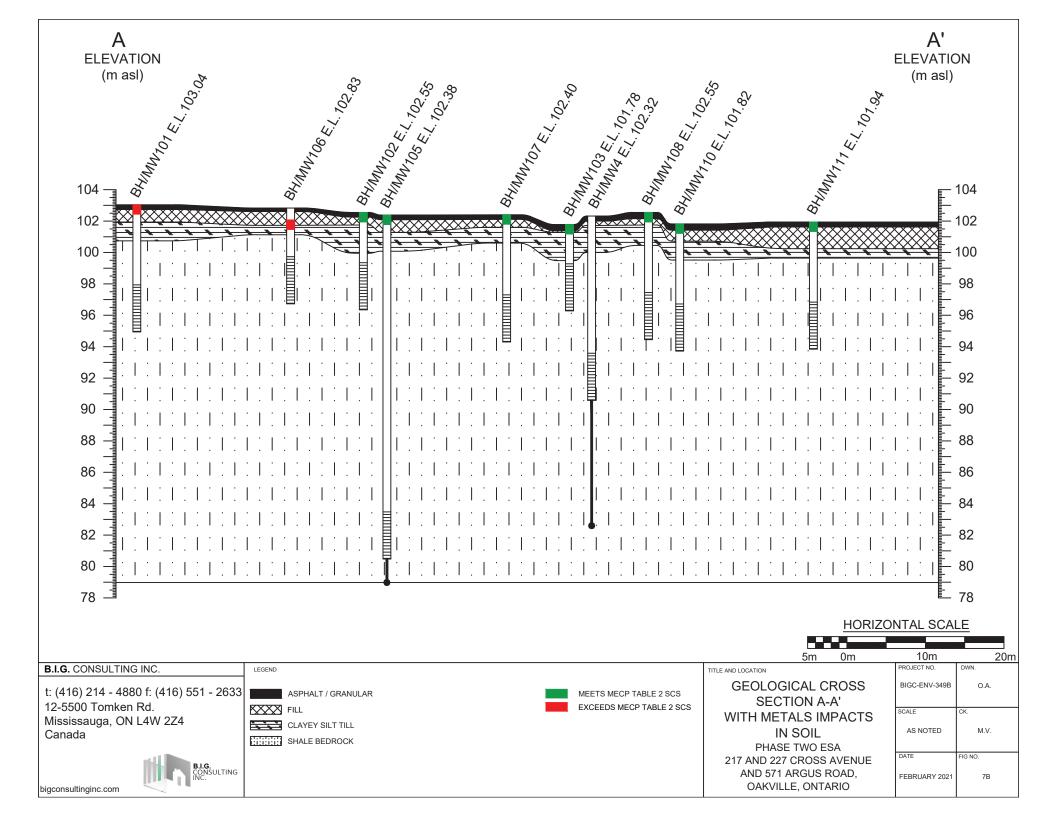


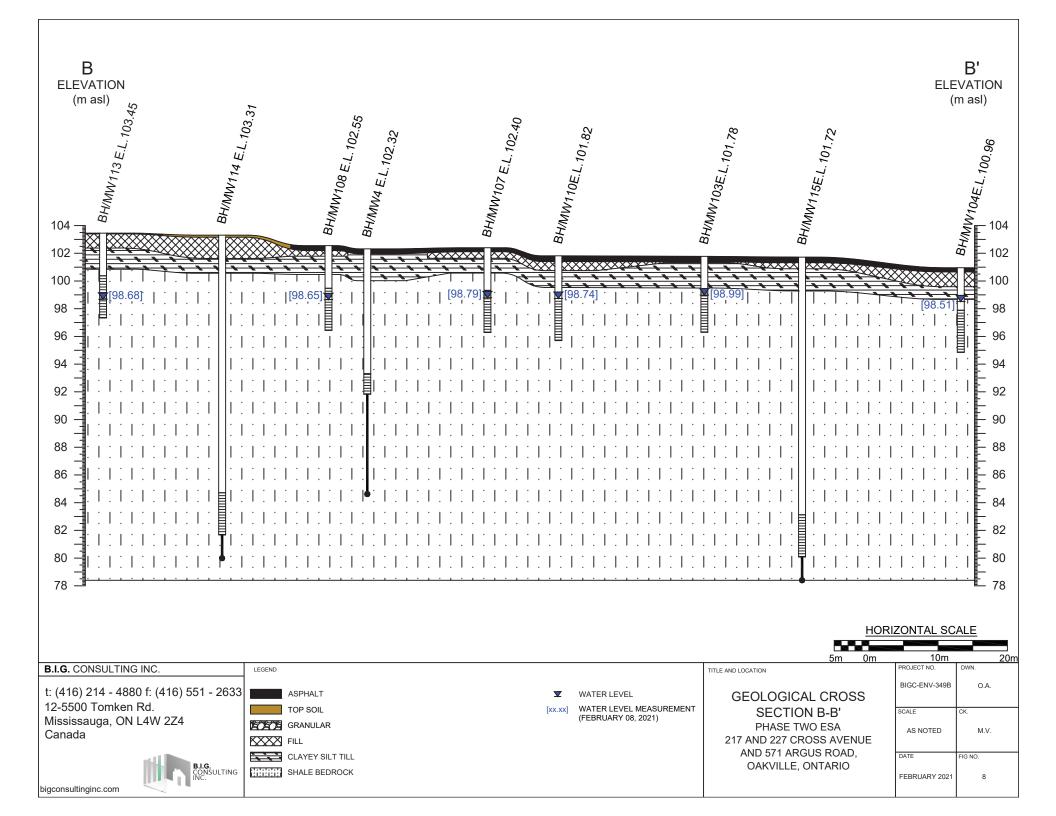

Figures

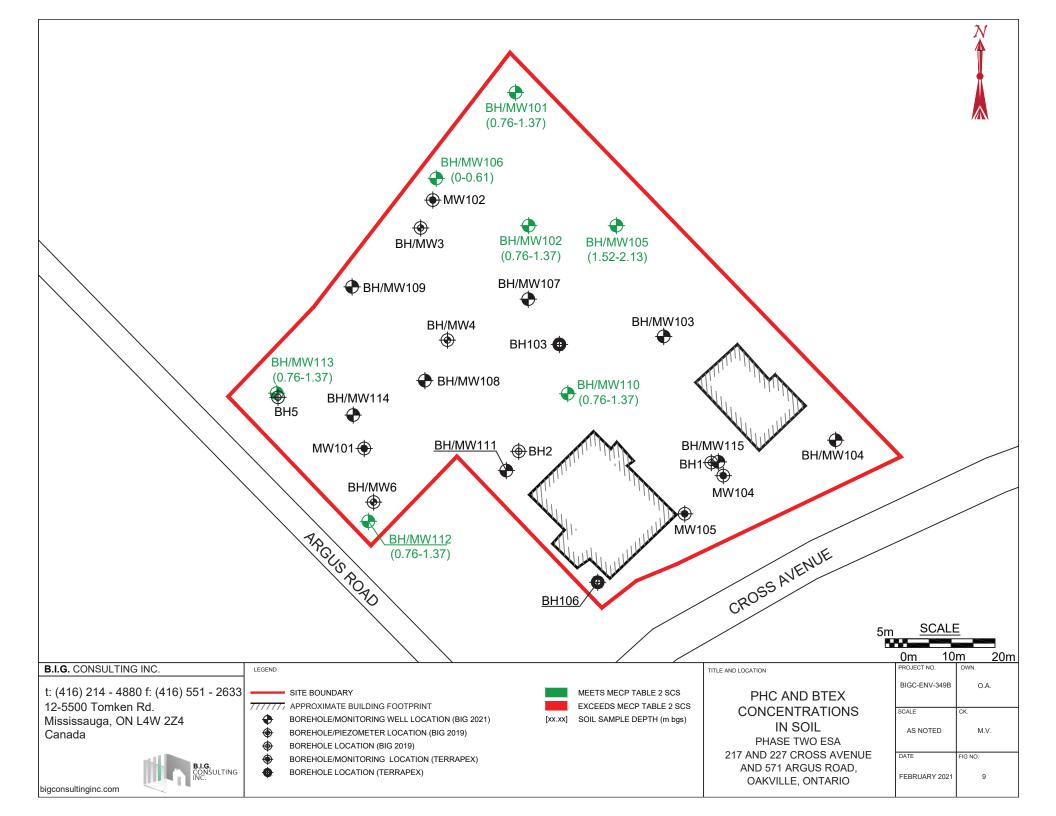


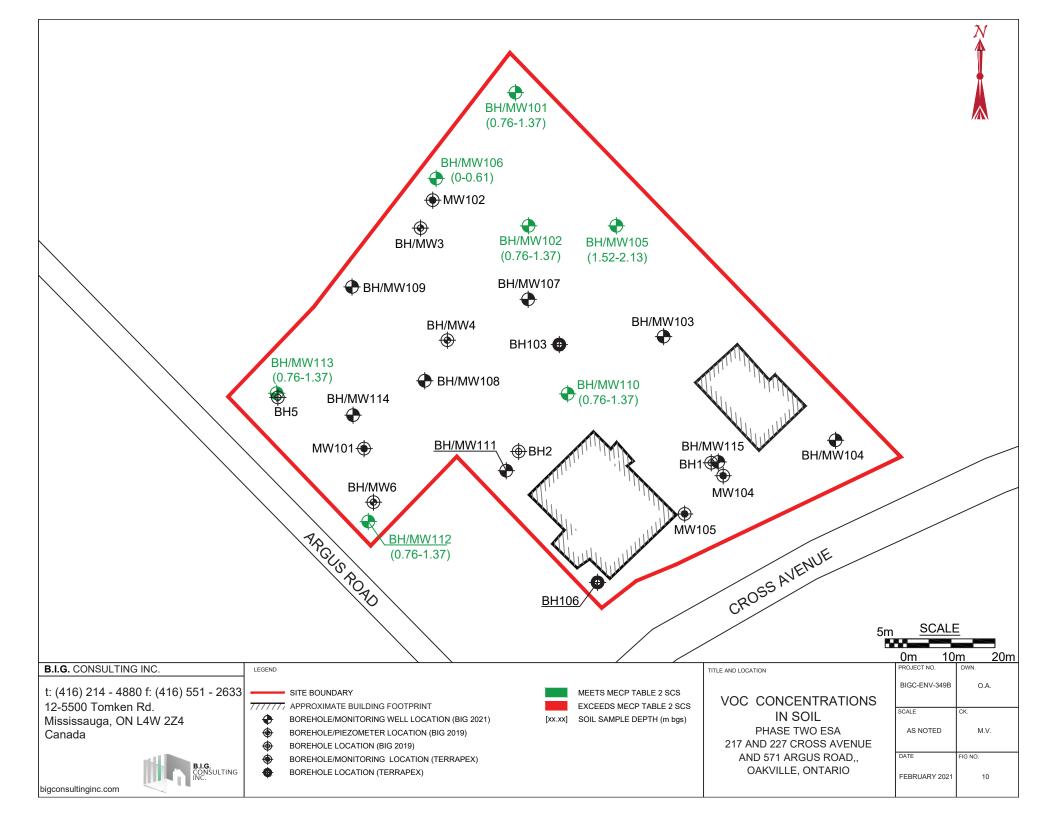


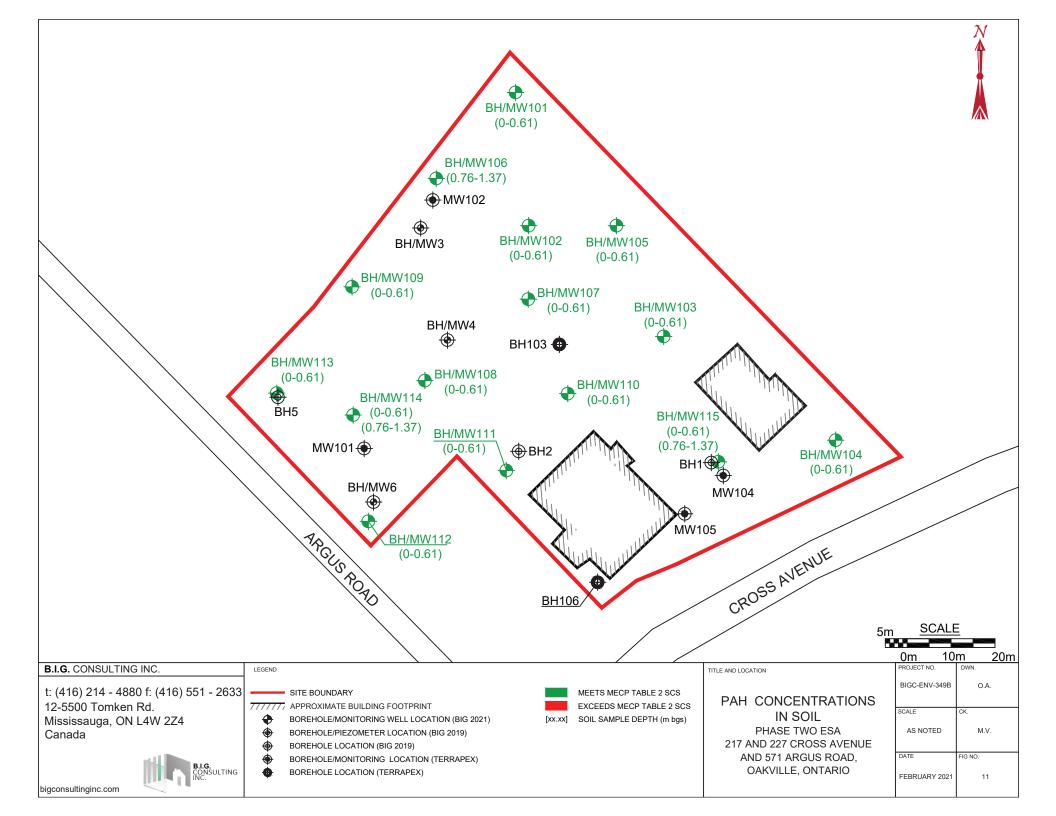


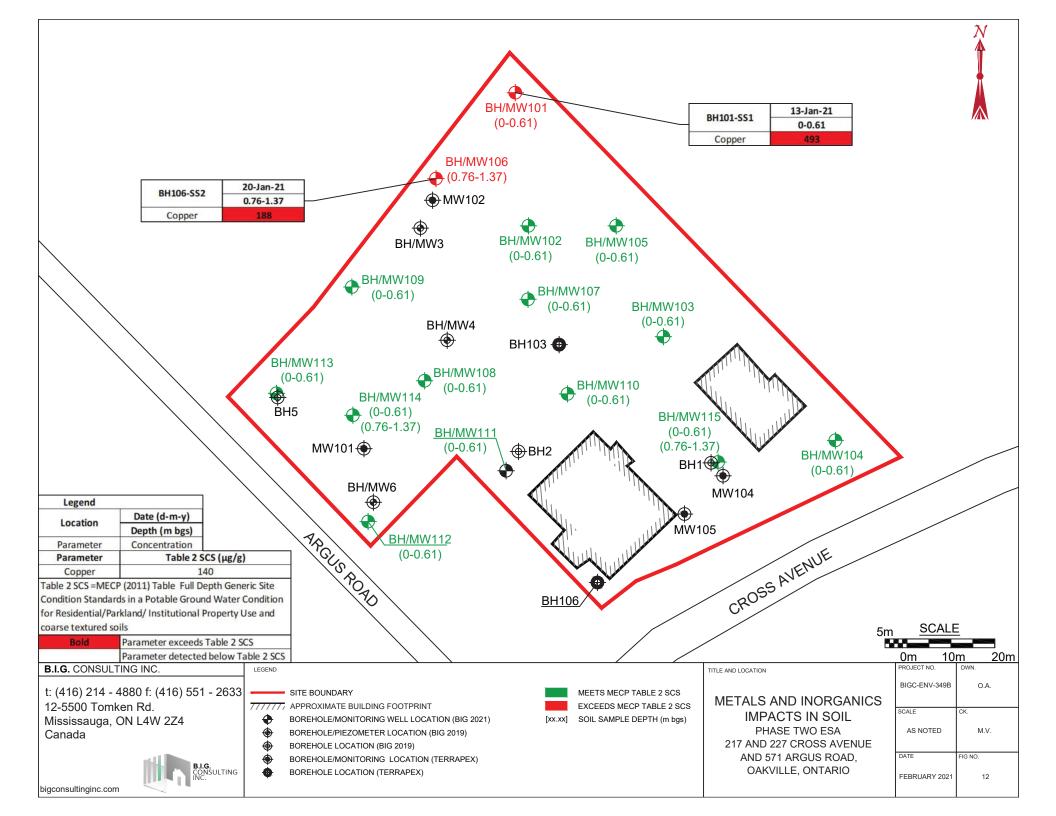


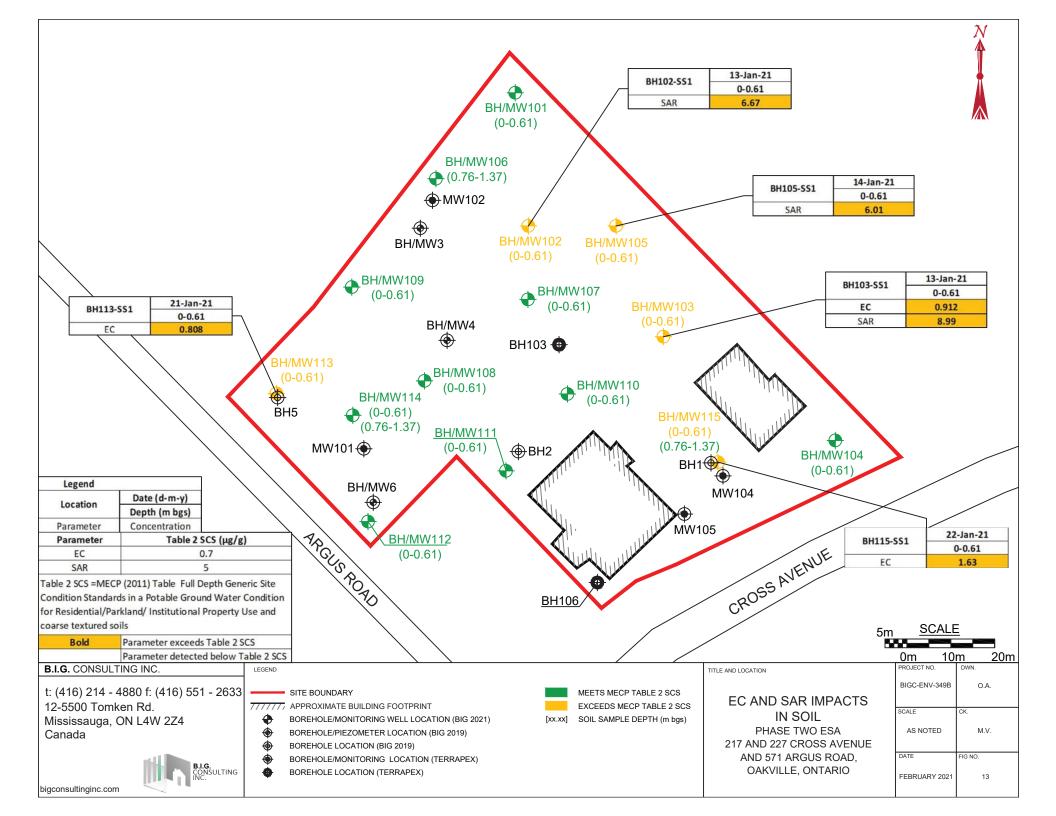


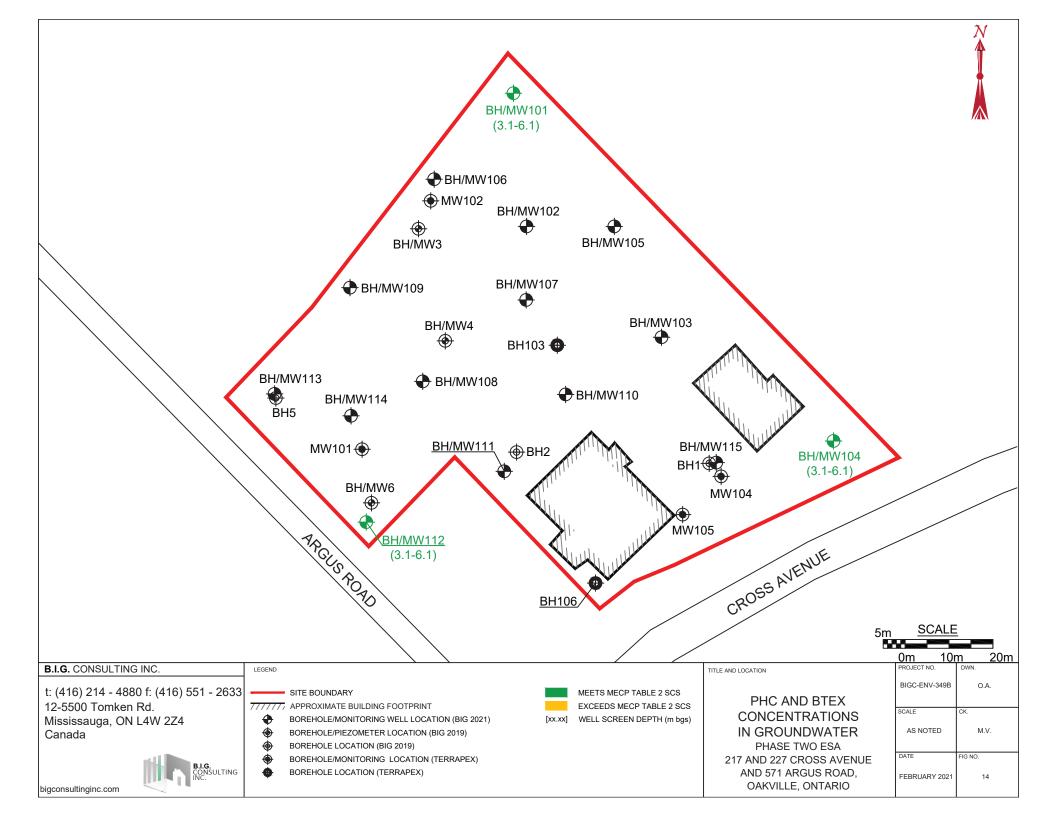


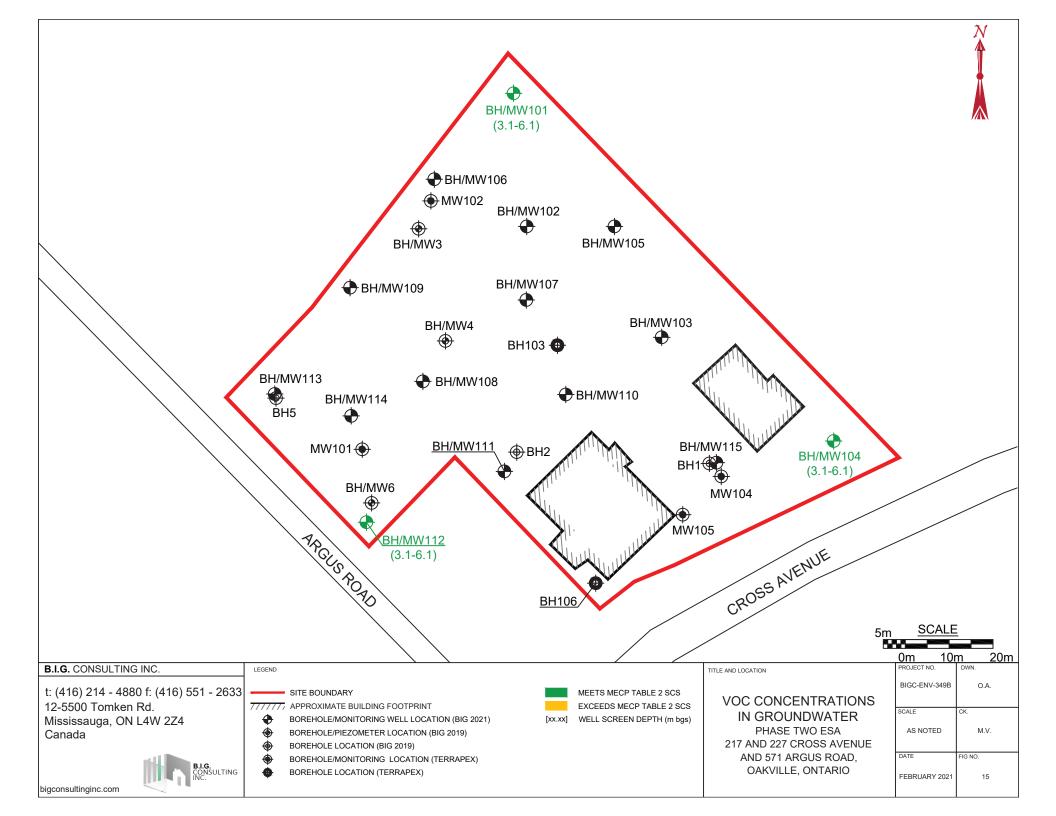


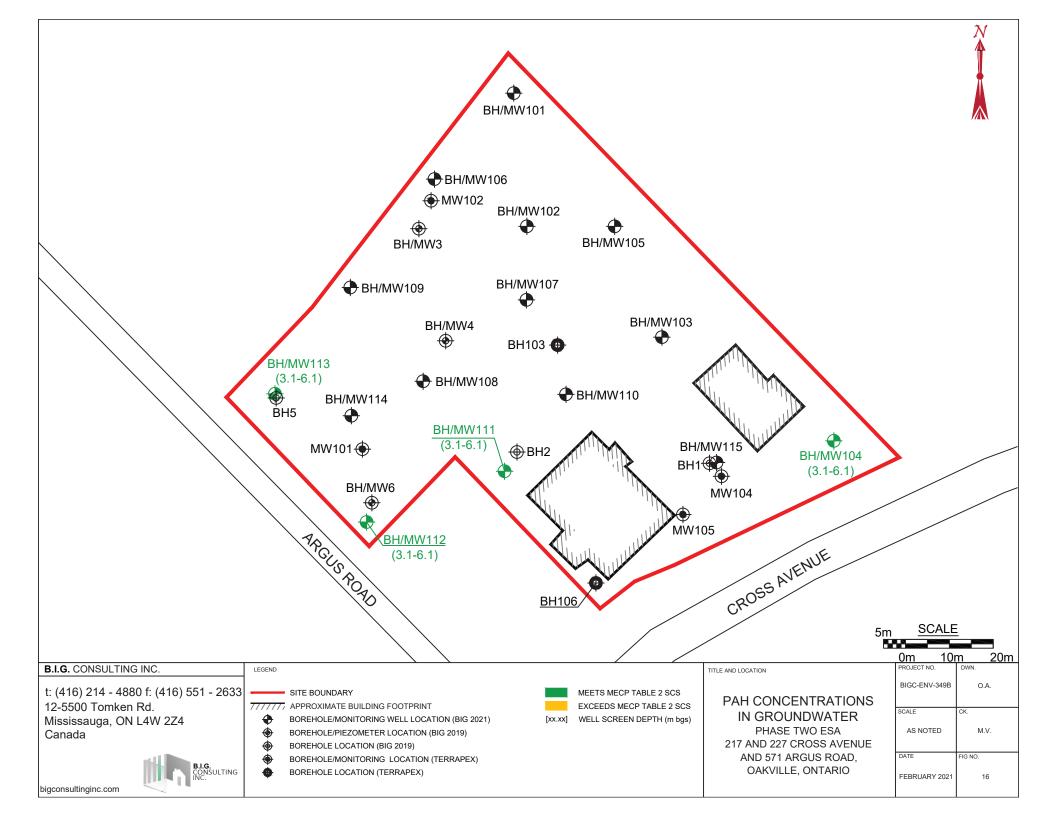


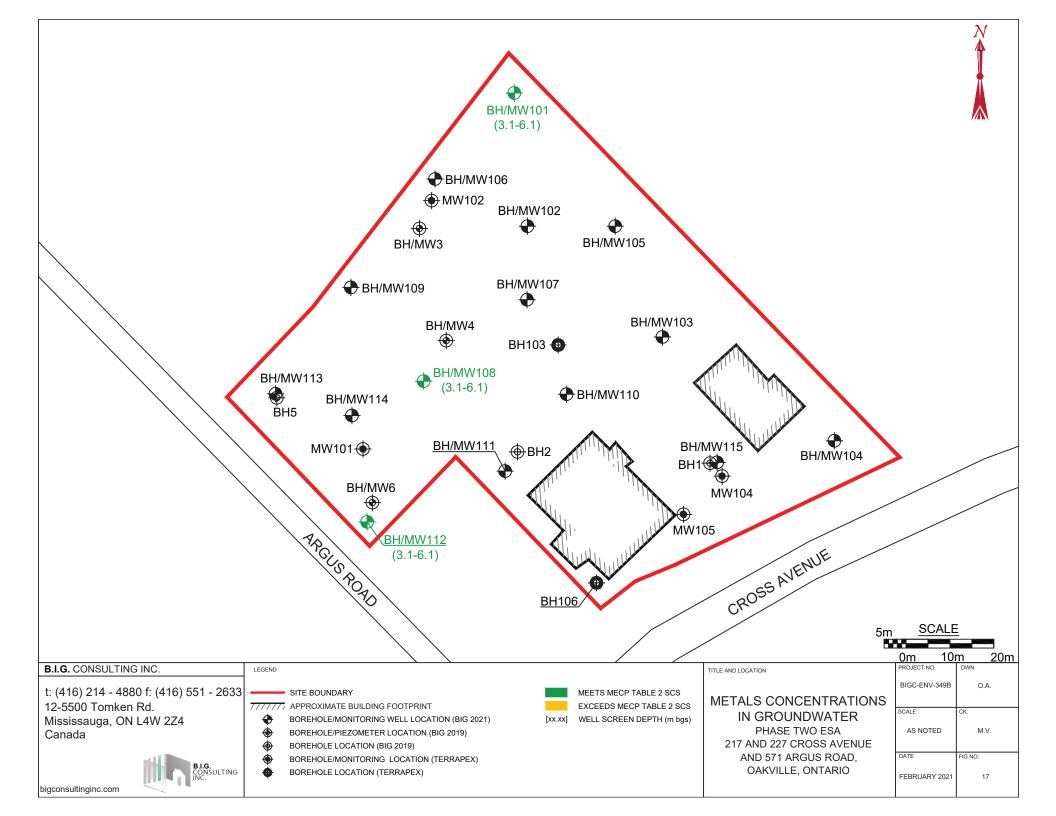


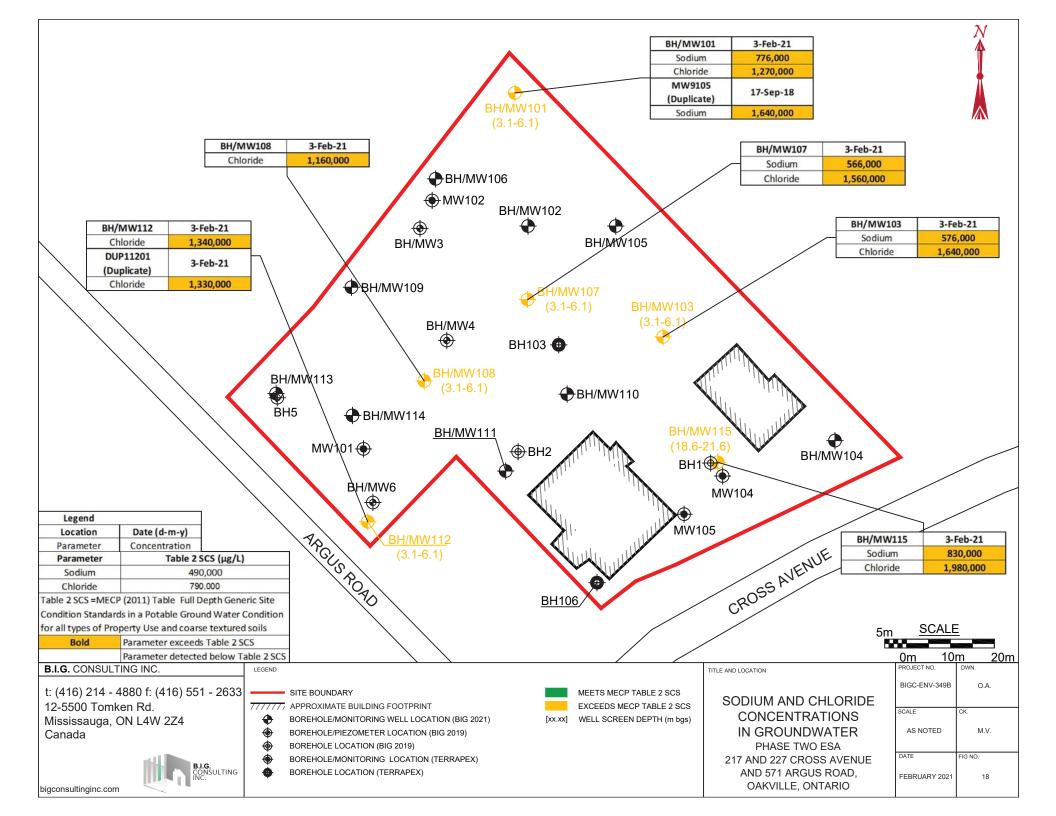












Appendix A - Sampling and Analysis Plan

1. Introduction

This appendix presents the Sampling and Analysis Plan (SAAP) that was developed in support of the Phase Two Environmental Site Assessment (ESA), which will be conducted to provide further characterization of the Site subsurface conditions. The SAAP presents the procedures and measures that will be undertaken during field investigative activities to characterize the Site conditions and meet the data quality objectives of the Phase Two ESA.

The SAAP presents the sampling program proposed for the Site, the recommended procedures and protocols for sampling and related field activities, the data quality objectives, and the quality assurance/quality control (QA/QC) measures that will be undertaken to provide for the collection of accurate, reproducible and representative data. These components are described in further detail below.

2. Field Sampling Program

The field sampling program was developed to provide for the collection of samples of the surficial and subsurface soil materials for chemical analysis of parameters identified as potential contaminants of concern as identified in the Phase One ESA.

The soil samples will be collected from of the surficial fill and overburden material. The groundwater samples will be collected from each monitoring well.

The monitoring wells will be installed at selected boreholes to intercept the groundwater table aquifer. The monitoring wells will be installed with 3.05 m long screens extending to a maximum depth of approximately 23.42 m below grade.

Elevation of the boreholes and monitoring wells will be obtained through the completion of an elevation survey with reference to a Site temporary benchmark or a local geodetic benchmark. Groundwater flow will be determined through groundwater level measurements and the relative groundwater elevations established in the Site elevation survey.

3. Field Methods

To meet the requirements of the field sampling program, the following field investigative methods will be undertaken:

- a) Borehole Drilling;
- b) Soil Sampling;
- c) Monitoring Well Installation;
- d) Monitoring Well Development;
- e) Groundwater Level Measurements;
- f) Elevation Survey;
- g) Groundwater Sampling; and
- h) Residue Management Procedures.

The field investigative methods will be performed as described below:

a) Borehole Drilling

Boreholes will be advanced at the Site to facilitate the collection of soil samples for chemical analysis and geologic characterization and for the installation of groundwater monitoring wells. Boreholes will be advanced at the Site to a maximum depth of approximately 23.42 m below grade, within the overburden materials to provide for the collection of soil samples beneath the Site. The borehole locations will be selected to assess soil and groundwater quality at the Site.

Prior to borehole drilling, utility clearances will be obtained from public locators, as required. Boreholes will be advanced into the surficial fill and overburden soils by a drilling company under the full-time supervision of BIG staff. A track mounted drilling machine equipped with hollow stem or solid stem augers and split spoons will be utilized to advance the boreholes through the overburden materials.

b) Soil Sampling

Soil samples for geologic characterization and chemical analysis will be collected from the overburden boreholes using 5 cm diameter, 61 cm long, stainless steel split-spoon sampling devices advanced ahead of the augers. The split-spoon samplers will be attached to drill rods and advanced into the soil by means of a machine-driven hammer. Spilt-spoon soil samples will be collected where possible, beginning at the ground surface and subsequently at continuous intervals. Geologic and sampling details of the recovered cores will be logged and the samples will be assessed for the potential presence of non-aqueous phase liquids. A portion of each soil sample will be placed in a sealed "zip-lock" plastic bag and allowed to reach ambient temperature prior to field screening with a photoionization detector (PID) that will be calibrated by the supplier with an appropriate reference gas and zeroed in ambient conditions prior to use. The vapour measurements will be made by inserting the instrument's probe into the plastic bag while manipulating the sample to ensure volatilization of the soil gases. These readings will provide a real-time indication of the relative concentration of volatile organic vapours encountered in the subsurface during drilling. Samples for chemical analysis will be selected on the basis of visual, combustible gas and olfactory evidence of impacts and at specific intervals to define the lateral and vertical extent of suspected impacts.

Recommended volumes of soil samples selected for chemical analysis will be collected into precleaned, laboratory supplied, analytical test group specific containers. The samples will be placed into clean insulated coolers chilled with ice for storage and transport. Samples intended for VOC analysis will be collected using a laboratory-supplied soil core sampler, placed into the vials containing methanol for preservation purposes and sealed using Teflon lined septa lids. The samples will be assigned unique identification numbers, and the date, time, location, and requested analyses for each sample will be documented in a bound field notebook. The samples will be submitted to a CAEL certified laboratory within analytical test group holding times under Chain of Custody (COC) protocols. New disposable chemical resistant gloves will be used during the handling and sample collection for each soil core to prevent sample cross-contamination.

c) Monitoring Well Installation

Monitoring wells will be installed in general accordance with Ontario Regulation 903/90, as amended and will be installed by a licensed well contractor.

The monitoring wells will be constructed using 50 mm diameter, Schedule 40, PVC riser pipe and number 10 slot size (0.25 mm) well screens. The base of the well screens will be sealed with PVC end caps. All well pipe connections will be factory machined threaded flush couplings. The pipe components will be pre-wrapped in plastic, which will be removed prior to insertion in the borehole to minimize the potential for contamination. No lubricants or adhesives will be used in the construction of the monitoring wells. The annular space around the well screens will be backfilled with silica sand to at least 0.3 m above the top of the screen. Granular bentonite will be placed in the borehole annulus from the top of the sand pack to approximately grade. The monitoring wells will be completed with protective casings.

d) Monitoring Well Development

Monitoring wells will be developed to remove fine sediment particles potentially lodged in the sand pack and well screen to enhance contact with the surrounding formation groundwater and will be developed using dedicated bailers. Monitoring well development will be monitored by multiparameter water quality meter, visual observations of turbidity, and by taking field measurements of pH and conductivity for every well volume removed. Standing water volumes will be determined by means of a water level meter. Water quality parameter measurements will be recorded using a multiparameter water quality meter. A minimum of approximately three (3) well volumes will be removed; and, well development will continue until the purged water has chemically stabilized as indicated by field parameters measurements.

Well development details will be documented on a well development log sheet or in a bound hard cover notebook. All water accumulated during well development will be collected and stored in sealed containers.

e) Groundwater Level Measurements

Groundwater level measurements will be recorded from monitoring wells to determine groundwater flow and direction at the Site. Water levels will be measured with respect to the top of the casing by means of a groundwater level meter. The water levels will be recorded on water level log sheets or in a bound field notebook. The water level meter probe will be decontaminated between monitoring well locations.

f) Elevation Survey

An elevation survey will be conducted to obtain vertical control of the newly installed monitoring well locations. The top of casing and ground surface elevation of each monitoring well location will be surveyed against a known geodetic benchmark, or if unavailable, against a suitable arbitrary temporary benchmark. Elevations measured against a geodetic benchmark will be recorded as meters above mean sea level (m AMSL). The arbitrary temporary benchmark will be assigned an elevation of 100.00 m. The elevation survey will be accurate to within ± 1 cm.

g) Groundwater Sampling

Groundwater samples will be collected from monitoring wells for chemical analysis. The monitoring wells will be purged first of three to five wetted well volumes of water, or until dry, to remove standing water and draw in fresh formation water as previously described. Dedicated well materials will be used for well purging and sample collection.

Recommended groundwater sample volumes will be collected into pre-cleaned, laboratory-supplied vials or bottles provided with analytical test group specific preservatives, as required. The samples will be placed in an insulated cooler chilled with ice for storage and transport. Where needed, bottles will be checked for head-space.

All groundwater samples will be assigned unique identification numbers, and the date, time, project number and company name will be specified on each bottle. The samples will be submitted to the contractual laboratory within analytical test group holding times under COC protocols. New disposable chemical resistant gloves will be used for each sampling location to prevent sample cross-contamination.

h) Residue Management Procedures

The residue materials produced during the borehole drilling, soil sampling programs and monitoring well sampling programs comprised of decontamination fluids from equipment cleaning, and waters from well development and purging will be placed in sealed drums for future off-Site disposal.

4. Field Quality Assurance/Quality Control Program

The objective of the field quality assurance/quality control (QA/QC) program is to obtain soil and groundwater samples and other field measurements that provide data of acceptable quality that meets the objectives of the Phase Two ESA. The objectives of the QA/QC program will be achieved through the implementation of procedures for the collection of unbiased (i.e., non-contaminated) samples, sample documentation and the collection of appropriate QC samples to provide a measure of sample reproducibility and accuracy. The field QA/QC measures will comprise:

- a) Decontamination Protocols;
- b) Equipment Calibration;
- c) Sample Preservation;
- d) Sample Documentation; and,
- e) Field Quality Control Samples.

Details on the field QA/QC measures are provided in the following sections.

a) Decontamination Protocols

Decontamination protocols will be followed during field sampling where non-dedicated sampling equipment is used to prevent sample cross contamination. For the borehole drilling and soil sampling, split soil sampling devices will be cleaned/decontaminated between sampling intervals and auger flights between borehole locations. For the monitoring well installation, well components are not to come into contact with the ground surface prior to insertion into

boreholes. Electronic water level meters will be decontaminated between monitoring well locations during well development, purging activities and rising head tests. All decontamination fluids will be collected and stored in sealed containers.

b) Equipment Calibration

All equipment requiring calibration will be calibrated according to manufacturer's requirements using analytical grade reagents, or by the supplier prior to conducting field activities.

c) Sample Preservation

All samples will be preserved using appropriate analytical test group specific reagents, as required, and upon collection placed in ice-filled insulated coolers for storage and transport.

d) Sample Documentation

All samples will be assigned a unique identification number, which is to be recorded along with the date, time, project number and company name. All samples will be handled and transported following COC protocols.

e) Field Quality Control Samples

Field quality controls samples will be collected to evaluate the accuracy and reproducibility of the field sampling procedures. Where required, for groundwater samples, a trip blank prepared by a laboratory will be submitted for chemical analysis to evaluate the potential for sample cross-contamination or bias. The recommended alert criteria for the trip blank sample are the detections of any test group analyte at a concentration in excess of laboratory detection limits.

Appendix B – Analytical Results

AGAT Workorder					21T700748	21T700748	21T700748	21T700748	21T700748	21T703878	21T703878	21T703878	21T703878
Date Sampled					01/13/21	01/13/21	01/13/21	01/13/21	01/14/21	01/20/21	01/20/21	01/20/21	01/21/21
Sample Description					BH101-SS1	BH102-SS1	BH103-SS1	BH104-SS1	BH105-SS1	BH106-SS2	BH107-SS1	BH108-SS1	BH109-SS1
Package Name	Parameter Name	Unit	RDL	ON T2 S RPI CT	1966584	1966586	1966588	1966589	1966590	2011445	2011446	2011447	2011448
Matrix Soil: Metals	Antimony	μg/g	0.8	7.5	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Matrix Soil: Metals	Arsenic	μg/g	1	18	13	8	9	10	12	7	6	7	7
Matrix Soil: Metals	Barium	μg/g	2	390	122	141	40	48	41	72.2	99.3	78.2	92.3
Matrix Soil: Metals	Beryllium	μg/g	0.4	4	0.5	0.6	<0.5	<0.5	<0.5	0.6	0.6	0.6	0.6
Matrix Soil: Metals	Boron	μg/g	5	120	10	7	12	11	9	10	7	8	9
Matrix Soil: Metals	Boron (Hot Water Soluble)	μg/g	0.1	1.5	0.33	0.58	0.2	0.18	0.21	0.62	0.37	0.39	0.28
Matrix Soil: Metals	Cadmium	μg/g	0.5	1.2	<0.5	<0.5	<0.5	0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Matrix Soil: Metals	Chromium	μg/g	5	160	18	17	7	6	6	22	23	23	24
Matrix Soil: Metals	Chromium, Hexavalent	μg/g	0.2	8	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Matrix Soil: Metals	Cobalt	μg/g	0.5	22	11.5	10.7	5.9	5.4	4.9	13.6	14.2	14.3	14
Matrix Soil: Metals	Copper	μg/g	1	140	493	80	33	31	44	188	46.9	37.9	43.3
Matrix Soil: Metals	Cyanide, Free	μg/g	0.04	0.051	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Matrix Soil: Metals	Electrical Conductivity (2:1)	mS/cm	0.005	0.7	0.47	0.664	0.912	0.269	0.488	0.402	0.386	0.331	0.362
Matrix Soil: Metals	Lead	μg/g	1	120	18	21	21	23	28	12	13	17	14
Matrix Soil: Metals	Mercury	μg/g	0.1	0.27	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Matrix Soil: Metals	Molybdenum	μg/g	0.5	6.9	1.6	1.3	1.1	1.2	1.1	0.7	<0.5	0.5	<0.5
Matrix Soil: Metals	Nickel	μg/g	1	100	23	22	10	11	10	27	30	29	30
Matrix Soil: Metals	pH, 2:1 CaCl2 Extraction	pH Units	NA	5.0-9.0	6.18	7.66	7.83	7.83	7.91	7.93	7.8	7.7	7.76
Matrix Soil: Metals	Selenium	μg/g	0.4	2.4	0.8	0.9	0.5	0.5	0.5	<0.8	<0.8	<0.8	<0.8
Matrix Soil: Metals	Silver	μg/g	0.2	20	<0.2	<0.2	<0.2	<0.2	<0.2	<0.5	<0.5	<0.5	<0.5
Matrix Soil: Metals	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	N/A	5	4.15	6.67	8.99	1.03	6.01	4.81	4.25	1.83	2.08
Matrix Soil: Metals	Thallium	μg/g	0.4	1	<0.4	<0.4	<0.4	<0.4	<0.4	<0.5	<0.5	<0.5	<0.5
Matrix Soil: Metals	Uranium	μg/g	0.5	23	1.3	1.4	0.5	0.6	<0.5	0.78	0.73	0.8	0.66
Matrix Soil: Metals	Vanadium	μg/g	0.4	86	26	27	12	10	11	29.8	32.6	29.2	33.1
Matrix Soil: Metals	Zinc	μg/g	5	340	121	101	142	169	106	66	68	74	75

Guideline Legend:	Exceeds Guideline
	Within Guideline
	Below RDL

AGAT Workorder					21T703878	21T705007							
Date Sampled					01/21/21	01/21/21	01/21/21	01/21/21	01/21/21	01/21/21	01/22/21	01/22/21	01/21/21
Sample Description					BH110-SS1	BH111-SS1	BH112-SS1	BH113-SS1	BH114-SS1	BH114-SS2	BH115-SS1	BH115-SS2	DUP011402
Package Name	Parameter Name	Unit	RDL	ON T2 S RPI CT	2011449	2011451	2011452	2011454	2011456	2011457	2011458	2011459	2020967
Matrix Soil: Metals	Antimony	μg/g	0.8	7.5	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Matrix Soil: Metals	Arsenic	μg/g	1	18	7	7	6	10	7	6	7	6	5
Matrix Soil: Metals	Barium	μg/g	2	390	46.4	65.6	89.5	109	85.2	76.5	67.5	62.4	70.6
Matrix Soil: Metals	Beryllium	μg/g	0.4	4	<0.4	0.4	0.6	0.4	0.5	0.5	<0.4	0.6	0.5
Matrix Soil: Metals	Boron	μg/g	5	120	9	10	9	9	8	7	10	8	10
Matrix Soil: Metals	Boron (Hot Water Soluble)	μg/g	0.1	1.5	0.29	0.31	0.64	0.57	0.54	0.45	0.54	0.31	0.35
Matrix Soil: Metals	Cadmium	μg/g	0.5	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.7	<0.5	<0.5
Matrix Soil: Metals	Chromium	μg/g	5	160	10	17	24	19	19	21	10	23	19
Matrix Soil: Metals	Chromium, Hexavalent	μg/g	0.2	8	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Matrix Soil: Metals	Cobalt	μg/g	0.5	22	6	9.1	14.6	10.5	9.7	12.1	5.8	15	10.2
Matrix Soil: Metals	Copper	μg/g	1	140	25.4	47.7	37.4	62.3	70.7	59.7	37.2	34.6	42.6
Matrix Soil: Metals	Cyanide, Free	μg/g	0.04	0.051	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040	<0.040
Matrix Soil: Metals	Electrical Conductivity (2:1)	mS/cm	0.005	0.7	0.648	0.444	0.267	0.808	0.319	0.371	1.63	0.248	0.3
Matrix Soil: Metals	Lead	μg/g	1	120	19	17	14	47	29	13	34	16	10
Matrix Soil: Metals	Mercury	μg/g	0.1	0.27	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Matrix Soil: Metals	Molybdenum	μg/g	0.5	6.9	0.9	1	<0.5	0.9	0.8	0.7	1.1	<0.5	0.6
Matrix Soil: Metals	Nickel	μg/g	1	100	11	21	30	22	22	26	12	30	21
Matrix Soil: Metals	pH, 2:1 CaCl2 Extraction	pH Units	NA	5.0-9.0	7.99	7.7	7.67	7.7	7.66	7.6	7.66	7.71	7.37
Matrix Soil: Metals	Selenium	μg/g	0.4	2.4	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Matrix Soil: Metals	Silver	μg/g	0.2	20	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Matrix Soil: Metals	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	N/A	5	1.33	1.99	0.911	1.25	0.595	0.864	0.332	1.24	0.925
Matrix Soil: Metals	Thallium	μg/g	0.4	1	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Matrix Soil: Metals	Uranium	μg/g	0.5	23	0.51	0.77	1.05	0.85	0.86	0.77	0.8	0.59	0.67
Matrix Soil: Metals	Vanadium	μg/g	0.4	86	15.1	25.3	31.7	27	26.4	31.4	16.6	29.3	30.1
Matrix Soil: Metals	Zinc	μg/g	5	340	77	84	74	96	81	62	238	72	53

Guideline Legend:	Exceeds Guideline
	Within Guideline
	Below RDL

AGAT Workorder					21T700748	21T700748	21T700748	21T700748	21T700748	21T703878	21T703878	21T703878	21T703878
Date Sampled					01/13/21	01/13/21	01/13/21	01/13/21	01/14/21	01/20/21	01/20/21	01/20/21	01/21/21
Sample Description					BH101-SS1	BH102-SS1	BH103-SS1	BH104-SS1	BH105-SS1	BH106-SS2	BH107-SS1	BH108-SS1	BH109-SS1
Package Name	Parameter Name	Unit	RDL	ON T2 S RPI CT	1966584	1966586	1966588	1966589	1966590	2011445	2011446	2011447	2011448
Matrix Soil: PAHs	1 and 2 Methlynaphthalene	μg/g	0.05	0.99	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Acenaphthene	μg/g	0.05	7.9	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Acenaphthene-d10	%			91	90	84	85	102	80	82	82	80
Matrix Soil: PAHs	Acenaphthylene	μg/g	0.05	0.15	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Anthracene	μg/g	0.05	0.67	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Benz(a)anthracene	μg/g	0.05	0.5	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Benzo(a)pyrene	μg/g	0.05	0.3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05
Matrix Soil: PAHs	Benzo(b)fluoranthene	μg/g	0.05	0.78	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Benzo(g,h,i)perylene	μg/g	0.05	6.6	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Benzo(k)fluoranthene	μg/g	0.05	0.78	< 0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05	<0.05
Matrix Soil: PAHs	Chrysene	μg/g	0.05	7	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Chrysene-d12	%			83	72	70	73	85	110	98	100	100
Matrix Soil: PAHs	Dibenz(a,h)anthracene	μg/g	0.05	0.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Fluoranthene	μg/g	0.05	0.69	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Fluorene	μg/g	0.05	62	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Indeno(1,2,3-cd)pyrene	μg/g	0.05	0.38	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Moisture Content	%	0.1		16.6	13.4	7.2	8.5	10.9	13.1	11.6	9.8	10.9
Matrix Soil: PAHs	Naphthalene	μg/g	0.05	0.6	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Naphthalene-d8	%			84	96	96	79	115	91	80	77	86
Matrix Soil: PAHs	Phenanthrene	μg/g	0.05	6.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Pyrene	μg/g	0.05	78	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05

Guideline Legend: Exceeds Guideline
Within Guideline
Below RDL

AGAT Workorder					21T703878	21T705007							
Date Sampled					01/21/21	01/21/21	01/21/21	01/21/21	01/21/21	01/21/21	01/22/21	01/22/21	01/21/21
Sample Description					BH110-SS1	BH111-SS1	BH112-SS1	BH113-SS1	BH114-SS1	BH114-SS2	BH115-SS1	BH115-SS2	DUP011402
Package Name	Parameter Name	Unit	RDL	ON T2 S RPI CT	2011449	2011451	2011452	2011454	2011456	2011457	2011458	2011459	2020967
Matrix Soil: PAHs	1 and 2 Methlynaphthalene	μg/g	0.05	0.99	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Acenaphthene	μg/g	0.05	7.9	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
Matrix Soil: PAHs	Acenaphthene-d10	%			79	77	87	79	83	75	93	85	87
Matrix Soil: PAHs	Acenaphthylene	μg/g	0.05	0.15	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
Matrix Soil: PAHs	Anthracene	μg/g	0.05	0.67	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Benz(a)anthracene	μg/g	0.05	0.5	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Benzo(a)pyrene	μg/g	0.05	0.3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Benzo(b)fluoranthene	μg/g	0.05	0.78	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Benzo(g,h,i)perylene	μg/g	0.05	6.6	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Benzo(k)fluoranthene	μg/g	0.05	0.78	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Chrysene	μg/g	0.05	7	< 0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Chrysene-d12	%			119	110	116	110	110	100	100	100	82
Matrix Soil: PAHs	Dibenz(a,h)anthracene	μg/g	0.05	0.1	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Fluoranthene	μg/g	0.05	0.69	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Fluorene	μg/g	0.05	62	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Indeno(1,2,3-cd)pyrene	μg/g	0.05	0.38	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Moisture Content	%	0.1		6.2	8.4	11	10.6	8.3	13.7	10.1	13.6	14.2
Matrix Soil: PAHs	Naphthalene	μg/g	0.05	0.6	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Naphthalene-d8	%			85	81	92	85	88	79	96	111	92
Matrix Soil: PAHs	Phenanthrene	μg/g	0.05	6.2	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: PAHs	Pyrene	μg/g	0.05	78	<0.05	< 0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05

Guideline Legend:	Exceeds Guideline
	Within Guideline
	Below RDL

AGAT Workorder					21T700748	21T700748	21T700748	21T703878	21T703878	21T703878	21T703878	21T705007
Date Sampled			01/13/21	01/13/21	01/14/21	01/20/21	01/21/21	01/21/21	01/21/21	01/21/21		
Sample Description						BH102-SS2	BH105-SS3	BH106-SS1	BH110-SS2	BH112-SS2	BH113-SS2	DUP011002
Package Name	Parameter Name	Unit	RDL	ON T2 S RPI CT	1966585	1966587	1966591	2011444	2011450	2011453	2011455	2020966
Matrix Soil: PHCs	F1 (C6 to C10)	μg/g	5	55	<5	<5	<5	<5	<5	<5	<5	<5
Matrix Soil: PHCs	F1 (C6 to C10) minus BTEX	μg/g	5	55	<5	<5	<5	<5	<5	<5	<5	<5
Matrix Soil: PHCs	F2 (C10 to C16)	μg/g	10	98	<10	<10	<10	<10	<10	<10	<10	<10
Matrix Soil: PHCs	F3 (C16 to C34)	μg/g	50	300	<50	<50	<50	<50	<50	<50	<50	<50
Matrix Soil: PHCs	F4 (C34 to C50)	μg/g	50	2800	<50	<50	<50	<50	<50	<50	<50	<50
Matrix Soil: PHCs	Gravimetric Heavy Hydrocarbons	μg/g	50	2800	NA							
Matrix Soil: PHCs	Moisture Content	%	0.1		16.9	12.8	10.9	11.9	12	11.1	11.6	12.3
Matrix Soil: PHCs	Terphenyl	%			77	72	94	86	82	79	87	115

Guideline Legend:	Exceeds Guideline
	Within Guideline
	Below RDL

AGAT Workorder					21T700748	21T700748	21T700748	21T703878	21T703878	21T703878	21T703878	21T705007
Date Sampled					01/13/21	01/13/21	01/14/21	01/20/21	01/21/21	01/21/21	01/21/21	01/21/21
Sample Description					BH101-SS2	BH102-SS2	BH105-SS3	BH106-SS1	BH110-SS2	BH112-SS2	BH113-SS2	DUP011002
Package Name	Parameter Name	Unit	RDL	ON T2 S RPI CT	1966585	1966587	1966591	2011444	2011450	2011453	2011455	2020966
Matrix Soil: VOCs	1,1,1,2-Tetrachloroethane	ug/g	0.04	0.058	<0.04	< 0.04	< 0.04	<0.04	< 0.04	< 0.04	< 0.04	<0.04
Matrix Soil: VOCs	1,1,1-Trichloroethane	ug/g	0.05	0.38	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: VOCs	1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: VOCs	1,1,2-Trichloroethane	ug/g	0.04	0.05	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Matrix Soil: VOCs	1,1-Dichloroethane	ug/g	0.02	0.47	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Matrix Soil: VOCs	1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05
Matrix Soil: VOCs	1,2-Dichlorobenzene	ug/g	0.05	1.2	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05
Matrix Soil: VOCs	1,2-Dichloroethane	ug/g	0.03	0.05	<0.03	< 0.03	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	<0.03
Matrix Soil: VOCs	1,2-Dichloropropane	ug/g	0.03	0.05	<0.03	< 0.03	< 0.03	<0.03	< 0.03	< 0.03	< 0.03	<0.03
Matrix Soil: VOCs	1,3-Dichlorobenzene	ug/g	0.05	4.8	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05
Matrix Soil: VOCs	1,3-Dichloropropene (Cis + Trans)	μg/g	0.04	0.05	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Matrix Soil: VOCs	1,4-Dichlorobenzene	ug/g	0.05	0.083	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05
Matrix Soil: VOCs	4-Bromofluorobenzene	% Recovery	1		81	81	80	92	90	91	91	85
Matrix Soil: VOCs	Acetone	ug/g	0.5	16	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Matrix Soil: VOCs	Benzene	ug/g	0.02	0.21	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Matrix Soil: VOCs	Bromodichloromethane	ug/g	0.05	1.5	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05
Matrix Soil: VOCs	Bromoform	ug/g	0.05	0.27	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05
Matrix Soil: VOCs	Bromomethane	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: VOCs	Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05
Matrix Soil: VOCs	Chlorobenzene	ug/g	0.05	2.4	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	< 0.05	<0.05
Matrix Soil: VOCs	Chloroform	ug/g	0.04	0.05	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04
Matrix Soil: VOCs	Cis- 1,2-Dichloroethylene	ug/g	0.02	1.9	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Matrix Soil: VOCs	Dibromochloromethane	ug/g	0.05	2.3	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	< 0.05
Matrix Soil: VOCs	Dichlorodifluoromethane	μg/g	0.05	16	<0.05	<0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05
Matrix Soil: VOCs	Ethylbenzene	ug/g	0.05	1.1	<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05
Matrix Soil: VOCs	Ethylene Dibromide	ug/g	0.04	0.05	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	<0.04	< 0.04
Matrix Soil: VOCs	m & p-Xylene	ug/g	0.05		<0.05	<0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05	<0.05
Matrix Soil: VOCs	Methyl Ethyl Ketone	ug/g	0.5	16	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Matrix Soil: VOCs	Methyl Isobutyl Ketone	ug/g	0.5	1.7	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Matrix Soil: VOCs	Methyl tert-butyl Ether	ug/g	0.05	0.75	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05
Matrix Soil: VOCs	Methylene Chloride	ug/g	0.05	0.1	<0.05	<0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05
Matrix Soil: VOCs	Moisture Content	%	0.1		16.9	12.8	10.9	11.9	12	11.1	11.6	12.3
Matrix Soil: VOCs	n-Hexane	μg/g	0.05	2.8	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: VOCs	o-Xylene	ug/g	0.05		<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: VOCs	Styrene	ug/g	0.05	0.7	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: VOCs	Tetrachloroethylene	ug/g	0.05	0.28	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: VOCs	Toluene	ug/g	0.05	2.3	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: VOCs	Toluene-d8	% Recovery	1		110	108	103	106	105	104	102	104
Matrix Soil: VOCs	Trans- 1,2-Dichloroethylene	ug/g	0.05	0.084	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: VOCs	Trichloroethylene	ug/g	0.03	0.061	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03	<0.03
Matrix Soil: VOCs	Trichlorofluoromethane	ug/g	0.05	4	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Matrix Soil: VOCs	Vinyl Chloride	ug/g	0.02	0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Matrix Soil: VOCs	Xylenes (Total)	ug/g	0.05	3.1	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05

Guideline Legend:	Exceeds Guideline
	Within Guideline
	Below RDL

O. Reg. 153(511) - PAHs (Water)

Sample Description				BH/MW104	BH/MW111	BH/MW112	BH/MW113	DUP11201
Date Sampled				02/03/2021	02/03/2021	02/03/2021	02/03/2021	02/03/2021
Parameter	Unit	G/S	RDL	2045871	2045897	2045899	2045902	2045928
Naphthalene	μg/L	11	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Acenaphthylene	μg/L	1	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Acenaphthene	μg/L	4.1	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Fluorene	μg/L	120	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Phenanthrene	μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Anthracene	μg/L	2.4	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Fluoranthene	μg/L	0.41	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Pyrene	μg/L	4.1	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzo(a)anthracene	μg/L	1	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chrysene	μg/L	0.1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(b)fluoranthene	μg/L	0.1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(k)fluoranthene	μg/L	0.1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Benzo(a)pyrene	μg/L	0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dibenz(a,h)anthracene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
2-and 1-methyl Naphthalene	μg/L	3.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Naphthalene-d8	%		1	63.0	82.0	86.0	87.0	90.0
Acridine-d9	%		1	107	96.0	87.0	98.0	79.0
Terphenyl-d14	%		1	72.0	110	80.0	94.0	98.0
Sediment				No	No	No	No	No

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard

2045871-2045928

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

Sample Description				BH/MW101	Trip Blank
Date Sampled				02/03/2021	02/03/2021
Parameter	Unit	G/S	RDL	2045847	2045935
Toluene-d8	% Recovery		1.00	99	91
F1 (C6 - C10)	μg/L	750	25	<25	<25
F1 (C6 to C10) minus BTEX	μg/L	750	25	<25	<25
F2 (C10 to C16)	μg/L	150	100	<100	<100
F3 (C16 to C34)	μg/L	500	100	<100	<100
F4 (C34 to C50)	μg/L	500	100	<100	<100
Gravimetric Heavy Hydrocarbons	μg/L		500	NA	NA
Terphenyl	% Recovery			79	79
Sediment				Trace	No

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard

2045847

Sediment present in sample.

The C6-C10 fraction is calculated using Toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons > C50 are present The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

2045935

The C6-C10 fraction is calculated using Toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

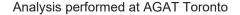
Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons > C50 are present The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.


C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

Sample Description				BH/MW104	BH/MW112	DUP11201
Date Sampled				02/03/2021	02/03/2021	02/03/2021
Parameter	Unit	G/S	RDL	2045871	2045899	2045928
F1 (C6-C10)	μg/L	750	25	<25	<25	<25
F1 (C6 to C10) minus BTEX	μg/L	750	25	<25	<25	<25
Toluene-d8	% Recovery		1.00	93	97	106
F2 (C10 to C16)	μg/L	150	100	<100	<100	<100
F2 (C10 to C16) minus Naphthalene	μg/L		100	<100	<100	<100
F3 (C16 to C34)	μg/L	500	100	<100	<100	<100
F3 (C16 to C34) minus PAHs	μg/L		100	<100	<100	<100
F4 (C34 to C50)	μg/L	500	100	<100	<100	<100
Gravimetric Heavy Hydrocarbons	μg/L		500	NA	NA	NA
Terphenyl	% Recovery			77	79	113
Sediment		•		No	No	No

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard

The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50. $\label{eq:chromatogram} % \begin{center} \begin{ce$

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 – C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Toronto

2045871-2045928

O. Reg. 153(511) - VOCs (Water)

Sample Description				BH/MW101	BH/MW104	BH/MW112	DUP11201	Trip Blank
Date Sampled				02/03/2021	02/03/2021	02/03/2021	02/03/2021	02/03/2021
Parameter	Unit	G/S	RDL	2045847	2045871	2045899	2045928	2045935
Dichlorodifluoromethane	μg/L	590	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Vinyl Chloride	μg/L	0.5	0.17	<0.17	<0.17	<0.17	<0.17	<0.17
Bromomethane	μg/L	0.89	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichlorofluoromethane	μg/L	150	0.40	<0.40	<0.40	< 0.40	<0.40	<0.40
Acetone	μg/L	2700	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1-Dichloroethylene	μg/L	1.6	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Methylene Chloride	μg/L	50	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
trans- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl tert-butyl ether	μg/L	15	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1-Dichloroethane	μg/L	5	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Methyl Ethyl Ketone	μg/L	1800	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
cis- 1,2-Dichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Chloroform	μg/L	2.4	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,2-Dichloroethane	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1-Trichloroethane	μg/L	200	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Carbon Tetrachloride	μg/L	0.79	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Benzene	μg/L	5.0	0.20	0.22	0.22	<0.20	<0.20	<0.20
1,2-Dichloropropane	μg/L	5	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Trichloroethylene	μg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromodichloromethane	μg/L	16	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Methyl Isobutyl Ketone	μg/L	640	1.0	<1.0	<1.0	<1.0	<1.0	<1.0
1,1,2-Trichloroethane	μg/L	4.7	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene	μg/L	24	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Dibromochloromethane	μg/L	25	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylene Dibromide	μg/L	0.2	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Tetrachloroethylene	µg/L	1.6	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
1,1,1,2-Tetrachloroethane	µg/L	1.1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Chlorobenzene	µg/L	30	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Ethylbenzene	μg/L	2.4	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
m & p-Xylene	μg/L		0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Bromoform	μg/L	25	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Styrene	μg/L	5.4	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
o-Xylene	μg/L		0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichlorobenzene	μg/L	59	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,4-Dichlorobenzene	μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichlorobenzene	μg/L	3	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene	μg/L	0.5	0.30	< 0.30	< 0.30	<0.30	< 0.30	< 0.30
Xylenes (Total)	μg/L	300	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
n-Hexane	μg/L	51	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Toluene-d8	% Recovery		1	101	125	103	102	117
4-Bromofluorobenzene	% Recovery		1	87	88	84	88	88

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard

2045847-2045935

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene. 1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of

 ${\it Cis-1,3-Dichloropropene}\ and\ {\it Trans-1,3-Dichloropropene}.\ The\ calculated\ parameter\ is\ non-accredited.$

The parameters that are components of the calculation are accredited.

O. Reg. 153(511) - Metals & Inorganics (Water)

Sample Description				BH/MW101	BH/MW108	BH/MW112	DUP11201	
Date Sampled				02/03/2021	02/03/2021	02/03/2021	02/03/2021	
Parameter	Unit	G/S	RDL	2045847	2045888	2045899	2045928	RDL
Dissolved Antimony	μg/L	6	1.0	<1.0	<1.0	<1.0	<1.0	1.0
Dissolved Arsenic	μg/L	25	1.0	<1.0	<1.0	<1.0	<1.0	1.0
Dissolved Barium	μg/L	1000	2.0	115	62.4	70.7	66.1	2.0
Dissolved Beryllium	μg/L	4	0.50	<0.50	< 0.50	<0.50	<0.50	0.50
Dissolved Boron	μg/L	5000	10.0	351	590	746	773	10.0
Dissolved Cadmium	μg/L	2.7	0.20	<0.20	<0.20	<0.20	<0.20	0.20
Dissolved Chromium	μg/L	50	2.0	<2.0	<2.0	<2.0	<2.0	2.0
Dissolved Cobalt	μg/L	3.8	0.50	0.57	1.65	<0.50	<0.50	0.50
Dissolved Copper	μg/L	87	1.0	10.1	1.5	1.1	<1.0	1.0
Dissolved Lead	μg/L	10	0.50	1.54	2.40	2.09	2.29	0.50
Dissolved Molybdenum	μg/L	70	0.50	1.90	0.81	0.76	1.38	0.50
Dissolved Nickel	μg/L	100	3.0	<3.0	<3.0	<3.0	<3.0	3.0
Dissolved Selenium	μg/L	10	1.0	2.1	2.1	2.5	3.4	1.0
Dissolved Silver	μg/L	1.5	0.20	<0.20	<0.20	<0.20	<0.20	0.20
Dissolved Thallium	μg/L	2	0.30	< 0.30	< 0.30	< 0.30	< 0.30	0.30
Dissolved Uranium	μg/L	20	0.50	1.65	<0.50	<0.50	<0.50	0.50
Dissolved Vanadium	μg/L	6.2	0.40	<0.40	<0.40	< 0.40	<0.40	0.40
Dissolved Zinc	μg/L	1100	5.0	<5.0	<5.0	<5.0	<5.0	5.0
Mercury	μg/L	0.29	0.02	<0.02	<0.02	<0.02	<0.02	0.02
Chromium VI	μg/L	25	2.000	<2.000	<2.000	<2.000	<2.000	2.000
Cyanide, Free	μg/L	66	2	<2	<2	<2	<2	2
Dissolved Sodium	μg/L	490000	500	776000	402000	475000	456000	1000
Chloride	μg/L	790000	5000	1270000	1160000	1340000	1330000	5000
Electrical Conductivity	uS/cm	NA	2	4630	4400	4790	4810	2
рН	pH Units		NA	7.66	7.49	7.52	7.56	NA

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

2045847-2045929 Metals analysis completed on a filtered sample.

Dilution required, RDL has been increased accordingly.

Oakville Argus Cross LP Phase Two Environmental Site Assessment 217 227 Cross Avenue, and 571 Argus Road, Oakville, Ontario BIGC-ENV-349B February 2021

O. Reg. 153(511) - ORPs (Water)

Sample Description				BH/MW103	BH/MW107
Date Sampled				02/03/2021	02/03/2021
Parameter	Unit	G/S	RDL	2045869	2045886
Dissolved Sodium	μg/L	490000	500	576000	566000
Chloride	μg/L	790000	5000	1640000	1560000

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard

2045869-2045886 Dilution required, RDL has been increased accordingly.

Appendix C – Borehole Logs

		OF BOREHOL	E No	o.	BH/	MW	<u>101</u>																	1. No.	G. SULTING
Pro	ject Number: ject Client: ject Name:	BIGC-ENV-349B Distrikt Capital BIGC-ENV-349B							_ Drilling	Location Method Machin	d:	15	0 mm	Sol	ation I lid Ste ted Dr	em A		ng				Com	ed by: piled by: ewed by:	TVH TVH SS	
Pro	ject Location:	217 & 227 Cross Ave. an	nd 571 A	Argus	Rd., O	akville	, ON		Date 9	Started:		13	Jan 2	1	_ Dat	te Co	mplet	ed: <u>1</u>	3 Jai	n 21	_	Revis	sion No.:	1, 1/2/2	21
	LITH	OLOGY PROFILE		SC	IL SA	MPLI	NG			FIE	LD	ΤES	TING	}			TES		i						
Lithology Plot	Geodetic Groun	DESCRIPTION d Surface Elevation:		Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DЕРТН (m)	ELEVATION (m)	Per O SPT MTO Va △ Intact ▲ Remi	ane* t lould	Nild ♦	DCPT con Va Intact Remou	ıld «Pa)	2	oil Var nts per 0 20 wer Ex	Values 6 8 pour R million (00 30 plosive W	10 eading ppm) 0 40 Limit (L V	EL) / d	INSTRUMENTATION		C	OMMEN	ITS	
		0 mm asphalt concrete over 20	00					-			:	:	:												
	FILL: clayey s mottled, grey,	ilt, trace sand, trace gravel, moist, very stiff to hard	0.3	SS	1	41	22	- - - -		0					Ţ	23									
	CLAYEY SILT fragments of S	TILL: trace sand, trace grave Shale, grey, moist, hard	l, 1.1	SS	2	100	60	- 1 - -				· · · · · · · · · · · · · · · · · · ·				22									
				SS	3	93	71	- - - - -					0		o ¹⁰										
11								2 				• • • • •													
11/	BEDROCK: S limestone sea	hale, highly weathered, occasions, grey, damp, hard	ona2.3	SS	4	53	50/15	- - - -			.5i	00 :			o	18									
				SS	5	63	50/8	- 3 - 3 			:51	0 · · · · · · · · · · · · · · · · · · ·			°6										
	-first water str	ike						- - - - - - 4																	
				-SS	-6-	100	50/3	- - - - - -			50	0 :			o ⁴										
								- - - - - - - - - - - - - -	Z ≡																
				00	_	100	50/3	- - - - - - 6			:50	0			_4										
	End of Boreh	ole	6.1	-\$\$		100-	30/3			:	: ;	3 :	:					:							
	Notes: 1. Borehole of 2. Groundwat upon complet	oen upon completion of drilling, er level at 5.18 m bgs measure ion of drilling.	ed																						
	G. Consulting Ir		Groundwa	iter den	oth on α	ompletic	on of drill	lina:	5.18 m.																

		OF BOREHOLE N	Ο.	<u>BH/</u>	MW	<u> 102</u>																1.4bc	i. LLTING
Pro	ject Number: ject Client: ject Name:	BIGC-ENV-349B Distrikt Capital BIGC-ENV-349B						_ Drilling	J Location Metho Machi	d:	15	BH Lo 0 mm S Ick Mou	olid	Stem	Auge	ring				Logged b Compiled Reviewe	d by:	TVH TVH SS	
Pro	ject Location:	217 & 227 Cross Ave. and 571	Argus	Rd., C	akville	, ON		Date 9	Started:		13	Jan 21	[Date C	ompl	eted:	<u>13 Ja</u>	n 21		Revision	No.:	1, 1/2/2	1
	LITH	OLOGY PROFILE	SC	DIL SA	AMPLI	NG			FIE	ELD :	TES	TING	Τ	LAE	3 TES	STIN	G						
Lithology Plot	Condetia Crawn	DESCRIPTION d Surface Elevation:	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DЕРТН (m)	ELEVATION (m)	O SPT MTO V △ Intac ▲ Ren	/ane* ct nould	Nile ◇	DCPT con Vane Intact Remould	*	Rinse p 2 4 Soil V parts p 100 Lower W _P Plastic 20	6 'apour er millio 200 Explosiv W	Readi n (ppm) 300 4 e Limit	ng 100	INSTRUMENTATION	NO PER	сом	MEN	rs	
		mm asphalt concrete over 200	SS	1	90	50/15	-		:	5			T	: :19	:	:	:						
	,	ilt, some clay, mottled, brown/grey,0.3					- - - -			:1	5	:		9.									
		TILL: trace sand, trace sand, 0.8 ragments of Shale, grey, moist, very	SS	2	46	24	- - - 1 - - -		C)				016									
			SS	3	90	50/15	 - - -			5	00 :			13									
1							_ _ 2 _					· · · ·											
			SS	4	100	50/13	<u> </u>			5 1	0 :		07	,					題				
		hale, highly weathered, occasiona2.6 ments, grey, damp, hard					-																
			-\$\$	5	100	50/3	— 3 - - - - - - - - - - -			5	0		6										
	-first water stri	ke	SS	6	63	50/8	- - - - - - - - 5	 <u></u> =		5	00		06										
			ss	7	60	50/5	- - - - - - - - 6			5			 6										
	Notes: 1. Borehole of 2. Groundwate upon complete	pen upon completion of drilling. er level at 5.18 m bgs measured									5												
	G. Consulting In 500 Tomken Ro		ater de	oth on c	ompletic	on of dril	ling:	<u>5.18 m</u> .	<u> </u>		*	•		•	-		•						

	ECORD	OF BOREHOLE NO BIGC-ENV-349B	0.	BH/	MW	<u>103</u>		Drilling	Location:	Se	e BH Lo	cation Pla	n				Logged by:	B.I.G. CONSULTING INC
Pro	ject Client:	Distrikt Capital						Drilling	Method:	15	50 mm S	olid Stem	Augeri	ng			Compiled by:	TVH
Pro	ject Name:	BIGC-ENV-349B						Drilling	Machine:	Tr	uck Mou	nted Drill	Rig				Reviewed by	SS
Pro	ject Location:	217 & 227 Cross Ave. and 571	Argus	Rd., O	akville	, ON		Date S	tarted:	13	Jan 21	Date 0	Complet	ted: 13 Ja	an 21	_	Revision No.:	1, 1/2/21
	LITH	OLOGY PROFILE	SC	OIL SA	MPLI	NG			FIELD	TES	STING		3 TES					
Lithology Plot		DESCRIPTION ad Surface Elevation:	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penetr O SPT MTO Vane △ Intact ▲ Remould * Undrained S 20 4	Ni ♦	DCPT con Vane* Intact Remould trength (kPa)	▲ Lower W _P	/apour R per million (200 30 Explosive W	eading ppm) 0 400 Limit (LEL) W _L Liquid	INSTRUMENTATION INSTALL ATION		COMME	NTS
	ASPHALT:10 mm granular l	0 mm asphalt concrete over 300 bases	00			40	-							:				
	CLAYEY SILT	nd gravel, brown, moist, compact 0.9- I TILL: some sand, trace gravel, 0.5 Shale, reddish brown, moist, very	SS	1	51	13	- - - -		0:			o ¹³						
			SS	2	84	26	— 1 - - - -		0			o ¹⁵						
			SS	3	93	70	- - - - - 2				0	o ¹¹						
61 X·	BEDROCK: S limestone frag	Shale, highly weathered, occasiona@3 ments, grey, damp, hard	SS	4	87	50/15	- - - -			50 15		06						
			SS	5	100	50/5	- - 3 - - - - - -			50 · · · 5		o ²						
			SS	6	60	50/5	- 4 <u>-</u> - <u>-</u> - 5	Z =		50 5		o ⁴						
							-									.). : .:.		
	refussal on in Notes: 1. Borehole o	minated at 5.49 m due to auger 5.5 nferred Limestone bedrock pen upon completion of drilling. er level at 4.57 m bgs measured ion of drilling.																
B.I.C	6. Consulting Ir	nc.	ater de	pth on c	ompletio	on of drill	ing:	4.57 m.										

Pro	ECORD ject Number:	OF BOREHOLE No BIGC-ENV-349B Distrikt Capital	0.	BH/	<u>'MW</u>	<u> 104</u>		_	Location:			ntion Plan lid Stem Au	aerina			Logged by: TVH Compiled by: TVH
	ject Name:	BIGC-ENV-349B						_	, Machine:			ed Drill Rig				Reviewed by: SS
Pro	ject Location:	217 & 227 Cross Ave. and 571	Argus	Rd., O	akville	, ON		Date S	Started:	13 Jan			npleted: 13	3 Jan	21	Revision No.: 1, 1/2/21
	LITH	OLOGY PROFILE	SC	OII SA	AMPLI	NG	<u> </u>		FIFI D	TESTIN	IG	LART	ESTING	Т		
Lithology Plot	Geodetic Groun	DESCRIPTION d Surface Elevation:	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DЕРТН (m)	ELEVATION (m)		■ DCP Nilcon V	g PT /ane* ct nould	★ Rinse pH V 2 4 6 Soil Vapo parts per m 100 200 ▲ Lower Explicit	alues 8 10 1 our Reading illion (ppm) 300 400	,2 (L)	INSTRUMENTATION	COMMENTS
	mm granular b	0 mm asphalt concrete over 200 pases d gravel, brown, moist, compact 0.3	SS	1	62	23	- - - - -		0			04				
**		ne clay, trace gravel TILL: some sand, trace gravel, 1.4 shale, brown, moist, hard	SS	2	62	13	- - - 1 - - -		0			012				
	fragments of S	Shale, brown, moist, hard	SS	3	95	42	- - - - - 2		Ç			o ¹³				
91 1/2	BEDROCK: S Limestone fra	hale, highly weathered, occasiona£.3 gments, grey, moist, hard	SS	4	63	50/8	- - - - - - -			50 8 8		o ⁷				
			- \$\$	5	100	50/3	- - - - - - - - - -			50 3		o ⁶				
			\$\$	6	100	50/5	- - - - - - - - - -	<u>Z</u>		50 5		o ⁷				
	End of Boreh Notes:		- 33	7	100	- 50/3 -	- - - - - 6 -			3		_8				
	Borehole of 2. Groundwatt upon completi	pen upon completion of drilling. er level at 4.88 m bgs measured on of drilling.														
	6. Consulting In 500 Tomken Rd		ater dep	oth on c	ompletio	on of dril	ling:	<u>4.88 m</u> .								

Pro	ECORD ject Number:	OF BOREHOLE I BIGC-ENV-349B Distrikt Capital	No.	BH/	MW	105		- `	Location:	_	See BH Loc				ering 4	+ Roc	:k	Logged I	-	BLG. CONSULTING INC
Pro	ject Name:	BIGC-ENV-349B						Drilling	Machine:	<u>T</u>	oring ruck Moun	ted D	rill R	ig				Reviewe	d by:	ss
Pro	ject Location:	217 & 227 Cross Ave. and 57	1 Argus	Rd., O	akville	, ON		Date 9	Started:	1	4 Jan 21	_ Da	ate C	omple	ted: <u>1</u>	5 Jan	21	Revision	No.:	1, 1/2/21
	LITH	OLOGY PROFILE	sc	DIL SA	MPLI				FIEL	D TE	STING				TING		_			
Lithology Plot	Geodetic Groun	DESCRIPTION d Surface Elevation:	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	O SPT MTO Vane Δ Intact ▲ Remoule * Undrained	e* 1 d	DCPT Nilcon Vane* Intact Remould Strength (kPa) 60 80	2 △ p	Soil Value of So	apour F r million 200 30	10 Ceading (ppm) 0 400 Limit (LE W) EL) L	INSTRUMENTATION INSTALLATION	СОМ	MEN	тѕ
	ASPHALT: 10 mm granular b	mm asphalt concrete over 200	ss ss	1	62	37	- - - - - -		(o ⁶								
	CLAYEY SILT fragments of S	TILL: trace sand, trace gravel, 1. Shale, grey, moist, very stiff to hard	ss	2	70	23	- - 1 - - - - - -		0			0	14							
	PEDDOCK: S	hale, highly weathered to excellen 2 .	SS	3	84	55	- - - - 2 -				D	09								
		onal Limestone layers, grey, moist	SS	5	100	50/8	- - - - - - - 3			5008		o ⁷								
							- - - - - - - - 4 -													
	-first water stri	ke	_\$\$_	6	100	50/5	- - - - - - 5 - - -			5005			18							
			ss	7	100	50/5	6			50 5		c	16							
		ROCK CORE BEGINS	SS RC	1	78	50/5 27	7 - - - - - - 8 - -		0	5005		c	16							
	6. Consulting In		standing	ground	water me	easured	in ope	n boreho	le on compl	etion	of drilling.		Cav	e in de	pth rec	orded	on comple	tion of drilling:	Not	Measured m.
Miss Cana T: 41	issauga, ON L4'	N 2Z4	d Geotech	nical Eng	ineer. Als	o, boreh	ole info	rmation sl	nding of all po nould be read	otentia in cor	I conditions pr njunction with t	esent a	ınd req technic	uires in al repoi	terpretat rt for whi	tive ass	sistance vas			Scale: 1 : 47 ge: 1 of 3

Project Number: BIGC-ENV-349B Drilling Location: See BH Location Plan Logged by: TVH LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING LAB TESTING
 ★ Rinse pH Values
 2
 4
 6
 8
 10
 12

 Soil Vapour Reading parts per million (ppm)
 100
 200
 300
 400
 INSTRUMENTATION INSTALLATION PenetrationTesting 'N' Value/RQD% Ξ O SPT DCPT Sample Number **COMMENTS DESCRIPTION** ithology Plot Sample Type Recovery (%) MTO Vane* Nilcon Vane* ELEVATION Ξ Lower Explosive Limit (LEL)
W_P W W_L

Plastic Liquid △ Intact
 ◆ Remould
 ◆ Remould DEPTH SPT * Undrained Shear Strength (kPa) 40 60 20 40 60 20 - Good Quality **BEDROCK**: Shale, highly weathered to excellent qaulity, occasional Limestone layers, grey, moist 10 RC 3 99 82 Ö - Good Quality 11 12 RC 4 99 91 .O. - Excellent Quality 13 RC 97 5 99 - Excellent Quality 14 15 RC 6 99 96 - Excellent Quality 16 RC 95 99 - Excellent Quality 17 18 RC 8 98 - Excellent Quality 19

Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and requires interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying Notes to Record of Boreholes'.

Project Number: BIGC-ENV-349B Drilling Location: See BH Location Plan Logged by: TVH LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING LAB TESTING
 ★ Rinse pH Values
 2
 4
 6
 8
 10
 12

 Soil Vapour Reading parts per million (ppm)
 100
 200
 300
 400
 INSTRUMENTATION INSTALLATION PenetrationTesting 'N' Value/RQD% Ξ O SPT DCPT Sample Number COMMENTS **DESCRIPTION** ithology Plot Sample Type Recovery (%) ELEVATION MTO Vane* Nilcon Vane* Ξ Lower Explosive Limit (LEL)
W_P W W_L

Plastic Liquid △ Intact
 ◆ Remould
 ◆ Remould DEPTH SPT * Undrained Shear Strength (kPa) 40 60 80 20 40 60 20 **BEDROCK:** Shale, highly weathered to excellent qaulity, occasional Limestone layers, grey, moist 0 RC 9 98 83 - Good Quality 20 21 93 RC 10 99 0 - Excellent Quality 22 92 RC 11 99 0 - Excellent Quality 23 Borehole terminated at 23.42 23.4 Borehole open upon completion of drilling.
 Groundwater level not measured upon completion of drilling due to introduced drilling

R	ECORD OF BOREHOLE N	ο.	BH/	MW	106						B.I.G. Consulting
	eject Number: BIGC-ENV-349B					D	rilling Location:	See BH Loc	ation Plan		Logged by: TVH
Pro	ject Client: Distrikt Capital					D	rilling Method:	150 mm So	olid Stem Augers		Compiled by: TVH
Pro	eject Name: BIGC-ENV-349B					D	rilling Machine:	Truck Moun	ted Drill Rig		Reviewed by: SS
Pro	eject Location: 217 & 227 Cross Ave. and 571	Argus	Rd., O	akville	, ON	D	ate Started:	20 Jan 21	Date Completed: 20 Jar	n 21	Revision No.: 1, 1/2/21
	LITHOLOGY PROFILE	90	OIL SA	MPLI	NG		FIELD 1	ESTING	LAB TESTING		
Lithology Plot	DESCRIPTION	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DЕРТН (m)	Penetrati O SPT MTO Vane* △ Intact A Remould		★ Rinse pH Values 2 4 6 8 10 12 Soil Vapour Reading parts per million (ppm) 100 200 300 400 Lower Explosive Limit (LEL) W _p	INSTRUMENTATION INSTALLATION	COMMENTS
==	Geodetic Ground Surface Elevation: ASPHALT:75 mm asphalt concrete over 150	Sa	Sa	Se Se	β		20 40	60 80	20 40 60 80	žž	
	mm granular base FILL: clayey silt, trace sand, trace gravel, rootlets, mottled, brown, moist, stiff to hard	SS	1	92	12	- - - - -	0		o ¹⁴	Ш	
	CLAYEY SILT TILL: trace sand, trace gravel, 1.1 fragments of Shale, brown, moist, hard	SS	2	95	63/23	- 1 		63 23	o ¹⁴	Ш	
1/	BEDROCK: Shale, highly weathered, occasionall.7 Limestone fragments, grey, damp, hard	SS	3	93	50/15	- - - - - - 2	:50 :18	9	o ¹⁵	Ш	
		SS	4	100	50/5	- - - - -	:50		o ⁶		
		ss	5	100	50/5	- - - - - - - - - -	5(06		
	-first water strike	\$\$	6	100	50/3	4 =	55	ò	о3		
			7	100	50/3	- - - - - - - - - - 6	56)	p ²		
	End of Borehole 6.1 Notes: 1. Borehole open upon completion of drilling. 2. Groundwater level at 4.88 m bgs measured upon completion of drilling.						\$	3			
	3. Consulting Inc. □ Groundw	ater de	pth on co	ompletic	on of drilli	ng: <u>3.9</u>	96 m.				

	ECORD OF BOREHOLE N ject Number: BIGC-ENV-349B	Ο.	BH/	MW	<u>107</u>		Drilling	Location:	See BH Loc	cation Plan		Logged by:	B.I.G. CONSULTING INC
Pro	ject Client: Distrikt Capital						Drilling	Method:	150 mm Sc	olid Stem Augers		_ Compiled by:	TVH
Pro	ject Name: BIGC-ENV-349B						Drilling	Machine:	Truck Mour	nted Drill Rig		_ Reviewed by:	SS
Pro	ject Location: 217 & 227 Cross Ave. and 571	Argus	Rd., C	akville	, ON		Date 9	Started:	20 Jan 21	Date Completed: 20	Jan 21	Revision No.:	1, 1/2/21
	LITHOLOGY PROFILE	SC	OIL S/	MPLI	NG			FIELD	TESTING	LAB TESTING			
Lithology Plot	DESCRIPTION Geodetic Ground Surface Elevation:	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	O SPT MTO Vane* Δ Intact ▲ Remould	 ♦ Intact ♦ Remould hear Strength (kPa)	Lower Explosive Limit (LEL)	INSTRUMENTATION	COMMEN	тѕ
	ASPHALT:120 mm asphalt concrete over 170 mm granular base					-		: :		100			
	FILL: clayey silt, trace gravel, rootlets, mottled, 0.3 brown, moist, stiff	SS	1	59	12	- - - -		0		o ¹⁶	Ш		
****	CLAYEY SILT TILL: trace sand, trace gravel, 0.8 oxidized fissures, mottled, brownish grey, moist, very stiff to hard	SS	2	92	28	- - - 1 - - - -		0		o12			
11	BEDROCK: Shale, highly weathered, occasional 8 Limestone fragments, grey, damp to moist, hard	ss	3	70	51	- - - - - 2 -			0	o ¹¹			
		SS	4	100	50/5	-			5 : :	08	55 55		
		_ss	5	60	50/5	- - - - - 3 - - - -			50	06			
	-first water strike				-	- <u>\</u> - <u>-</u> - 4	Z =						
		<u>-\$\$</u>	6	100	50/5	- - - -			50 5 5	_o 23			
					-	- 5 - - - -							
			7	100	50/3	- - - - - 6			50	o ²³			
	End of Borehole 6.1 Notes: 1. Borehole open upon completion of drilling. 2. Groundwater level at 3.66 m bgs measured upon completion of drilling.								3				
	5. Consulting Inc.	ater de	pth on c	ompletio	on of drilli	ng:	3.66 m.						

		OF BOREHOLE	No.	BH	/MW	<u> 108</u>						_						111	B.I.G. Consulting
Pro	oject Number: oject Client: oject Name:	BIGC-ENV-349B Distrikt Capital BIGC-ENV-349B						_ Drilling	Location: Method: Machine:	-	150 mm	ı So	ation Plan lid Stem A ted Drill R	Augers	3			Logged by: Compiled by: Reviewed by:	TVH TVH SS
Pro	ject Location:	217 & 227 Cross Ave. and 5	71 Argus	s Rd., 0	Dakville	, ON		Date 9	Started:	2	20 Jan 2	21	_ Date C	omplet	ted: 20 J a	an 21		Revision No.:	1, 1/2/21
	LITH	OLOGY PROFILE	S	OIL S	AMPL	NG			FIELI	D TE	ESTING	3		TES					
Lithology Plot	Geodetic Groun	DESCRIPTION d Surface Elevation:	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DЕРТН (m)	ELEVATION (m)	O SPT MTO Van Δ Intact ▲ Remoul * Undrained	e* d •	nTesting DCPT Nilcon Va Intact Remoi	ane* uld kPa)	★ Rinse pl 2 4 Soil Va Δ parts pe 100 2 Lower E Wp Plastic 20	apour R r million (200 30	teading ppm) 0 400 Limit (LEL) W Liquid	INSTRUMENTATION	INO I ALLA I I ON	COMMEN	ITS
		0 mm asphalt concrete over 200					-			:	: :		15		:				
	staining, mottl	silt, trace gravel, rootlets, organic ed, brown, moist, stiff		1	75	9	- - - -		0				o ¹⁵		•				
	CLAYEY SILT oxidized fissu to hard	TILL: trace sand, trace gravel, res, mottled, brown, moist, very stif	0.8 f SS	2	100	25	- - - 1 - - - -		0				012						
			ss	3	100	65	- - - - - 2				0		o ¹¹						
	BEDROCK: S Limestone fra	shale, highly weathered, occasional gments, grey, moist	2.1 SS	4	100	50/5	-		:	50			08		:				
			SS	5	100	50/5	3			5 50 5			o6						
	-first water str	ke	- 33 -		100	50/3	- 4 = - - 4 = - 	<u> </u>		5003			o ⁵						
					100	30/3	- - - - 5 - -			3									
				7	100	50/3	- - - - - 6			50			21						
	End of Boreh Notes: 1. Borehole o 2. Groundwat upon complet	pen upon completion of drilling. er level at 3.96 m bgs measured	6.1							3									
	G. Consulting Ir		ndwater de	epth on o	completic	on of drill	ling:	3.96 m.											

		OF BOREHOLE No	o.	BH/	MW	109		_ Drilling	Locatio	n:	See	BH Lo	ocati	on Plan					Lo	ogged by:		B.I Co	I.G. NSLITNG
	ject Client:	Distrikt Capital							Method					Stem A		i				ompiled b	_	ΓVΗ	
	ject Name:	BIGC-ENV-349B						-	Machin				unte	d Drill R						eviewed b	_		
Pro	ject Location:	217 & 227 Cross Ave. and 571	Argus	Rd., O	akville	, ON		_ Date S	started:		20 .	Jan 21		Date Co	mplet	ed: 20	Jan 2	1	_ R	evision No	o.: <u>1</u>	I, 1/2/	21
	LITH	OLOGY PROFILE	SC	DIL SA	MPLI				FIE	LD T	ES	TING		LAB Rinse ph	TEST	ING	┨.						
Lithology Plot		DESCRIPTION d Surface Elevation:	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEРТН (m)	ELEVATION (m)	O SPT MTO Va Δ Intact A Remo	t ould	Nilc	DCPT on Vane Intact Remould ength (kPa	e*	Soil Va parts per 100 2 Lower Ex W _P	pour Remillion (p	eading opm) 0 400 Limit (LEL) W L Liquid	OCTATIVENTATION	INSTALLATION		СОММІ	ENT	s	
	ASPHALT:14 mm granular	0 mm asphalt concrete over 160 base					-			:	:	:		: 11/4									
**	brown, moist,	TILL: trace sand, trace gravel, Shale, oxidized fissures, mottled,	SS	1	92	13	- - - -		0					o ¹⁴									
		,,	SS	2	100	33	- 1 - - -			0				o11 · · · ·									
1			SS	3	83	76/20	-					76 0 20		o ¹⁰									
611 <i>:</i>	BEDROCK: S Limestone fra	shale, highly weathered, occasionall.8 gments, grey, moist to damp, hard					- - - 2 -					20											
			SS	4	100	50/5	- - - -			50				08									
			-\$\$-	5	100	50/3	- - 3 - - - -			50)			6									
							- - - 4 - - -																
			SS	6	100	50/5	-			50			o	4									
	-first water str	ike					- 5 - <u>7</u> 	Z =															
							-																
=	End of Boreh	iole 6.1	SS	7	100	50/3	— 6 —			:::50	3 :		+	30) :			∃∴					
	Notes: 1. Borehole o 2. Groundwat upon complet	pen upon completion of drilling. er level at 5.18 m bgs measured ion of drilling.																					
	3. Consulting In		ater dep	oth on co	ompletic	on of drill	ing:	<u>5.18 m</u> .	<u> </u>	*		:		<u>:</u>	: :	:							

		OF BOREHOLE NO BIGC-ENV-349B	o.	BH/	MW	<u> 110</u>		Drilling	Location:	e.	ee BH Loca	ntion P	lan					Logged	hv:	TVH	LG. NGLING
	ject Number. ject Client:	Distrikt Capital						_	Method:		50 mm Sol			gere				Logged	-	TVH	
	ject Ollent. ject Name:	BIGC-ENV-349B						_	Machine:		uck Mount							Compile	•		
		217 & 227 Cross Ave. and 571	۸۲۵۱۱۹	Pd O	akvilla	ON			started:		Jan 21				d: 21 J a	n 21		Revisio	•		21
1 10								T Date C								1	_	revisio	11110	1, 1/2/	
ot	LITH	OLOGY PROFILE DESCRIPTION		DIL SA				(E) N	Penetra O SPT MTO Vane*	ation	Testing DCPT	★ Rins	e pH V 4 6	alues 8 our Rea illion (pp 300	10 12	NTATION	N O	CON	/MEN	тs	
Lithology Plot		d Surface Elevation:	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEРТН (m)	ELEVATION	△ Intact △ Remould * Undrained SI 20 40	♦ hear \$	ilcon Vane* Intact Remould Strength (kPa) 60 80	Low W _P Plas 20	er Expl	osive Lin W O	w _L Liquid 80	INSTRUMENTATION	INS I ALLA				
***	mm granular l	0 mm asphalt concrete over 300 case iilt, some gravel, occasional glass 0.4 offets, brown, moist, compact	SS	1	79	21	- - - -		0			o ¹²									
	CLAYEY SILT	TTILL: trace sand, trace gravel, 1.1 Shale, oxidized fissures, mottled, r, moist, stiff to hard	SS	2	95	12	- - - - 1 - -		0			····:12·									
			SS	3	100	37	- - - - - 2		O			o ¹⁰									
<u>11</u>	BEDROCK: S Limestone fra	Shale, highly weathered, occasiona2.3 gments, grey, damp, hard	SS	4	100	50/5	- - - -			50 5		o ⁷									
			SS	5	100	50/5	- 3 - 3 	Z		50 5		o ³									
	-first water str	ike	SS	6	60	50/5	- 4 5	=		50 5		o ⁷									
	End of Boreh	iole 6.1	_\$\$_	7	100	50/3	- - - - - - - 6			50		0.17									
	Notes: 1. Borehole o 2. Groundwat upon complet	pen upon completion of drilling. er level at 3.96 m bgs measured ion of drilling.																			
	G. Consulting Ir 500 Tomken Ro		ater dep	oth on co	ompletic	on of drill	ing:	<u>3.96 m</u> .	<u> </u>		: :	:	:	:	•						

Pro		OF BOREHOLE N BIGC-ENV-349B Distrikt Capital	0.	<u>BH/</u>	<u>MW</u>	111		_	J Location J Method			BH Loc				s				Logged	-	TVH TVH	LG.
Pro	ject Name:	BIGC-ENV-349B						Drilling	Machine	e:	Truc	k Mour	nted D	rill R	lig					Reviev	ed by:	SS	
Pro	ject Location:	217 & 227 Cross Ave. and 571	Argus	Rd., C	akville	, ON		Date 9	Started:		21 J	an 21	_ Da	ate C	omple	eted: į	21 Ja	n 21		Revision	n No.:	<u>1, 1/2/</u>	21
	LITH	OLOGY PROFILE	SC	DIL SA	MPLI				FIEL	LD T	EST	ING			TES		3	_					
Lithology Plot	Geodetic Groun	DESCRIPTION ad Surface Elevation:	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	O SPT MTO Va △ Intact ▲ Remo	ine*	Nilco	DCPT on Vane*	2 △ p 1	Soil Value of the second of th	A Values 6 8 A POUR F r million 200 3 Explosive W 40 6	Readir (ppm) 00 4 Limit (I	ng 00 LEL) W _L	INSTRUMENTATION	INSTALLATION	CO	MMEN	TS	
		mm asphalt concrete over 250					-				-			:			:						
	FILL: sandy s	itil, trace gravel, rootlets, organic 0.2 m, moist, compact	SS	1	95	15	- - - -		0				01	3									
***	clayey silt, firr	n	SS	2	100	8	- 1 - - -		0					15									
***	CLAYEY SILT fragments of grey, moist, h	FTILL: trace sand, trace gravel, 1.7 Shale, oxidized fissures, mottled, ard	ss	3	100	34	- - - - - 2			0			o ¹	3									
<u>1*</u>		Shale, highly weathered, occasiona2.3 gments, grey, moist	SS	4	63	50/8	-			50	b :		o ⁵				:						
			SS	5	100	50/5	- - - 3 - - - - - - - - - - - - - - - -	Z		50(5			7										
	-first water str	ike	\$\$	6	60	50/5	- 4	Ξ		50			08										
							- - -			:	:			:	:	:							
	End of Borel Notes: 1. Borehole o 2. Groundwat upon complet	pen upon completion of drilling. er level at 3.96 m bgs measured	- \$3	7	100	50/3				3			07										
12-5	G. Consulting In 1500 Tomken Ro	d.	ater de	oth on c	ompletio	on of drill	ing:	<u>3.96 m</u> .			_					_							

	ECORD	OF BOREHOLE N	0.	BH/	<u>MW</u>	<u>/112</u>		_ Drilling	Location:	<u>s</u>	ee BH Loc	cation Pla	n				_ Logged by:	B.I.G. CONSULTING INC
Pro	ject Client:	Distrikt Capital						Drilling	Method:	_1	50 mm S	olid Stem	Augers				Compiled by:	TVH
Pro	ject Name:	BIGC-ENV-349B						Drilling	Machine:	T	ruck Mou	nted Drill	Rig				Reviewed by:	<u>ss</u>
Pro	ject Location:	217 & 227 Cross Ave. and 571	Argus	Rd., C	Dakville	, ON		Date 9	Started:	2	1 Jan 21	Date 0	Complete	d: 21 Ja	n 21	_	Revision No.:	1, 1/2/21
	LITH	OLOGY PROFILE	SC	DIL SA	AMPLI	NG			FIELD) TE	STING	LA	3 TEST	NG		Т		
Lithology Plot	Geodetic Groun	DESCRIPTION d Surface Elevation:	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEPTH (m)	ELEVATION (m)	Penef O SPT MTO Vane Δ Intact ▲ Remould * Undrained:	e* N	Testing DCPT Illicon Vane* Intact Remould Strength (kPa)	★ Rinse 2 4 Soil \	bH Values 6 8 /apour Re er million (pr 200 300 Explosive Lii W	10 12 ading om) 400	INSTRUMENTATION		COMMEN	тѕ
***	FILL: clayey s moist, stiff	0 mm illt, trace gravel, rootlets, brown, 0.2	SS	1	59	9	- - - -		0			o ¹³						
		TILL: trace sand, trace gravel, 1.1 shale, oxidized fissures, mottled, ery stiffto hard	SS	2	100	21	- - - - 1 - - -		©			o ¹⁵						
			SS	3	95	44	- - - - - 2			0		o ¹³			٠			
	BEDROCK: S	hale, highly weathered, occasiona2.6	SS	4	100	75/25	- - - -				75 25	o ⁵						
	Limestone fra	gments, grey, moist, hard	SS	5	100	50/5	- - - 3 - - - -			5005		·····						
	-first water stri	ke	<u>\$\$</u>	6	60	50/5	- - - - - - - - - - - - - - -	7		50 0 5		08						
	End of Boreh	ole 6.1	- 33 -	7	100	50/3				50		o ⁷		,				
	Notes: 1. Borehole oj 2. Groundwati upon complet	pen upon completion of drilling. er level at 5.18 m bgs measured on of drilling.																
	6. Consulting In		ater de	oth on c	completion	on of drill	ing:	<u>5.18 m</u> .	:	•	: :	:		:	<u> </u>			

Pro Pro Pro	ject Number: ject Client: ject Name:	Distrikt Capital BIGC-ENV-349B 217 & 227 Cross Ave. and 571						Drilling Drilling	J Location J Method J Machir Started:	d: ne:	150 True	mm :	Soli unte	ion Plan d Stem A ed Drill R Date Co	Augers ig		Jan 2	1	Logged by: Compiled by: Reviewed by Revision No.	SS
	LITH	OLOGY PROFILE	SC	OIL SA	MPLI					LD T		TING sting		Rinse pl	6 8	10 12		2		
Lithology Plot		DESCRIPTION d Surface Elevation:	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DЕРТН (m)	ELEVATION (m)	O SPT MTO V: △ Intac ▲ Rem * Undrain 20	ane* tt nould	Nilo ♦	DCPT on Vand Intact Remould ength (kP 80	ie*	Soil Va parts per 100 2 Lower E W Plastic 20 4	pour R r million (00 30 xplosive W O 60	Liquid) NI INTERNATIONAL PARTICIONAL PROPERTIES NA PERENTE NA	INSTALLATION	СОММЕ	NTS
	GRAVEL:50 r FILL: clayey s staining, brow	nm	SS	1	100	19	- - - - -		0					014						
**	CLAYEY SIL1 fragments of S grey, moist, st	TILL: trace sand, trace gravel, 1.1 Shale, oxidized fissures, mottled, iff to hard	SS	2	100	13	1 1 1		0					12····						
			SS	3	100	44	- - - - 2 -			0				o ¹¹						
1/2	BEDROCK: S Limestone fra	shale, highly weathered, occasiona2.6 gments, grey, moist	SS	4	100	90				50			0	013						
	-first water stri	ıka	-\$\$	8		50/5	4			50(5)				07						
	End of Boreh Notes: 1. Borehole o	ole 6.1 pen upon completion of drilling. er level at 5.48 m bgs measured	- SS	7	100	50/5	- 6 - 6 	Z		50				21						
12-5	6. Consulting Ir 500 Tomken Rc	i.	ater de	pth on c	ompletic	on of drilli	ing:	<u>5.48 m</u> .												

	ECORD ect Number:	OF BOREI	HOLE N	o. <u>!</u>	BH/	MW	114		_ Drilling	Location:	: <u>s</u>	ee BH Loc	ation Pla	n			Logged by:	B.I.G. CCASSLITING INC
Proj	ect Client:	Distrikt Capital							Drilling	Method:		50 mm Ho	llow Ste	m Auge	ring + Ro	ock	_ Compiled by:	TVH
Proj	ect Name:	BIGC-ENV-349B							Drilling	Machine:		oring ruck Moun	ted Drill	Rig			_ Reviewed by	: <u>ss</u>
Proj	ect Location:	217 & 227 Cross	Ave. and 571	Argus	Rd., O	akville	ON		Date 9	Started:	2	1 Jan 21	_ Date	Complete	ed: 27 J a	an 21	Revision No.	1, 1/2/21
	LITH	OLOGY PROFIL	.E	SO	IL SA	MPLI	NG			FIELI	D TE	STING		B TEST	ING			
Lithology Plot	Geodetic Groun	DESCRIPTION		Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEРТН (m)	ELEVATION (m)	O SPT MTO Van Δ Intact ▲ Remoul * Undrained	e* Note the details of the details	DCPT ilicon Vane* Intact Remould Strength (kPa) 60 80	Soil \ parts 100	6 8 Vapour Reper million (p 200 300 Explosive L W	opm) 0 400 imit (LEL) W Liquid	INSTRUMENTATION INSTALLATION	СОММЕ	NTS
	TOPSOIL:150	mm ilt, trace gravel, mottle	ed, grey, 0.2	SS	1	100	20	- - - -		O			o ¹¹					
				SS	2	100	8	- - - 1 -		0			19					
	CLAYEY SILT frgments of Si moist, hard	TILL: trace sand, trace sand, trace sand, trace sand, traces,	ce gravel, 1.7 mottled, grey,	SS	3	100	37	- - - - - 2		()) 		o ¹¹					
	BEDROCK: S	hale, highly weathered	d to excellen2.8	SS	4	100	57	- - - -				D)	o ¹¹					
	to damp	onal Emicsione rayers	, grey, moist	SS	5	100	50/5	- 3 - - - - -			50 5		09					
	- first water str	ike		- \$\$	6	60	50/5	- 4 - - - - - -			50 O 5		o ⁷					
								- 5 - - - - - -										
				SS	7	60	50/5	- - - - - - -			50 5		o ¹⁹					
								- - 7 - - - -										
	- Poor Quality	ROCK CORE BEGINS	8	RC	1	98	35	- - - 8 - - -		C								
	- Poor Quality		_	RC	2	69	28	-		0								
12-5	6. Consulting In 500 Tomken Ro issauga, ON L4		∑ No freesta	anding (groundw	ater me	asured	in ope	n boreho	le on compl	letion	of drilling.	₽ Ca	ave in dep	th recorde	ed on completion	on of drilling: <u>No</u>	t Measured m.
T: 41	6-214-4880 6-551-2633		Borehole details from a qualified C commisioned and	Seotechn	ical Engi	neer. Als	o, boreho	ole info	rmation sl	nding of all po nould be read	otentia in con	l conditions pr junction with t	esent and re he geotechi	equires inte lical report	erpretative a for which it	ssistance was	F	Scale: 1 : 47 Page: 1 of 3

Project Number: BIGC-ENV-349B Drilling Location: See BH Location Plan Logged by: TVH LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING LAB TESTING
 ★ Rinse pH Values
 2
 4
 6
 8
 10
 12

 Soil Vapour Reading parts per million (ppm)
 100
 200
 300
 400
 INSTRUMENTATION INSTALLATION PenetrationTesting 'N' Value/RQD% Ξ O SPT DCPT Sample Number COMMENTS **DESCRIPTION** ithology Plot Recovery (%) Sample Type ELEVATION MTO Vane* Nilcon Vane* Ξ Lower Explosive Limit (LEL)
W_P W W_L

Plastic Liquid △ Intact
 ◆ Remould
 ◆ Remould DEPTH SPT * Undrained Shear Strength (kPa) 40 60 20 40 60 20 **BEDROCK:** Shale, highly weathered to excellent qaulity, occasional Limestone layers, grey, moist to damp 10 RC 3 98 62 Ö - Fair Quality 0 RC 4 100 87 - Good Quality 12 13 RC 5 100 76 0 - Good Quality 14 RC 6 100 83 0 - Good Quality 15 16 RC 100 98 - Excellent Quality 17 0 RC 8 97 89 18 - Good Quality 19

Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and requires interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying Notes to Record of Boreholes'.

Project Number: BIGC-ENV-349B Drilling Location: See BH Location Plan Logged by: TVH LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING LAB TESTING
 ★ Rinse pH Values
 2
 4
 6
 8
 10
 12

 Soil Vapour Reading parts per million (ppm)
 100
 200
 300
 400
 INSTRUMENTATION INSTALLATION PenetrationTesting 'N' Value/RQD% Ξ O SPT DCPT Sample Number COMMENTS **DESCRIPTION** %) ithology Plot Sample Type MTO Vane* Nilcon Vane* ELEVATION Ξ Lower Explosive Limit (LEL)
W_P W W_L

Plastic Liquid △ Intact
 ◆ Remould
 ◆ Remould DEPTH SPT * Undrained Shear Strength (kPa) 40 60 80 20 40 60 20 **BEDROCK:** Shale, highly weathered to excellent qaulity, occasional Limestone layers, grey, moist to damp RC 100 94 0 - Excellent Quality 20 21 RC 10 100 90 0 - Excellent Quality 22 RC 11 100 97 - Excellent Quality 23 Borehole terminated at 23.32 Borehole open upon completion of drilling. Groundwater level not measured upon completion of drilling due to introduced drilling water

Proj	ECORD OF BOREHOLE ject Number: BIGC-ENV-349B	No.	BH	/MW	<u>/115</u>		- `	J Location:	_	ee BH Loc					Logged by	
	ject Client: Distrikt Capital ject Name: BIGC-ENV-349B							g Method: g Machine:	C	150 mm Ho oring ruck Moun			ring + Ro	OCK	Compiled Reviewed	
	ect Location: 217 & 227 Cross Ave. and	571 Argus	Rd C	Dakville	. ON		- `	Started:	_	2 Jan 21			ed: 26 J a	an 21		lo.: 1, 1/2/21
	LITHOLOGY PROFILE			AMPLI			- Duito (STING		3 TES1				<u>.,</u>
Lithology Plot	DESCRIPTION Geodetic Ground Surface Elevation:	Sample Type	Sample Number	Recovery (%)	SPT 'N' Value/RQD%	DEРТН (m)	ELEVATION (m)	Penet O SPT MTO Vane △ Intact ▲ Remould * Undrained:	ration ** N Shear	DCPT Nilcon Vane* Intact Remould Strength (kPa) 60 80	★ Rinse	oH Values 6 8 'apour Rier million () 200 300 Explosive L W	10 12 eading opm) 0 400 imit (LEL) WL Liquid	NSTRUMENTATION INSTALLATION	COMM	IENTS
	ASPHALT:100 mm asphalt concrete over 300 mm granular bases		0,		97	:		:	:	: :	:	: :	:			
	FILL: clayey silt, trace gravel, rootlets, organic staining, dark brown, moist, very stiff	0.4 SS	1	59	16	- - -		0.			o ¹⁵					
	CLAYEY SILT TILL: trace sand. trace gravel, oxidized fissures, mottled, grey, moist, stiff to h	0.8 pard SS	2	100	12	- - - 1 - -		0			13···					
		SS	3	84	32	- - - - - 2		0			o ¹²					
	BEDROCK: Shale, highly weathered to excelle qaulity, occasional Limestone layers, grey, mo	en2.4 SS	4	100	50/13	- - - -			50		o ¹⁰					
	to damp	SS	5	100	50/5	- - - - 3 -			50 5		06					
	- first water strike	\$\$	6	60	50/5	- 4 - 4 5			5005		o ⁵					
		ss	7	60	50/5	- 6 6			50 5		o ⁵					
		_				- - - 7 - - - -										
	ROCK CORE BEGINS - Poor Quality	RC	1	83	30	- - 8 - - - -		0								
	- Fair Quality	RC	2	98	74	-				0			•			
12-5 Miss Cana T: 41	6. Consulting Inc. 500 Tomken Rd. issauga, ON L4W 2Z4 ada 6-214-4880 6-551-2633 Borehole ∉ from a que	freestanding details as presialified Geotech	ented, do	not cons	stitute a tho	orough le info	understa	nding of all po	tentia	I conditions pr	esent and re	quires inte	erpretative a	ssistance	etion of drilling:	Not Measured m. Scale: 1:47

Page: 1 of 3

Project Number: BIGC-ENV-349B Drilling Location: See BH Location Plan Logged by: TVH LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING LAB TESTING
 ★ Rinse pH Values
 2
 4
 6
 8
 10
 12

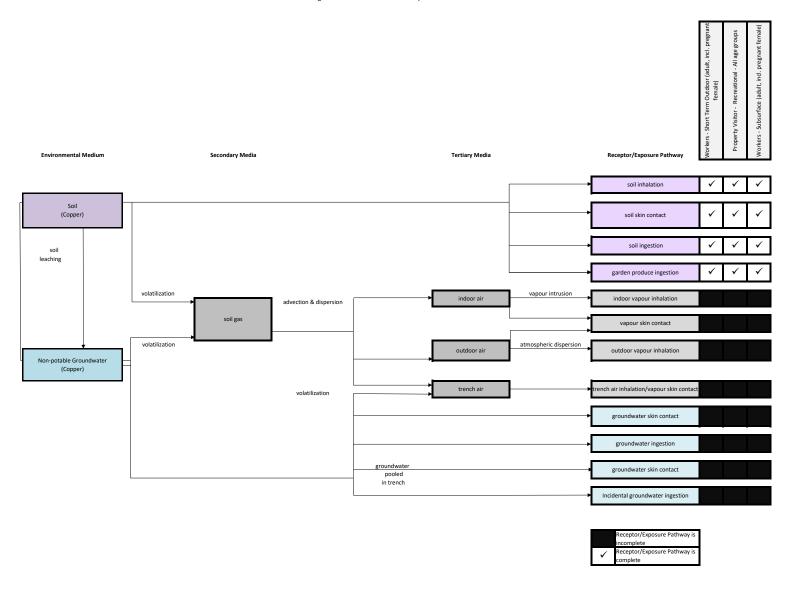
 Soil Vapour Reading parts per million (ppm)
 100
 200
 300
 400
 INSTRUMENTATION INSTALLATION PenetrationTesting 'N' Value/RQD% Ξ O SPT DCPT Sample Number COMMENTS **DESCRIPTION** ithology Plot Sample Type Recovery (%) ELEVATION MTO Vane* Nilcon Vane* Ξ Lower Explosive Limit (LEL)
W_P W W_L

Plastic Liquid △ Intact
 ◆ Remould
 ◆ Remould DEPTH SPT * Undrained Shear Strength (kPa) 40 60 20 40 60 20 **BEDROCK:** Shale, highly weathered to excellent qaulity, occasional Limestone layers, grey, moist to damp 10 RC 3 99 61 Ö - Fair Quality RC 4 99 77 Ö. - Good Quality 12 13 RC 5 100 98 - Excellent Quality 14 RC 6 98 87 0 15 - Good Quality 16 RC 100 95 - Excellent Quality 17 RC 8 100 92 0 18 - Excellent Quality 19

Borehole details as presented, do not constitute a thorough understanding of all potential conditions present and requires interpretative assistance from a qualified Geotechnical Engineer. Also, borehole information should be read in conjunction with the geotechnical report for which it was commissioned and the accompanying Notes to Record of Boreholes'.

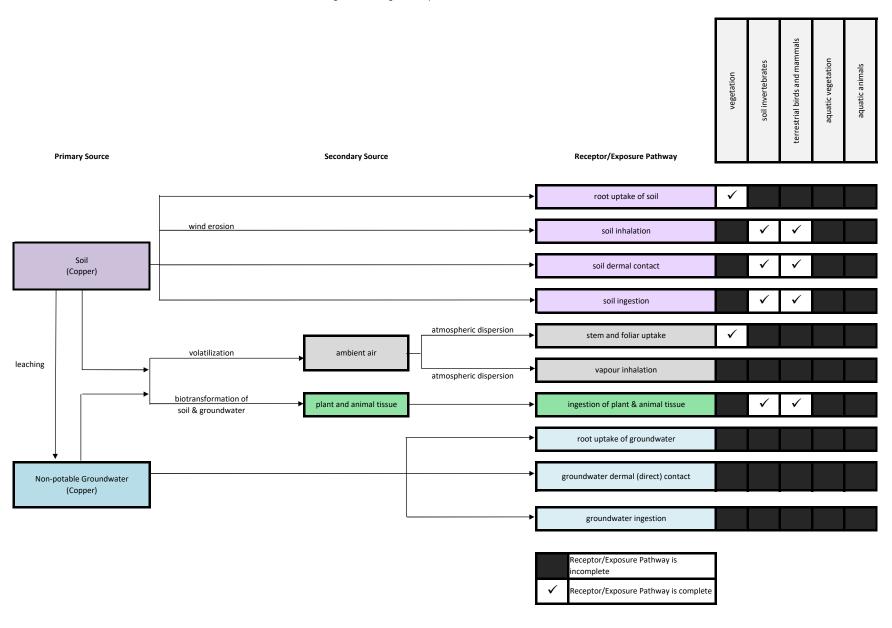
Scale: 1:47

Project Number: BIGC-ENV-349B Drilling Location: See BH Location Plan Logged by: TVH LITHOLOGY PROFILE SOIL SAMPLING FIELD TESTING LAB TESTING
 ★ Rinse pH Values
 2
 4
 6
 8
 10
 12

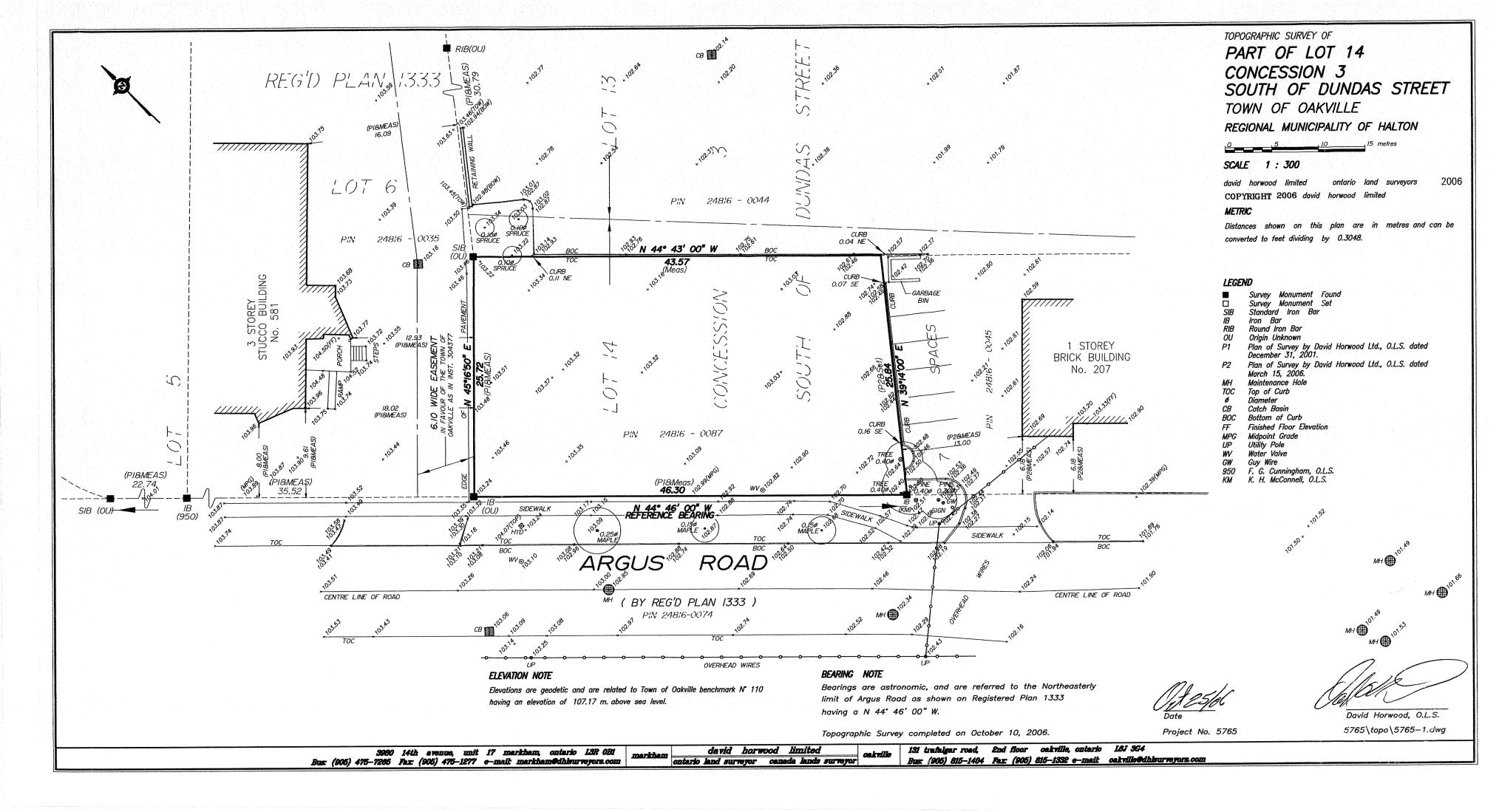

 Soil Vapour Reading parts per million (ppm)
 100
 200
 300
 400
 INSTRUMENTATION INSTALLATION PenetrationTesting 'N' Value/RQD% Ξ O SPT DCPT Sample Number COMMENTS **DESCRIPTION** %) ithology Plot Sample Type MTO Vane* Nilcon Vane* ELEVATION Ξ Lower Explosive Limit (LEL)
W_P W W_L

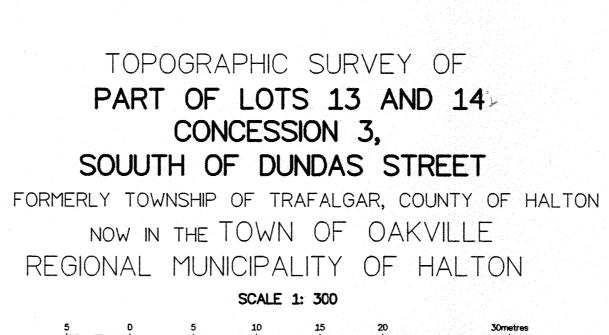
Plastic Liquid △ Intact
 ◆ Remould
 ◆ Remould DEPTH SPT * Undrained Shear Strength (kPa) 40 60 80 20 40 60 20 **BEDROCK:** Shale, highly weathered to excellent qaulity, occasional Limestone layers, grey, moist to damp RC 100 91 0 - Excellent Quality 20 21 RC 10 96 89 0 - Good Quality 22 0 RC 11 100 92 - Excellent Quality 23 Borehole terminated at 23.32 Borehole open upon completion of drilling. Groundwater level not measured upon completion of drilling due to introduced drilling water

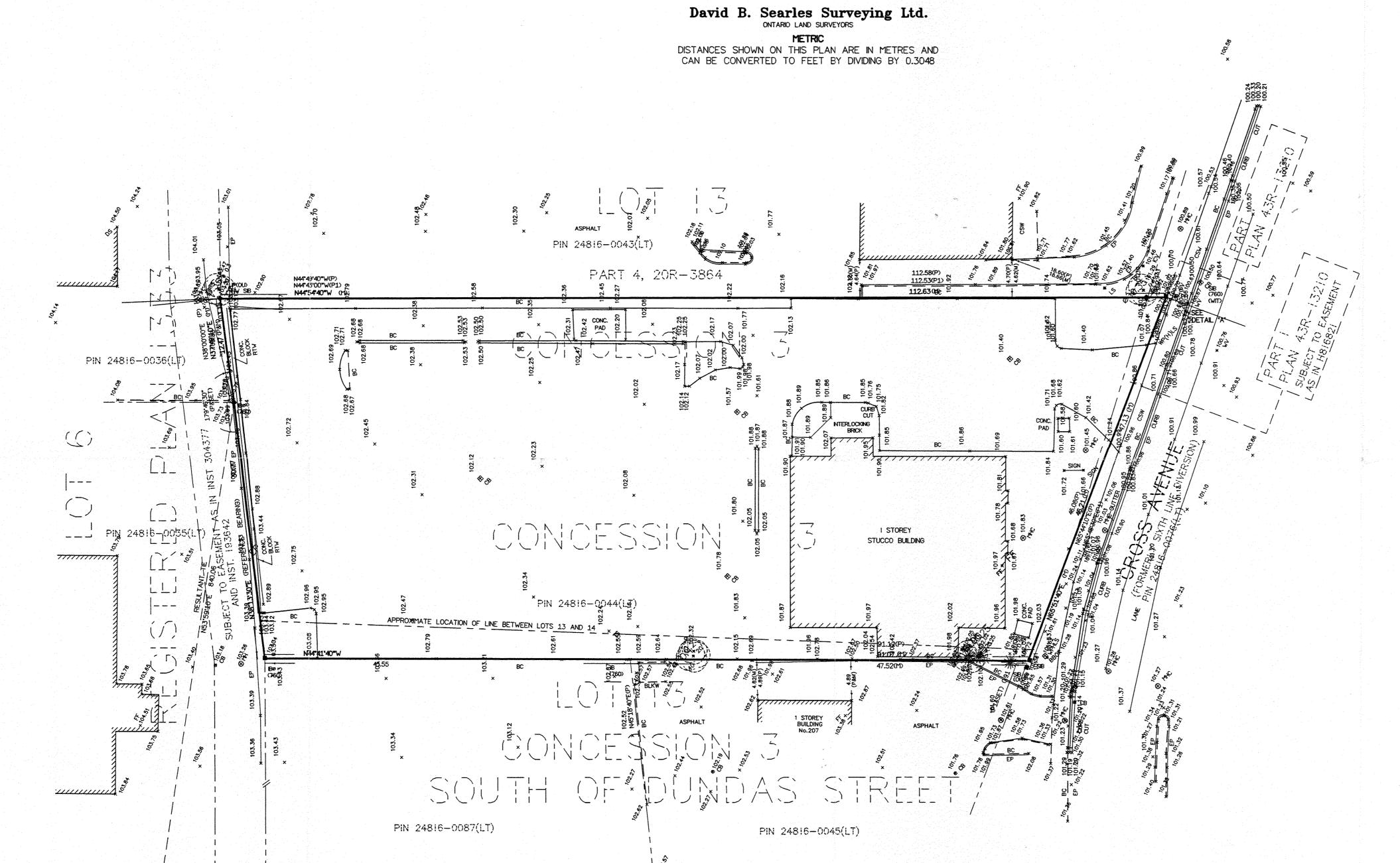
Appendix D – Conceptual Site Models


Figure D.1. - Human Health Conceptual On-Site Model

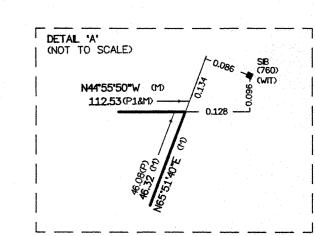
1


Figure D.2 - Ecological Conceptual On-Site Model





Appendix E - Survey Plan



WESTERLY ANGLE LOT 15
CONCESSION 3
SOUTH OF DUNDAS STREET

LEGEND

	DENOTES	MONUMENT FOUND
D	DENOTES	MONUMENT SET
SIB	DENOTES	STANDARD IRON BAR
SSIB	DENOTES	SHORT STANDARD IRON BAR
I B		IRON BAR
IP	DENOTES	IRON PIPE
WIT		WITNESS
OU	DENOTES	ORIGIN UNKNOWN
CC	DENOTES	CUT CROSS
TLCB	DENOTES	TRAFFIC LIGHT CONTROL BOX
TLP		TRAFFIC LIGHT POLE
CATV		CABLE TELEVISION BOX
CB	DENOTES	
MH	DENOTES	
WP(H)	DENOTES	
BOS	DENOTES	BOTTOM OF SLOPE
Ø	DENOTES	DIAMETER
LS	DENOTES	
ANC	DENOTES	ANCHOR
CSW	DENOTES	CONCRETE SIDEWALK
HV	DENOTES	HYDRO VAULT
CPAD	DENOTES	CONCRETE PAD
CCUT	DENOTES	CONCRETE CUT
BLKW	DENOTES	CONCRETE BLOCK ENCLOSURE
WPHLS	DENOTES	WOODEN POLE HYDRO STREET LAMP
WV	DENOTES	WATER VALVE
ICV		IRRIGATION CONTROL VALVE
BOL	DENOTES	BOLLARD
GV	DENOTES	GAS VALVE
FF .	DENOTES	FINISHED FLOOR
DS	DENOTES	DOOR SILL
P	DENOTES	SURVEYOR'S REAL PROPERTY REPORT
	BY McCON	NEL MAUGHAN LIMITED O.L.S.
		LY 6, 1992 PLAN No.72-92-1S
P1		PLAN 20R-13210
760	DENOTES	McCONELL MAUGHAN LIMITED O.L.S.
RW	DENOTES	REPLACED WITH
5		
4:1	DENOTES	DECIDUOUS TREE
W.	DENOTES	CONFEROUS TREE
**	JUNO 1 LO	COM LICOS MLL
•		

AS BUILT TOPOGRAPHIC DETAIL ADDED APRIL 6th, 2005

BENCHMARK NOTE

ELEVATIONS ARE REFERRED TO THE TOWN OF OAKVILLE BENCHMARK No.110, LOCATED ON THE TOP OF D.H.O. MONUMENT No.11 AT THE NORTHWEST CORNER OF TRAFALGAR VILLAGE PARKING LOT ON SOUTH SERVICE ROAD HAVING AN ELEVATION OF 107.1723m.

CAUTION

LOCATION OF ALL UTILITIES IS APPROXIMATE AND ALL UTILITIES SHOULD BE CONTACTED PRIOR TO ANY DIGGING OR CONSTRUCTION

© THIS PLAN IS PROTECTED BY COPYRIGHT SURVEYOR'S CERTIFICATE I CERTIFY THAT:

1. THE FIELD SURVEY REPRESENTED ON THIS PLAN WAS COMPLETED ON THE

DATE DAVID B. SEARLES - ONTARIO LAND SURVEYOR

	LAND SURVEYOR	₹ऽँ	Drawn	Checked
4284 VILLAGE CENTRE CO (905) 273-684 E MAIL: D		B96-4410	File No. 128	3-2-04
Computer Storage File No.	Operator	Disk Plan Storage No. 128-2-04D	WG	Plan Index No

Appendix F - Laboratory Certificates of Analysis

CLIENT NAME: B.I.G. CONSULTING INC. 12-5500 TOMKEN ROAD MISSISSAUGA, ON L4W 2Z4 416-214-4880

ATTENTION TO: Fernando Contento PROJECT: BIGC-ENV-349B

AGAT WORK ORDER: 21T707091

TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer

WATER ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer

DATE REPORTED: Feb 17, 2021

PAGES (INCLUDING COVER): 19 VERSION*: 3

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

<u>*Notes</u>
VERSION 3:V3 issued 2021-02-17. Supersedes version 2 reported 2021-02-12.

Disclaimer

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This Certificate shall not be reproduced except in full, without the written approval of the laboratory.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the guidelines
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V3)

Page 1 of 19

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

SAMPLING SITE:227-212 Cross

Certificate of Analysis

AGAT WORK ORDER: 21T707091

PROJECT: BIGC-ENV-349B

SAMPLED BY:TVM/AB

ATTENTION TO: Fernando Contento

O. Reg. 153(511) - PAHs (Water)

DATE REPORTED: 2021-02-17 DATE RECEIVED: 2021-02-03

		SAMPLE DESCR	_	BH/MW104	BH/MW111	BH/MW112	BH/MW113	DUP11201	
			E TYPE:	Water	Water	Water	Water	Water	
Bananatan	1124	DATE SA		2021-02-03	2021-02-03	2021-02-03	2021-02-03	2021-02-03	
Parameter	Unit	G/S	RDL	2045871	2045897	2045899	2045902	2045928	
Naphthalene	μg/L	11	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Acenaphthylene	μg/L	1	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Acenaphthene	μg/L	4.1	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Fluorene	μg/L	120	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Phenanthrene	μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Anthracene	μg/L	2.4	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Fluoranthene	μg/L	0.41	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Pyrene	μg/L	4.1	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Benzo(a)anthracene	μg/L	1	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Chrysene	μg/L	0.1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Benzo(b)fluoranthene	μg/L	0.1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Benzo(k)fluoranthene	μg/L	0.1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Benzo(a)pyrene	μg/L	0.01	0.01	<0.01	<0.01	<0.01	<0.01	<0.01	
Indeno(1,2,3-cd)pyrene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Dibenz(a,h)anthracene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Benzo(g,h,i)perylene	μg/L	0.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
2-and 1-methyl Naphthalene	μg/L	3.2	0.20	<0.20	<0.20	<0.20	<0.20	<0.20	
Sediment				No	No	No	No	No	
Surrogate	Unit	Acceptable	Limits						
Naphthalene-d8	%	50-140)	63.0	82.0	86.0	87.0	90.0	
Acridine-d9	%	50-140)	107	96.0	87.0	98.0	79.0	
Terphenyl-d14	%	50-140)	72.0	110	80.0	94.0	98.0	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2045871-2045928 Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&(j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

SAMPLING SITE:227-212 Cross

Certificate of Analysis

AGAT WORK ORDER: 21T707091

PROJECT: BIGC-ENV-349B

ATTENTION TO: Fernando Contento

SAMPLED BY:TVM/AB

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

					DATE REPORTED: 2021-02-17
SA	AMPLE DES	CRIPTION:	BH/MW101	Trip Blank	
	SAMI	LE TYPE:	Water	Water	
	DATE S	AMPLED:	2021-02-03	2021-02-03	
Unit	G/S	RDL	2045847	2045935	
μg/L	750	25	<25	<25	
μg/L	750	25	<25	<25	
μg/L	150	100	<100	<100	
μg/L	500	100	<100	<100	
μg/L	500	100	<100	<100	
μg/L		500	NA	NA	
			Trace	No	
Unit	Acceptab	e Limits			
% Recovery	50-1	40	99	91	
% Recovery	60-1	40	79	79	
	Unit µg/L µg/L µg/L µg/L µg/L µg/L µg/L Pg/L Pg/L Pg/L	SAMF DATE S Unit G / S μg/L 750 μg/L 750 μg/L 150 μg/L 500 μg/L 500 μg/L 500 μg/L Unit Acceptable % Recovery 50-1	μg/L 750 25 μg/L 750 25 μg/L 150 100 μg/L 500 100 μg/L 500 100 μg/L 500 500 Unit Acceptable Limits % Recovery 50-140	SAMPLE TYPE: DATE SAMPLED: 2021-02-03 Unit G / S RDL 2045847 μg/L 750 25 <25	SAMPLE TYPE: Water Water DATE SAMPLED: 2021-02-03 2021-02-03 2021-02-03 2021-02-03 2021-02-03 μg/L 750 25 <25

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

Certificate of Analysis

AGAT WORK ORDER: 21T707091 PROJECT: BIGC-ENV-349B 5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:227-212 Cross

ATTENTION TO: Fernando Contento

SAMPLED BY:TVM/AB

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Water)

DATE RECEIVED: 2021-02-03 DATE REPORTED: 2021-02-17

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of

Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2045847

Sediment present in sample.

The C6-C10 fraction is calculated using Toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

accredited

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average. C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

2045935

The C6-C10 fraction is calculated using Toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

accredited.

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and nC34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16 - C50 and are only determined if the chromatogram of the C34 - C50 Hydrocarbons indicated that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6-C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor. nC10. nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified with the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Toronto (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 21T707091 PROJECT: BIGC-ENV-349B

FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

TEL (905)712-5100

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:227-212 Cross

ATTENTION TO: Fernando Contento SAMPLED BY:TVM/AB

O. Reg. 153(511) - PHCs F1 - F4 (with PAHs and VOC) (Water)

DATE RECEIVED: 2021-02-03						DATE REPORTED: 2021-02-17
	S	SAMPLE DESCRIPTION	N: BH/MW104	BH/MW112	DUP11201	
		SAMPLE TYPE	E: Water	Water	Water	
		DATE SAMPLE	D: 2021-02-03	2021-02-03	2021-02-03	
Parameter	Unit	G/S RDL	2045871	2045899	2045928	
F1 (C6-C10)	μg/L	750 25	<25	<25	<25	
F1 (C6 to C10) minus BTEX	μg/L	750 25	<25	<25	<25	
F2 (C10 to C16)	μg/L	150 100	<100	<100	<100	
F2 (C10 to C16) minus Naphthalene	μg/L	100	<100	<100	<100	
F3 (C16 to C34)	μg/L	500 100	<100	<100	<100	
F3 (C16 to C34) minus PAHs	μg/L	100	<100	<100	<100	
F4 (C34 to C50)	μg/L	500 100	<100	<100	<100	
Gravimetric Heavy Hydrocarbons	μg/L	500	NA	NA	NA	
Sediment			No	No	No	
Surrogate	Unit	Acceptable Limit	5			
Toluene-d8	% Recovery	50-140	93	97	106	
Terphenyl	% Recovery	60-140	77	79	113	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2045871-2045928 The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX and PAH contributions.

C>10 - C16 (F2- Naphthalene) is a calculated parameter. The calculated value is F2 - Naphthalene.

C>16 - C34 (F3-PAH) is a calculated parameter. The calculated value is F3-PAH (PAH: sum of Phenanthrene, Benzo(a)anthracene, Benzo(b)fluoranthene, Benzo(k)fluoranthene, Benzo(a)pyrene, Fluoranthene, Dibenzo(a,h)anthracene, Indeno(1,2,3-c,d)pyrene and Pyrene).

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Sediment parameter is comment only based on visual inspection of the sample prior to extraction and is not an accredited test.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE:227-212 Cross

Certificate of Analysis

AGAT WORK ORDER: 21T707091

PROJECT: BIGC-ENV-349B

ATTENTION TO: Fernando Contento

SAMPLED BY:TVM/AB

O. Reg. 153(511) - VOCs (Water)

DATE RECEIVED: 2021-02-03								DATE REPORTED: 2021-02-17
		SAMPLE DESCRIPTI	ON: BH/MW101	BH/MW104	BH/MW112	DUP11201	Trip Blank	
		SAMPLE TY	PE: Water	Water	Water	Water	Water	
		DATE SAMPL	ED: 2021-02-03	2021-02-03	2021-02-03	2021-02-03	2021-02-03	
Parameter	Unit	G/S RD	2045847	2045871	2045899	2045928	2045935	
Dichlorodifluoromethane	μg/L	590 0.2	<0.20	<0.20	<0.20	<0.20	<0.20	
Vinyl Chloride	μg/L	0.5 0.1	<0.17	<0.17	<0.17	<0.17	<0.17	
Bromomethane	μg/L	0.89 0.2	<0.20	<0.20	<0.20	<0.20	<0.20	
Trichlorofluoromethane	μg/L	150 0.4	< 0.40	< 0.40	<0.40	< 0.40	< 0.40	
Acetone	μg/L	2700 1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1-Dichloroethylene	μg/L	1.6 0.3	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	
Methylene Chloride	μg/L	50 0.3	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	
trans- 1,2-Dichloroethylene	μg/L	1.6 0.2	<0.20	<0.20	<0.20	<0.20	<0.20	
Methyl tert-butyl ether	μg/L	15 0.2	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1-Dichloroethane	μg/L	5 0.3	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	
Methyl Ethyl Ketone	μg/L	1800 1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
cis- 1,2-Dichloroethylene	μg/L	1.6 0.2	<0.20	<0.20	<0.20	<0.20	< 0.20	
Chloroform	μg/L	2.4 0.2	<0.20	<0.20	<0.20	<0.20	<0.20	
1,2-Dichloroethane	μg/L	1.6 0.2	< 0.20	<0.20	<0.20	<0.20	< 0.20	
1,1,1-Trichloroethane	μg/L	200 0.3	<0.30	< 0.30	< 0.30	< 0.30	< 0.30	
Carbon Tetrachloride	μg/L	0.79 0.2	< 0.20	<0.20	<0.20	<0.20	< 0.20	
Benzene	μg/L	5.0 0.2	0.22	0.22	<0.20	<0.20	<0.20	
1,2-Dichloropropane	μg/L	5 0.2	<0.20	<0.20	<0.20	<0.20	<0.20	
Trichloroethylene	μg/L	1.6 0.2	<0.20	<0.20	<0.20	<0.20	<0.20	
Bromodichloromethane	μg/L	16 0.2	<0.20	<0.20	<0.20	<0.20	<0.20	
Methyl Isobutyl Ketone	μg/L	640 1.0	<1.0	<1.0	<1.0	<1.0	<1.0	
1,1,2-Trichloroethane	μg/L	4.7 0.2	< 0.20	<0.20	<0.20	<0.20	<0.20	
Toluene	μg/L	24 0.2	<0.20	<0.20	<0.20	<0.20	<0.20	
Dibromochloromethane	μg/L	25 0.1	<0.10	<0.10	<0.10	<0.10	<0.10	
Ethylene Dibromide	μg/L	0.2 0.1	<0.10	<0.10	<0.10	<0.10	<0.10	
Tetrachloroethylene	μg/L	1.6 0.2	<0.20	<0.20	<0.20	<0.20	<0.20	
1,1,1,2-Tetrachloroethane	μg/L	1.1 0.1	<0.10	<0.10	<0.10	<0.10	<0.10	
Chlorobenzene	μg/L	30 0.1	<0.10	<0.10	<0.10	<0.10	<0.10	
Ethylbenzene	μg/L	2.4 0.1	<0.10	<0.10	<0.10	<0.10	<0.10	
m & p-Xylene	μg/L	0.2	<0.20	<0.20	<0.20	<0.20	<0.20	

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

SAMPLING SITE:227-212 Cross

Certificate of Analysis

AGAT WORK ORDER: 21T707091

PROJECT: BIGC-ENV-349B

SAMPLED BY:TVM/AB

ATTENTION TO: Fernando Contento

O. Reg. 153(511) - VOCs (Water)

DATE REPORTED: 2021-02-17 DATE RECEIVED: 2021-02-03

	Si	AMPLE DES	CRIPTION:	BH/MW101	BH/MW104	BH/MW112	DUP11201	Trip Blank
		SAM	PLE TYPE:	Water	Water	Water	Water	Water
		DATE SAMPLED:		2021-02-03	2021-02-03	2021-02-03	2021-02-03	2021-02-03
Parameter	Unit	G/S	RDL	2045847	2045871	2045899	2045928	2045935
Bromoform	μg/L	25	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Styrene	μg/L	5.4	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,1,2,2-Tetrachloroethane	μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
o-Xylene	μg/L		0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichlorobenzene	μg/L	59	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,4-Dichlorobenzene	μg/L	1	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,2-Dichlorobenzene	μg/L	3	0.10	<0.10	<0.10	<0.10	<0.10	<0.10
1,3-Dichloropropene	μg/L	0.5	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30
Xylenes (Total)	μg/L	300	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
n-Hexane	μg/L	51	0.20	<0.20	<0.20	<0.20	<0.20	<0.20
Surrogate	Unit	Acceptab	le Limits					
Toluene-d8	% Recovery	50-	140	101	125	103	102	117
4-Bromofluorobenzene	% Recovery	50-	140	87	88	84	88	88

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2045847-2045935 Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene and o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

SAMPLING SITE:227-212 Cross

Certificate of Analysis

AGAT WORK ORDER: 21T707091

PROJECT: BIGC-ENV-349B

ATTENTION TO: Fernando Contento

SAMPLED BY:TVM/AB

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2021-02-03								DATE REPORTED: 2021-02-17
		SAMPLE DESC	RIPTION:	BH/MW101	BH/MW108	BH/MW112	DUP11201	
		SAMPLE TYPE:		Water	Water	Water	Water	
		DATE S	AMPLED:	2021-02-03	2021-02-03	2021-02-03	2021-02-03	
Parameter	Unit	G/S	RDL	2045847	2045888	2045899	2045928	
Dissolved Antimony	μg/L	6	1.0	<1.0	<1.0	<1.0	<1.0	
Dissolved Arsenic	μg/L	25	1.0	<1.0	<1.0	<1.0	<1.0	
Dissolved Barium	μg/L	1000	2.0	115	62.4	70.7	66.1	
Dissolved Beryllium	μg/L	4	0.50	< 0.50	< 0.50	< 0.50	< 0.50	
Dissolved Boron	μg/L	5000	10.0	351	590	746	773	
Dissolved Cadmium	μg/L	2.7	0.20	<0.20	<0.20	<0.20	<0.20	
Dissolved Chromium	μg/L	50	2.0	<2.0	<2.0	<2.0	<2.0	
Dissolved Cobalt	μg/L	3.8	0.50	0.57	1.65	< 0.50	< 0.50	
Dissolved Copper	μg/L	87	1.0	10.1	1.5	1.1	<1.0	
Dissolved Lead	μg/L	10	0.50	1.54	2.40	2.09	2.29	
Dissolved Molybdenum	μg/L	70	0.50	1.90	0.81	0.76	1.38	
Dissolved Nickel	μg/L	100	3.0	<3.0	<3.0	<3.0	<3.0	
Dissolved Selenium	μg/L	10	1.0	2.1	2.1	2.5	3.4	
Dissolved Silver	μg/L	1.5	0.20	<0.20	<0.20	<0.20	<0.20	
Dissolved Thallium	μg/L	2	0.30	< 0.30	< 0.30	< 0.30	< 0.30	
Dissolved Uranium	μg/L	20	0.50	1.65	<0.50	<0.50	<0.50	
Dissolved Vanadium	μg/L	6.2	0.40	< 0.40	< 0.40	< 0.40	<0.40	
Dissolved Zinc	μg/L	1100	5.0	<5.0	<5.0	<5.0	<5.0	
Mercury	μg/L	0.29	0.02	< 0.02	< 0.02	< 0.02	<0.02	
Chromium VI	μg/L	25	2.000	<2.000	<2.000	<2.000	<2.000	
Cyanide, Free	μg/L	66	2	<2	<2	<2	<2	
Dissolved Sodium	μg/L	490000	500	776000	402000	475000	456000	
Chloride	μg/L	790000	5000	1270000	1160000	1340000	1330000	
Electrical Conductivity	uS/cm	NA	2	4630	4400	4790	4810	
pH	pH Units		NA	7.66	7.49	7.52	7.56	

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

Certificate of Analysis

AGAT WORK ORDER: 21T707091

PROJECT: BIGC-ENV-349B

ATTENTION TO: Fernando Contento

SAMPLED BY:TVM/AB

O. Reg. 153(511) - Metals & Inorganics (Water)

DATE RECEIVED: 2021-02-03 DATE REPORTED: 2021-02-17

Comments:

RDL - Reported Detection Limit; G/S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of

Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2045847-2045928 Metals analysis completed on a filtered sample.

Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:227-212 Cross

CHARTERED STORM OF THE PROPERTY OF THE PROPERT

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

Certificate of Analysis

AGAT WORK ORDER: 21T707091

PROJECT: BIGC-ENV-349B

SAMPLED BY:TVM/AB

ATTENTION TO: Fernando Contento

O. Reg. 153(511) - ORPs (Water)

DATE RECEIVED: 2021-02-03						DATE REPORTED: 2021-02-1
		SAMPLE DESC	CRIPTION:	BH/MW103	BH/MW107	
		SAME	PLE TYPE:	Water	Water	
		DATE S	SAMPLED:	2021-02-03 2021-02-03	2021-02-03	
Parameter	Unit	G/S	RDL	2045869	2045886	
Dissolved Sodium	μg/L	490000	500	576000	566000	
Chloride	μg/L	790000	5000	1640000	1560000	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Potable Ground Water - All Types of Property Uses - Coarse Textured Soils

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2045869-2045886 Dilution required, RDL has been increased accordingly.

Analysis performed at AGAT Toronto (unless marked by *)

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:227-212 Cross

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

Exceedance Summary

AGAT WORK ORDER: 21T707091

PROJECT: BIGC-ENV-349B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

ATTENTION TO: Fernando Contento

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
2045847	BH/MW101	ON T2 PGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	μg/L	790000	1270000
2045847	BH/MW101	ON T2 PGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Dissolved Sodium	μg/L	490000	776000
2045869	BH/MW103	ON T2 PGW CT	O. Reg. 153(511) - ORPs (Water)	Chloride	μg/L	790000	1640000
2045869	BH/MW103	ON T2 PGW CT	O. Reg. 153(511) - ORPs (Water)	Dissolved Sodium	μg/L	490000	576000
2045886	BH/MW107	ON T2 PGW CT	O. Reg. 153(511) - ORPs (Water)	Chloride	μg/L	790000	1560000
2045886	BH/MW107	ON T2 PGW CT	O. Reg. 153(511) - ORPs (Water)	Dissolved Sodium	μg/L	490000	566000
2045888	BH/MW108	ON T2 PGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	μg/L	790000	1160000
2045899	BH/MW112	ON T2 PGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	μg/L	790000	1340000
2045928	DUP11201	ON T2 PGW CT	O. Reg. 153(511) - Metals & Inorganics (Water)	Chloride	μg/L	790000	1330000

Quality Assurance

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B SAMPLING SITE:227-212 Cross AGAT WORK ORDER: 21T707091
ATTENTION TO: Fernando Contento

SAMPLED BY:TVM/AB

			Trac	e Or	gani	cs Ar	nalys	is							
RPT Date: Feb 17, 2021			С	UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
DADAMETED	Datah	Sample	Dun #4	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Dagayan	Lir	ptable nits	Dagayany		ptable nits
PARAMETER	Batch	ld	Dup #1 Dup #2		KFD		Value	Lower	Upper	Recovery Lowe		Upper	Recovery	Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4	(-BTEX) (Wa	iter)	•			•	•		•		•				
F1 (C6 - C10)	2058819		<25	<25	NA	< 25	99%	60%	140%	92%	60%	140%	101%	60%	140%
F2 (C10 to C16)	2045847	2045847	< 100	< 100	NA	< 100	105%	60%	140%	106%	60%	140%	83%	60%	140%
F3 (C16 to C34)	2045847	2045847	< 100	< 100	NA	< 100	95%	60%	140%	105%	60%	140%	93%	60%	140%
F4 (C34 to C50)	2045847	2045847	< 100	< 100	NA	< 100	91%	60%	140%	118%	60%	140%	119%	60%	140%
O. Reg. 153(511) - VOCs (Water)															
Dichlorodifluoromethane	2061685		<0.20	<0.20	NA	< 0.20	79%	50%	140%	76%	50%	140%	104%	50%	140%
Vinyl Chloride	2061685		<0.17	<0.17	NA	< 0.17	109%	50%	140%	82%	50%	140%	75%	50%	140%
Bromomethane	2061685		<0.20	<0.20	NA	< 0.20	115%	50%	140%	95%	50%	140%	123%	50%	140%
Trichlorofluoromethane	2061685		< 0.40	< 0.40	NA	< 0.40	114%	50%	140%	89%	50%	140%	82%	50%	140%
Acetone	2061685		<1.0	<1.0	NA	< 1.0	88%	50%	140%	90%	50%	140%	96%	50%	140%
1,1-Dichloroethylene	2061685		<0.30	<0.30	NA	< 0.30	84%	50%	140%	72%	60%	130%	77%	50%	140%
Methylene Chloride	2061685		< 0.30	< 0.30	NA	< 0.30	82%	50%	140%	88%	60%	130%	98%	50%	140%
trans- 1,2-Dichloroethylene	2061685		<0.20	<0.20	NA	< 0.20	92%	50%	140%	108%	60%	130%	103%	50%	140%
Methyl tert-butyl ether	2061685		<0.20	<0.20	NA	< 0.20	88%	50%	140%	101%	60%	130%	98%	50%	140%
1,1-Dichloroethane	2061685		<0.30	<0.30	NA	< 0.30	76%		140%	92%		130%	92%	50%	140%
Methyl Ethyl Ketone	2061685		<1.0	<1.0	NA	< 1.0	98%	50%	140%	80%	50%	140%	91%	50%	140%
cis- 1,2-Dichloroethylene	2061685		<0.20	<0.20	NA	< 0.20	74%	50%	140%	86%	60%	130%	103%	50%	140%
Chloroform	2061685		<0.20	<0.20	NA	< 0.20	76%	50%	140%	88%	60%	130%	107%	50%	140%
1,2-Dichloroethane	2061685		<0.20	<0.20	NA	< 0.20	85%	50%	140%	94%	60%	130%	98%	50%	140%
1,1,1-Trichloroethane	2061685		<0.30	<0.30	NA	< 0.30	96%	50%	140%	85%	60%	130%	86%	50%	140%
Carbon Tetrachloride	2061685		<0.20	<0.20	NA	< 0.20	77%	50%	140%	89%	60%	130%	82%	50%	140%
Benzene	2061685		<0.20	<0.20	NA	< 0.20	77%	50%	140%	76%	60%	130%	87%	50%	140%
1,2-Dichloropropane	2061685		<0.20	<0.20	NA	< 0.20	103%	50%	140%	74%	60%	130%	84%	50%	140%
Trichloroethylene	2061685		<0.20	<0.20	NA	< 0.20	75%	50%	140%	105%	60%	130%	102%	50%	140%
Bromodichloromethane	2061685		<0.20	<0.20	NA	< 0.20	111%	50%	140%	97%	60%	130%	98%	50%	140%
Methyl Isobutyl Ketone	2061685		<1.0	<1.0	NA	< 1.0	81%	50%	140%	80%	50%	140%	82%	50%	140%
1,1,2-Trichloroethane	2061685		<0.20	<0.20	NA	< 0.20	91%	50%	140%	105%	60%	130%	101%	50%	140%
Toluene	2061685		<0.20	<0.20	NA	< 0.20	73%	50%	140%	88%	60%	130%	69%	50%	140%
Dibromochloromethane	2061685		<0.10	<0.10	NA	< 0.10	114%	50%	140%	113%	60%	130%	107%	50%	140%
Ethylene Dibromide	2061685		<0.10	<0.10	NA	< 0.10	95%	50%	140%	108%	60%	130%	100%	50%	140%
Tetrachloroethylene	2061685		<0.20	<0.20	NA	< 0.20	85%	50%	140%	110%	60%	130%	80%	50%	140%
1,1,1,2-Tetrachloroethane	2061685		<0.10	<0.10	NA	< 0.10	91%		140%	111%		130%	90%		140%
Chlorobenzene	2061685		<0.10	<0.10	NA	< 0.10	83%		140%	98%		130%	91%	50%	140%
Ethylbenzene	2061685		<0.10	<0.10	NA	< 0.10	83%		140%	81%		130%	73%		140%
m & p-Xylene	2061685		<0.20	<0.20	NA	< 0.10	71%		140%	90%		130%	73%		140%
Bromoform	2061685		<0.10	<0.10	NA	< 0.10	108%	50%	140%	114%	60%	130%	101%	50%	140%
Styrene	2061685		<0.10	<0.10	NA	< 0.10	83%		140%	81%		130%	83%		140%
1,1,2,2-Tetrachloroethane	2061685		<0.10	<0.10	NA	< 0.10	98%			100%		130%	102%	50%	
o-Xylene	2061685		<0.10	<0.10	NA	< 0.10	77%		140%	94%		130%	81%		140%

AGAT QUALITY ASSURANCE REPORT (V3)

Page 12 of 19

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B SAMPLING SITE:227-212 Cross

AGAT WORK ORDER: 21T707091
ATTENTION TO: Fernando Contento

SAMPLED BY:TVM/AB

2								\							
	7	race	Org	anics	Ana	alysis	(Coı	ntin	ued	l)					
RPT Date: Feb 17, 2021				UPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank			eptable mits	Recovery	Lie	ptable nits	Recovery	Lin	eptable mits
		Id					value	Lower	Upper	_	Lower	Upper		Lower	Upper
1,3-Dichlorobenzene	2061685		<0.10	<0.10	NA	< 0.10	101%	50%	140%	117%	60%	130%	113%	50%	140%
,4-Dichlorobenzene	2061685		<0.10	<0.10	NA	< 0.10	102%	50%	140%	122%	60%	130%	115%	50%	140%
,2-Dichlorobenzene	2061685		<0.10	<0.10	NA	< 0.10	106%	50%	140%	119%	60%	130%	119%	50%	140%
n-Hexane	2061685		<0.20	<0.20	NA	< 0.20	105%	50%	140%	86%	60%	130%	89%	50%	140%
O. Reg. 153(511) - PHCs F1 - F	F4 (with PAHs a	and VOC)	(Water)												
=1 (C6-C10)	2058819		<25	<25	NA	< 25	99%	60%	140%	92%	60%	140%	101%	60%	140%
D. Reg. 153(511) - PAHs (Wate	er)														
laphthalene	2045871 2	2045871	< 0.20	< 0.20	NA	< 0.20	102%	50%	140%	115%	50%	140%	88%	50%	140%
cenaphthylene	2045871 2	2045871	< 0.20	< 0.20	NA	< 0.20	115%	50%	140%	85%	50%	140%	87%	50%	140%
cenaphthene	2045871 2	2045871	< 0.20	< 0.20	NA	< 0.20	85%	50%	140%	74%	50%	140%	74%	50%	140%
luorene	2045871 2	2045871	< 0.20	< 0.20	NA	< 0.20	74%	50%	140%	71%	50%	140%	71%	50%	140%
Phenanthrene	2045871 2	2045871	< 0.10	< 0.10	NA	< 0.10	77%	50%	140%	75%	50%	140%	75%	50%	140%
Anthracene	2045871 2	2045871	< 0.10	< 0.10	NA	< 0.10	71%	50%	140%	77%	50%	140%	81%	50%	140%
Fluoranthene	2045871 2	2045871	< 0.20	< 0.20	NA	< 0.20	70%	50%	140%	74%	50%	140%	82%	50%	140%
Pyrene	2045871 2	2045871	< 0.20	< 0.20	NA	< 0.20	79%	50%	140%	78%	50%	140%	80%	50%	140%
Benzo(a)anthracene	2045871 2	2045871	< 0.20	< 0.20	NA	< 0.20	85%	50%	140%	85%	50%	140%	71%	50%	140%
Chrysene	2045871 2	2045871	< 0.10	< 0.10	NA	< 0.10	81%	50%	140%	71%	50%	140%	74%	50%	140%
Benzo(b)fluoranthene	2045871 2	2045871	< 0.10	< 0.10	NA	< 0.10	115%	50%	140%	70%	50%	140%	77%	50%	140%
Benzo(k)fluoranthene	2045871 2	2045871	< 0.10	< 0.10	NA	< 0.10	114%	50%	140%	71%	50%	140%	75%	50%	140%
Benzo(a)pyrene	2045871 2	2045871	< 0.01	< 0.01	NA	< 0.01	85%	50%	140%	79%	50%	140%	96%	50%	140%
ndeno(1,2,3-cd)pyrene	2045871 2	2045871	< 0.20	< 0.20	NA	< 0.20	80%	50%	140%	85%	50%	140%	85%	50%	140%
Dibenz(a,h)anthracene	2045871 2	2045871	< 0.20	< 0.20	NA	< 0.20	71%	50%	140%	86%	50%	140%	80%	50%	140%
Benzo(g,h,i)perylene	2045871 2	2045871	< 0.20	< 0.20	NA	< 0.20	107%	50%	140%	81%	50%	140%	80%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Jinkal Jata

Certified By:

Page 13 of 19

Quality Assurance

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B **SAMPLING SITE:227-212 Cross** AGAT WORK ORDER: 21T707091 **ATTENTION TO: Fernando Contento**

SAMPLED BY:TVM/AB

			Wate	<u> </u>	iaiys	13								
RPT Date: Feb 17, 2021			DUPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	METHOD BLANK SPIKE			RIX SPI	KE
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		ptable nits	Recovery		ptable nits	Recovery	Lir	ptable nits
	ld ld		.			Value	Lower	Upper	,	Lower	Upper		Lower	Uppe
O. Reg. 153(511) - Metals & Ir	norganics (Water)		,											
Dissolved Antimony	2050451	<1.0	<1.0	NA	< 1.0	104%	70%	130%	103%	80%	120%	109%	70%	130%
Dissolved Arsenic	2050451	<1.0	<1.0	NA	< 1.0	88%	70%	130%	102%	80%	120%	114%	70%	130%
Dissolved Barium	2050451	63.3	63.7	0.6%	< 2.0	102%	70%	130%	102%	80%	120%	101%	70%	130%
Dissolved Beryllium	2050451	< 0.50	< 0.50	NA	< 0.50	97%	70%	130%	104%	80%	120%	112%	70%	130%
Dissolved Boron	2050451	71.8	73.1	1.8%	< 10.0	100%	70%	130%	102%	80%	120%	109%	70%	130%
Dissolved Cadmium	2050451	<0.20	<0.20	NA	< 0.20	101%	70%	130%	100%	80%	120%	111%	70%	130%
Dissolved Chromium	2050451	<2.0	<2.0	NA	< 2.0	98%	70%	130%	93%	80%	120%	99%	70%	130%
Dissolved Cobalt	2050451	< 0.50	< 0.50	NA	< 0.50	98%	70%	130%	94%	80%	120%	98%	70%	130%
Dissolved Copper	2050451	<1.0	<1.0	NA	< 1.0	96%	70%	130%	94%	80%	120%	95%	70%	130%
Dissolved Lead	2050451	<0.50	<0.50	NA	< 0.50	99%	70%	130%	98%	80%	120%	103%	70%	130%
Dissolved Molybdenum	2050451	5.05	5.73	12.6%	< 0.50	100%	70%	130%	102%	80%	120%	107%	70%	130%
Dissolved Nickel	2050451	<3.0	<3.0	NA	< 3.0	99%	70%	130%	94%	80%	120%	98%	70%	130%
Dissolved Selenium	2050451	<1.0	<1.0	NA	< 1.0	97%	70%	130%	101%	80%	120%	118%	70%	130%
Dissolved Silver	2050451	<0.20	< 0.20	NA	< 0.20	98%	70%	130%	93%	80%	120%	95%	70%	130%
Dissolved Thallium	2050451	<0.30	<0.30	NA	< 0.30	103%	70%	130%	99%	80%	120%	104%	70%	130%
Dissolved Uranium	2050451	7.47	7.30	2.3%	< 0.50	108%	70%	130%	104%	80%	120%	112%	70%	130%
Dissolved Vanadium	2050451	0.84	0.63	NA	< 0.40	102%	70%	130%	96%	80%	120%	100%	70%	130%
Dissolved Zinc	2050451	5.4	6.7	NA	< 5.0	106%	70%	130%	106%	80%	120%	113%	70%	130%
Mercury	2045847 2045847	< 0.02	< 0.02	NA	< 0.02	102%	70%	130%	104%	80%	120%	100%	70%	130%
Chromium VI	2050022	<2.000	<2.000	NA	< 2	105%	70%	130%	108%	80%	120%	109%	70%	130%
Cyanide, Free	2050225	<2	<2	NA	< 2	91%	70%	130%	98%	80%	120%	110%	70%	130%
Dissolved Sodium	2047398	7310	7460	2.0%	< 50	100%	70%	130%	100%	80%	120%	98%	70%	130%
Chloride	2050225	85300	87100	2.1%	< 100	97%	70%	130%	104%	80%	120%	103%	70%	130%
Electrical Conductivity	2050022	1450	1450	0.0%	< 2	103%	90%	110%						
рН	2050022	7.70	7.73	0.4%	NA	101%	90%	110%						
Comments: NA signifies Not App Duplicate NA: results are under		calculated	i.											
O. Reg. 153(511) - Metals & Ir	organics (Water)													
Chromium VI	2045929 2045929	<2.000	<2.000	NA	< 2	104%	70%	130%	101%	80%	120%	104%	70%	130%
Electrical Conductivity	2045929 2045929	6270	6290	0.3%	< 2	104%	90%	110%	10170	00 /0	120/0	107/0	1 0 /0	1307
	20-0020 20-0020	0210	0230	0.070	~ ~	100/0	5070	110/0						

Comments: NA signifies Not Applicable. Duplicate NA: results are under 5X the RDL and will not be calculated.

Method Summary

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B SAMPLING SITE:227-212 Cross

AGAT WORK ORDER: 21T707091 ATTENTION TO: Fernando Contento

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE				
Trace Organics Analysis							
Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Acenaphthylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Acenaphthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Fluorene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Phenanthrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(a)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Chrysene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(b)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(k)fluoranthene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(a)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Indeno(1,2,3-cd)pyrene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Dibenz(a,h)anthracene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Benzo(g,h,i)perylene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
2-and 1-methyl Naphthalene	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Naphthalene-d8	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Acridine-d9	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Terphenyl-d14	ORG-91-5105	modified from EPA 3510C and EPA 8270E	GC/MS				
Sediment							
Toluene-d8	VOL-91-5009	modified from EPA SW-846 5030C & 8260D	(P&T)GC/MS				
F1 (C6 - C10)	VOL-91- 5010	modified from MOE PHC E3421	(P&T)GC/FID				
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC E3421	(P&T)GC/FID				
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC E3421	GC / FID				
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC E3421	GC / FID				
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC E3421	GC / FID				
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC E3421	BALANCE				
Terphenyl	VOL-91-5010	modified from MOE PHC E3421	GC/FID				
F1 (C6-C10)	VOL-91- 5010	modified from MOE PHC-E3421	(P&T)GC/FID				
F1 (C6 to C10) minus BTEX	VOL-91-5010	modified from MOE PHC-E3421	P&T GC/FID				
F2 (C10 to C16)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				
F2 (C10 to C16) minus Naphthalene	VOL-91-5010	modified from MOE PHC-E3421	GC/FID				

Method Summary

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B SAMPLING SITE:227-212 Cross

AGAT WORK ORDER: 21T707091
ATTENTION TO: Fernando Contento

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
F3 (C16 to C34)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F3 (C16 to C34) minus PAHs	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
F4 (C34 to C50)	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5010	modified from MOE PHC-E3421	BALANCE
Terphenyl	VOL-91-5010	modified from MOE PHC-E3421	GC/FID
Dichlorodifluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromomethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
trans- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl tert-butyl ether	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
cis- 1,2-Dichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B

AGAT WORK ORDER: 21T707091 **ATTENTION TO: Fernando Contento**

SAMPLING SITE:227-212 Cross		SAMPLED BY:T	VM/AB
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Tetrachloroethylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Bromoform	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5001	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B SAMPLING SITE:227-212 Cross

AGAT WORK ORDER: 21T707091
ATTENTION TO: Fernando Contento

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Water Analysis			
Dissolved Antimony	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Arsenic	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Barium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Beryllium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Boron	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cadmium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Chromium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Cobalt	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Copper	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Lead	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Molybdenum	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Nickel	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Selenium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Silver	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Thallium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Uranium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Vanadium	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Dissolved Zinc	MET-93-6103	modified from EPA 200.8 and EPA 3005A	ICP-MS
Mercury	MET-93-6100	modified from EPA 245.2 and SM 311 B	² CVAAS
Chromium VI	INOR-93-6034	modified from QuickChem Method 10-124-13-1-B	LACHAT FIA
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015, SN 4500-CN- I, G-387	TECHNICON AUTO ANALYZER
Dissolved Sodium	MET-93-6105	modified from EPA 6010D	ICP/OES
Chloride	INOR-93-6004	modified from SM 4110 B	ION CHROMATOGRAPH
Electrical Conductivity	INOR-93-6000	SM 2510 B	PC TITRATE
рН	INOR-93-6000	modified from SM 4500-H+ B	PC TITRATE

5835 Coopers Avenue

Ph: 905.712.5100 Fax: 905.712.5122

Mississauga, Ontario L4Z 1Y2 webearth_agatlabs_com

Laboratory Use Only

Work Order #: 217707091

Chain of Custody Record	If this is a	Drinking Water	sample, plea	se use Drin	king Water Chain of Custody Form (potab	le water	consum	ed by h	ımans)		-		ooler Qu rival Tei	iantity: mperati	ires.	8	5	1	8.		7.	7
Report Information: Company: Alle Consulting	e Inc			Reg	gulatory Requirements: e check all applicable boxes)								stody S	Seal Inte	FR.	EE	res	1	E	No	Г	□N/A
Contact: Fana do (anti-	th to	, M:55/5504	55	_ Ta	egulation 153/04 Excess Soils R4 able Indicate One Indicate One Indicate One			wer Use Sanitary Region	□ s	orm		117		und [*]				-			ss Days	
Phone: 647 - 966 - 6894				- -	Regulation 558		☐ Pro Obj		r Qual				_	(Rush Si				1 2 4	, , , , ,	311103	з Бауз	
1. Email: FCon Heads Cibrow. 2. Email:	16.6/8/6:	: Com		- E	Texture (Check One) Coarse Fine		Oth	er Indicate	One				□ Da	Busines ays R Date			2 Bus Days				Next Bus Day Apply):	siness
Project Information: Project: 211-217 (1655	Block	· ENV-3!	49B		s this submission for a cord of Site Condition?	Ce	eport rtifica	Guid ate of	ellne				_	Please	provi	ide pri	or not	tificati	ion for	r rush		- /S
Sampled By:	<u>~</u>			-	₹Yes □ No	og mortin	Yes	Reg 15	3	No	0 - 0 -	0. Re	For 'Sai								GAT CP	
Invoice Information: Company: Contact: Address: Email: Please note: If quotation number is me Please number number number is me Please number	ng Inc	ill To Same: Ye		San B GW O P S SD SW	nple Matrix Legend Biota Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered - Metals, Hg. CrVI, DOC	Metals & Inorganics	□ CrVI, □ Hg, □ HWSB	if required 🗆 Yes 🗆 No			Landfill Disposa: Characterization TCLP: G	P Rainwater Leach	Soils Characterization Package AS Metals, BTEX, F1-F4	Salt - EC/SAR	3		1100		day.		lly Hazardous or High Concentration (Y/N)
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals - □ C	Analyz	PAHS	VOC	Landfill	Excess (Excess pH, ICI	Salt - E	2						Potentia
BH/MW 101	Feb 3, 2021	AM PM	75	(oh		Y	V		~		/								\perp			
BH/MW 163 BH/MW 164		AM PM AM PM AM PM	10		Sediment, proced with analysis			,	/ \		/					V						
BH/11W107 BH/11W108		AM PM				Y					-	-							\dashv			
BH//nw111		AM								/												
BH//WW 112		AM PM				Y	1		~	/	V						7.0	11 1	EB	3	6:2	5 PM
BH/MW113		AM PM								V		Manager 1	-									
DOBUSOL	4	AM PM				Y	V		/	Y	/	/==										
BH/MWNS		AM PM AM		1		Y				1.0		2000		a syrenty		100000		210		1000	3110	
Trip Blank Samples Deligraphical Set (Print Name and State)		I Date	Lyme		Samples Received By (Print Name and Sign):					I D	+V		1									
Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign):	to t	Feb 311	STI E .	15 pm	Samples Received By (Print Name and Sign):	M	N				ite		Time				Do	de.	1	of	1	
Samples Relinquished By (Print Name and Sign):		Date	Time		Samples Received By (Print Name and Sign):					Di	ite		Time			Nº:	_	1	46	0()	

CLIENT NAME: B.I.G. CONSULTING INC. 12-5500 TOMKEN ROAD MISSISSAUGA, ON L4W 2Z4

416-214-4880

ATTENTION TO: Fernando Contento PROJECT: BIGC-ENV-349B

AGAT WORK ORDER: 21T700748

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Jan 25, 2021

PAGES (INCLUDING COVER): 16 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This report shall not be reproduced or distributed, in whole or in part, without the prior written consent of AGAT Laboratories.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the information
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 16

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA) AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. Measurement Uncertainty is not taken into consideration when stating conformity with a specified requirement.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21T700748

PROJECT: BIGC-ENV-349B

ATTENTION TO: Fernando Contento

SAMPLED BY:

			Ο.	Reg. 153(5	511) - Metal	s & Inorgan	ics (Soil)		
DATE RECEIVED: 2021-01-18									DATE REPORTED: 2021-01-25
	\$		CRIPTION: PLE TYPE: SAMPLED:	BH101-SS1 Soil 2021-01-13 09:30	BH102-SS1 Soil 2021-01-13 11:00	BH103-SS1 Soil 2021-01-13 12:30	BH104-SS1 Soil 2021-01-13 14:00	BH105-SS1 Soil 2021-01-14 10:00	
Parameter	Unit	G/S	RDL	1966584	1966586	1966588	1966589	1966590	
Antimony	μg/g	7.5	8.0	<0.8	<0.8	<0.8	<0.8	<0.8	
Arsenic	μg/g	18	1	13	8	9	10	12	
Barium	µg/g	390	2	122	141	40	48	41	
Beryllium	µg/g	4	0.5	0.5	0.6	<0.5	<0.5	<0.5	
Boron	µg/g	120	5	10	7	12	11	9	
Boron (Hot Water Soluble)	µg/g	1.5	0.10	0.33	0.58	0.20	0.18	0.21	
Cadmium	µg/g	1.2	0.5	<0.5	<0.5	<0.5	0.5	<0.5	
Chromium	µg/g	160	5	18	17	7	6	6	
Cobalt	µg/g	22	0.5	11.5	10.7	5.9	5.4	4.9	
Copper	µg/g	140	1	493	80	33	31	44	
Lead	µg/g	120	1	18	21	21	23	28	
Molybdenum	μg/g	6.9	0.5	1.6	1.3	1.1	1.2	1.1	
Nickel	µg/g	100	1	23	22	10	11	10	
Selenium	µg/g	2.4	0.4	0.8	0.9	0.5	0.5	0.5	
Silver	µg/g	20	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Thallium	µg/g	1	0.4	<0.4	<0.4	<0.4	<0.4	<0.4	
Uranium	µg/g	23	0.5	1.3	1.4	0.5	0.6	<0.5	
Vanadium	µg/g	86	1	26	27	12	10	11	
Zinc	µg/g	340	5	121	101	142	169	106	
Chromium, Hexavalent	µg/g	8	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	
Cyanide, Free	μg/g	0.051	0.040	<0.040	<0.040	<0.040	<0.040	<0.040	
Mercury	μg/g	0.27	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.470	0.664	0.912	0.269	0.488	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	4.15	6.67	8.99	1.03	6.01	
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	6.18	7.66	7.83	7.83	7.91	

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

Certificate of Analysis

AGAT WORK ORDER: 21T700748

PROJECT: BIGC-ENV-349B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:

ATTENTION TO: Fernando Contento

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2021-01-18 **DATE REPORTED: 2021-01-25**

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only** Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1966584-1966590 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter.

Analysis performed at AGAT Toronto (unless marked by *)

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21T700748

PROJECT: BIGC-ENV-349B

ATTENTION TO: Fernando Contento

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PAHs (Soil)

				O. Re	g. 153(511)	- PARS (50	11)		
DATE RECEIVED: 2021-01-18									DATE REPORTED: 2021-01-25
		SAMPLE DESC	CRIPTION:	BH101-SS1	BH102-SS1	BH103-SS1	BH104-SS1	BH105-SS1	
		SAME	PLE TYPE:	Soil	Soil	Soil	Soil	Soil	
		DATE S	SAMPLED:	2021-01-13 09:30	2021-01-13 11:00	2021-01-13 12:30	2021-01-13 14:00	2021-01-14 10:00	
Parameter	Unit	G/S	RDL	1966584	1966586	1966588	1966589	1966590	
Naphthalene	μg/g	0.6	0.05	<0.05	<0.05	<0.05	<0.05	< 0.05	
Acenaphthylene	μg/g	0.15	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	
Acenaphthene	μg/g	7.9	0.05	< 0.05	<0.05	<0.05	<0.05	< 0.05	
Fluorene	μg/g	62	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	
Phenanthrene	μg/g	6.2	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	
Anthracene	μg/g	0.67	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Fluoranthene	μg/g	0.69	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Pyrene	μg/g	78	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	
Benz(a)anthracene	μg/g	0.5	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Chrysene	μg/g	7	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(b)fluoranthene	μg/g	0.78	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(k)fluoranthene	μg/g	0.78	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	
Benzo(a)pyrene	μg/g	0.3	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05	
Dibenz(a,h)anthracene	μg/g	0.1	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Benzo(g,h,i)perylene	μg/g	6.6	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	
1 and 2 Methlynaphthalene	μg/g	0.99	0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	
Moisture Content	%		0.1	16.6	13.4	7.2	8.5	10.9	
Surrogate	Unit	Acceptab	le Limits						
Naphthalene-d8	%	50-1	40	84	96	96	79	115	
Acenaphthene-d10	%	50-1	40	91	90	84	85	102	
Chrysene-d12	%	50-1	40	83	72	70	73	85	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1966584-1966590 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

Certificate of Analysis

AGAT WORK ORDER: 21T700748

PROJECT: BIGC-ENV-349B

ATTENTION TO: Fernando Contento

SAMPLED BY:

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (S	Soil)	
--	-------	--

1				•	•	•	
DATE RECEIVED: 2021-01-18							DATE REPORTED: 2021-01-25
		SAMPLE DES	CRIPTION:	BH101-SS2	BH102-SS2	BH105-SS3	
		SAMI	PLE TYPE:	Soil	Soil	Soil	
		DATES	SAMPLED:	2021-01-13 09:35	2021-01-13 11:05	2021-01-14 10:15	
Parameter	Unit	G/S	RDL	1966585	1966587	1966591	
F1 (C6 to C10)	μg/g	55	5	<5	<5	<5	
F1 (C6 to C10) minus BTEX	μg/g	55	5	<5	<5	<5	
F2 (C10 to C16)	μg/g	98	10	<10	<10	<10	
F3 (C16 to C34)	μg/g	300	50	<50	<50	<50	
F4 (C34 to C50)	μg/g	2800	50	<50	<50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA	NA	NA	
Moisture Content	%		0.1	16.9	12.8	10.9	
Surrogate	Unit	Acceptab	le Limits				
Terphenyl	%	60-1	140	77	72	94	

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1966585-1966591 Results are based on sample dry weight.

SAMPLING SITE:

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

Certificate of Analysis

AGAT WORK ORDER: 21T700748

PROJECT: BIGC-ENV-349B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:

ATTENTION TO: Fernando Contento

SAMPLED BY:

				O. Reg.	153(511)	- VOCs (Soil)	
DATE RECEIVED: 2021-01-18							DATE REPORTED: 2021-01-25
	,	SAMPLE DESCRIP	-		BH102-SS2	BH105-SS3	
		SAMPLE T DATE SAMP	LED: 2021 09	:35	Soil 2021-01-13 11:05	Soil 2021-01-14 10:15	
Parameter	Unit			6585 1.05	1966587	1966591	
Dichlorodifluoromethane	μg/g			0.05	<0.05 <0.02	<0.05 <0.02	
Vinyl Chloride Bromomethane	ug/g			0.02	<0.02	<0.02	
Trichlorofluoromethane	ug/g			0.05	<0.05	<0.05	
Acetone	ug/g			0.50	<0.50	<0.50	
	ug/g			0.05	<0.05	<0.05	
1,1-Dichloroethylene Methylene Chloride	ug/g			0.05	<0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g).05).05	<0.05	<0.05	
Methyl tert-butyl Ether	ug/g			0.05	<0.05	<0.05	
1,1-Dichloroethane	ug/g			0.03	<0.03	<0.03	
Methyl Ethyl Ketone	ug/g			0.50	<0.02	<0.50	
Cis- 1,2-Dichloroethylene	ug/g			0.02	<0.02	<0.02	
Chloroform	ug/g ug/g			1.02	<0.02	<0.02	
1.2-Dichloroethane	ug/g ug/g			0.03	<0.04	<0.04	
1,1,1-Trichloroethane				0.05	<0.05	<0.05	
Carbon Tetrachloride	ug/g ug/g			0.05	<0.05	<0.05	
Benzene	ug/g ug/g			0.02	<0.03	<0.03	
1,2-Dichloropropane	ug/g ug/g			0.03	<0.02	<0.02	
Trichloroethylene	ug/g			0.03	<0.03	<0.03	
Bromodichloromethane	ug/g			0.05	<0.05	<0.05	
Methyl Isobutyl Ketone	ug/g			0.50	<0.50	<0.50	
1,1,2-Trichloroethane	ug/g			0.04	<0.04	<0.04	
Toluene	ug/g			0.05	<0.05	<0.05	
Dibromochloromethane	ug/g			0.05	<0.05	<0.05	
Ethylene Dibromide	ug/g			0.04	<0.04	<0.04	
Tetrachloroethylene	ug/g			0.05	<0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g			0.04	<0.04	<0.04	
Chlorobenzene	ug/g			0.05	<0.05	<0.05	
Ethylbenzene	ug/g			0.05	<0.05	<0.05	

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21T700748

PROJECT: BIGC-ENV-349B

ATTENTION TO: Fernando Contento

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O Reg. 153(511) - VOCs (Soil)

				· /	- 1005 (301	,
						DATE REPORTED: 2021-01-25
S	AMPLE DESC	CRIPTION:	BH101-SS2	BH102-SS2	BH105-SS3	
	SAME	PLE TYPE:	Soil	Soil	Soil	
	DATE SAMPLED:		2021-01-13 09:35	2021-01-13 11:05	2021-01-14 10:15	
Unit	G/S	RDL	1966585	1966587	1966591	
ug/g		0.05	< 0.05	<0.05	< 0.05	
ug/g	0.27	0.05	< 0.05	<0.05	< 0.05	
ug/g	0.7	0.05	< 0.05	< 0.05	< 0.05	
ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	
ug/g		0.05	< 0.05	< 0.05	< 0.05	
ug/g	4.8	0.05	< 0.05	< 0.05	< 0.05	
ug/g	0.083	0.05	< 0.05	< 0.05	< 0.05	
ug/g	1.2	0.05	< 0.05	< 0.05	< 0.05	
ug/g	3.1	0.05	< 0.05	< 0.05	< 0.05	
μg/g	0.05	0.04	<0.04	<0.04	<0.04	
μg/g	2.8	0.05	<0.05	<0.05	< 0.05	
%		0.1	16.9	12.8	10.9	
Unit	Acceptab	le Limits				
% Recovery	50-1	40	110	108	103	
% Recovery	50-1	40	81	81	80	
	Unit ug/g Marga Marga	SAME DATE S Unit G / S ug/g ug/g 0.27 ug/g 0.7 ug/g 0.05 ug/g ug/g 4.8 ug/g 0.083 ug/g 1.2 ug/g 3.1 µg/g 0.05 µg/g 2.8 % Unit Acceptab	Unit G / S RDL ug/g 0.05 ug/g 0.27 0.05 ug/g 0.7 0.05 ug/g 0.05 0.05 ug/g 4.8 0.05 ug/g 0.083 0.05 ug/g 1.2 0.05 ug/g 3.1 0.05 μg/g 0.05 0.04 μg/g 2.8 0.05 % 0.1 Unit Acceptable Limits	SAMPLE TYPE: Soil DATE SAMPLED: 2021-01-13 09:35 Unit G / S RDL 1966585 ug/g 0.05 <0.05	SAMPLE TYPE: Soil Soil DATE SAMPLED: 2021-01-13 09:35 11:05 Unit G / S RDL 1966585 1966587 ug/g 0.05 <0.05	SAMPLE TYPE: Soil Soil Soil DATE SAMPLED: 2021-01-13 09:35 11:05 11:05 10:15 2021-01-14 10:15 Unit G / S RDL 1966585 1966587 1966591 ug/g 0.05 <0.05

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

1966585-1966591 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Guideline Violation

AGAT WORK ORDER: 21T700748

PROJECT: BIGC-ENV-349B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

ATTENTION TO: Fernando Contento

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
1966584	BH101-SS1	ON T2 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Copper	μg/g	140	493
1966586	BH102-SS1	ON T2 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	6.67
1966588	BH103-SS1	ON T2 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	0.912
1966588	BH103-SS1	ON T2 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	8.99
1966590	BH105-SS1	ON T2 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	6.01

Quality Assurance

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B

SAMPLING SITE:

AGAT WORK ORDER: 21T700748

ATTENTION TO: Fernando Contento

SAMPLED BY:

			Soil	Ana	alysis	3								
RPT Date: Jan 25, 2021			DUPLICATE	<u> </u>		REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIKE		
PARAMETER	Batch Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery	Acceptable Limits	
	Batch Id	'					Lower	Upper	110001019	Lower	Upper	,	Lower	Upper
O. Reg. 153(511) - Metals & Inor		,		,										
Antimony	1954940	<0.8	<0.8	NA	< 0.8	113%	70%	130%	102%	80%	120%	93%	70%	130%
Arsenic	1954940	4	4	NA	< 1	99%	70%	130%	97%	80%	120%	108%	70%	130%
Barium	1954940	59	61	3.3%	< 2	106%	70%	130%	97%	80%	120%	104%	70%	130%
Beryllium	1954940	<0.5	< 0.5	NA	< 0.5	74%	70%	130%	117%	80%	120%	96%	70%	130%
Boron	1954940	8	8	NA	< 5	100%	70%	130%	109%	80%	120%	91%	70%	130%
Boron (Hot Water Soluble)	1966584 1966584	0.33	0.35	NA	< 0.10	95%	60%	140%	101%	70%	130%	98%	60%	140%
Cadmium	1954940	<0.5	<0.5	NA	< 0.5	105%	70%	130%	101%	80%	120%	97%	70%	130%
Chromium	1954940	23	23	NA	< 5	86%	70%	130%	102%	80%	120%	102%	70%	130%
Cobalt	1954940	3.1	3.0	3.3%	< 0.5	87%	70%	130%	95%	80%	120%	98%	70%	130%
Copper	1954940	8	8	0.0%	< 1	87%	70%	130%	101%	80%	120%	93%	70%	130%
Lead	1954940	8	8	0.0%	< 1	105%	70%	130%	95%	80%	120%	90%	70%	130%
Molybdenum	1954940	<0.5	<0.5	NA	< 0.5	90%	70%	130%	97%	80%	120%	99%	70%	130%
Nickel	1954940	6	6	0.0%	< 1	88%	70%	130%	100%	80%	120%	96%	70%	130%
Selenium	1954940	0.5	0.5	NA	< 0.4	116%	70%	130%	101%	80%	120%	101%	70%	130%
Silver	1954940	<0.2	<0.2	NA	< 0.2	104%	70%	130%	101%	80%	120%	88%	70%	130%
Thallium	1954940	<0.4	<0.4	NA	< 0.4	101%	70%	130%	102%	80%	120%	97%	70%	130%
Uranium	1954940	<0.5	< 0.5	NA	< 0.5	101%	70%	130%	100%	80%	120%	105%	70%	130%
Vanadium	1954940	13	13	0.0%	< 1	87%	70%	130%	91%	80%	120%	100%	70%	130%
Zinc	1954940	29	29	0.0%	< 5	93%	70%	130%	101%	80%	120%	93%	70%	130%
Chromium, Hexavalent	1954829	<0.2	<0.2	NA	< 0.2	99%	70%	130%	93%	80%	120%	91%	70%	130%
Cyanide, Free	1982741	< 0.040	< 0.040	NA	< 0.040	103%	70%	130%	94%	80%	120%	110%	70%	130%
Mercury	1954940	0.25	0.25	NA	< 0.10	100%	70%	130%	101%	80%	120%	94%	70%	130%
Electrical Conductivity (2:1)	1966584 1966584	0.470	0.436	7.5%	< 0.005	103%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	1966584 1966584	4.15	4.17	0.5%	NA									
pH, 2:1 CaCl2 Extraction	1963928	6.87	7.00	1.9%	NA	100%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Quality Assurance

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B

AGAT WORK ORDER: 21T700748
ATTENTION TO: Fernando Contento

SAMPLING SITE: SAMPLED BY:

			Trac	e Or	ganio	cs An	alysi	is							
RPT Date: Jan 25, 2021				UPLICAT	E		REFERE	REFERENCE MATERIAL			METHOD BLANK SPIKE			MATRIX SPIK	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Recovery	Acceptable Limits		Recovery		ptable nits
.,		ld	Dup#1					Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	1966588 1	966588	<0.05	< 0.05	NA	< 0.05	118%	50%	140%	83%	50%	140%	86%	50%	140%
Acenaphthylene	1966588 1		<0.05	<0.05	NA	< 0.05	111%	50%	140%	78%	50%	140%	86%	50%	140%
Acenaphthene	1966588 1		<0.05	<0.05	NA	< 0.05	111%	50%	140%	81%	50%	140%	89%	50%	140%
Fluorene	1966588 1		<0.05	< 0.05	NA	< 0.05	107%	50%	140%	88%	50%	140%	97%	50%	140%
Phenanthrene	1966588 1	1966588	<0.05	<0.05	NA	< 0.05	97%	50%	140%	71%	50%	140%	80%	50%	140%
Anthracene	1966588 1	966588	< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	79%	50%	140%	98%	50%	140%
Fluoranthene	1966588 1	966588	< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	81%	50%	140%	89%	50%	140%
Pyrene	1966588 1	966588	< 0.05	< 0.05	NA	< 0.05	101%	50%	140%	75%	50%	140%	83%	50%	140%
Benz(a)anthracene	1966588 1	966588	< 0.05	< 0.05	NA	< 0.05	68%	50%	140%	82%	50%	140%	69%	50%	140%
Chrysene	1966588 1	966588	<0.05	<0.05	NA	< 0.05	81%	50%	140%	73%	50%	140%	77%	50%	140%
Benzo(b)fluoranthene	1966588 1	966588	<0.05	<0.05	NA	< 0.05	67%	50%	140%	76%	50%	140%	85%	50%	140%
Benzo(k)fluoranthene	1966588 1		<0.05	< 0.05	NA	< 0.05	99%	50%	140%	111%	50%	140%	97%	50%	140%
Benzo(a)pyrene	1966588 1		< 0.05	< 0.05	NA	< 0.05	71%	50%	140%	73%	50%	140%	82%	50%	140%
Indeno(1,2,3-cd)pyrene	1966588 1		< 0.05	< 0.05	NA	< 0.05	65%	50%	140%	82%	50%	140%	79%	50%	140%
Dibenz(a,h)anthracene	1966588 1	1966588	<0.05	<0.05	NA	< 0.05	66%	50%	140%	78%	50%	140%	92%	50%	140%
Benzo(g,h,i)perylene	1966588 1	1966588	<0.05	<0.05	NA	< 0.05	76%	50%	140%	75%	50%	140%	69%	50%	140%
O. Reg. 153(511) - PHCs F1 - F4	4 (-BTEX) (Soi	il)													
F1 (C6 to C10)	1966591 1	•	< 5	< 5	NA	< 5	86%	60%	140%	108%	60%	140%	119%	60%	140%
F2 (C10 to C16)	1977071		< 10	< 10	NA	< 10	90%	60%	140%	109%	60%	140%	97%	60%	140%
F3 (C16 to C34)	1977071		< 50	< 50	NA	< 50	90%	60%	140%	110%	60%	140%	79%	60%	140%
F4 (C34 to C50)	1977071		< 50	< 50	NA	< 50	112%	60%	140%	96%	60%	140%	96%	60%	140%
O. Reg. 153(511) - VOCs (Soil)															
Dichlorodifluoromethane	1966591 1	966591	< 0.05	< 0.05	NA	< 0.05	76%	50%	140%	73%	50%	140%	87%	50%	140%
Vinyl Chloride	1966591 1		<0.02	<0.02	NA	< 0.02	96%	50%	140%	77%	50%	140%	87%	50%	140%
Bromomethane	1966591 1		< 0.05	< 0.05	NA	< 0.05	105%	50%	140%	107%	50%	140%	73%	50%	140%
Trichlorofluoromethane	1966591 1		< 0.05	< 0.05	NA	< 0.05	102%	50%	140%	71%	50%	140%	74%	50%	140%
Acetone	1966591 1		<0.50	<0.50	NA	< 0.50	81%	50%	140%	97%	50%	140%	100%	50%	140%
1,1-Dichloroethylene	1966591 1	066501	<0.05	<0.05	NA	< 0.05	77%	50%	140%	109%	60%	130%	97%	50%	140%
Methylene Chloride	1966591 1		<0.05	< 0.05	NA	< 0.05	99%	50%	140%	81%	60%	130%	82%	50%	140%
Trans- 1,2-Dichloroethylene	1966591 1		< 0.05	<0.05	NA	< 0.05	88%	50%	140%	93%		130%	82%		140%
Methyl tert-butyl Ether	1966591 1		<0.05	<0.05	NA	< 0.05	78%	50%	140%	80%	60%	130%	76%		140%
1,1-Dichloroethane	1966591 1		<0.03	<0.03	NA	< 0.02	96%	50%	140%	90%		130%	83%	50%	
Methyl Ethyl Ketone	1966591 1		<0.50	< 0.50	NA	< 0.50	87%		140%	80%		140%	86%		140%
Cis- 1,2-Dichloroethylene	1966591 1		<0.02	<0.02	NA	< 0.02	86%		140%	70%		130%	78%		140%
Chloroform	1966591 1		<0.04	<0.04	NA	< 0.04	88%		140%	73%		130%	106%		140%
1,2-Dichloroethane	1966591 1		<0.03	< 0.03	NA	< 0.03	92%		140%	92%		130%	84%		140%
1,1,1-Trichloroethane	1966591 1	1966591	<0.05	<0.05	NA	< 0.05	80%	50%	140%	102%	60%	130%	73%	50%	140%
Carbon Tetrachloride	1966591 1	1966591	<0.05	<0.05	NA	< 0.05	72%	50%	140%	79%	60%	130%	83%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 10 of 16

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B

AGAT WORK ORDER: 21T700748

ATTENTION TO: Fernando Contento

SAMPLING SITE: SAMPLED BY:

	-	Trace	Orga	anics	Ana	lysis	(Cor	ntin	ued)					
RPT Date: Jan 25, 2021			С	UPLICAT	E		REFERE	NCE MA	TERIAL	METHOD BLANK SPIKE			MATRIX SPIKE		KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured Value			Acceptable Limits		Recovery		ptable	
		lu lu					Value	Lower	Upper		Lower	Upper		Lower	Upper
Benzene	1966591	1966591	< 0.02	< 0.02	NA	< 0.02	84%	50%	140%	85%	60%	130%	70%	50%	140%
1,2-Dichloropropane	1966591	1966591	< 0.03	< 0.03	NA	< 0.03	75%	50%	140%	83%	60%	130%	79%	50%	140%
Trichloroethylene	1966591	1966591	< 0.03	< 0.03	NA	< 0.03	84%	50%	140%	90%	60%	130%	70%	50%	140%
Bromodichloromethane	1966591	1966591	<0.05	<0.05	NA	< 0.05	71%	50%	140%	71%	60%	130%	75%	50%	140%
Methyl Isobutyl Ketone	1966591	1966591	<0.50	<0.50	NA	< 0.50	80%	50%	140%	96%	50%	140%	88%	50%	140%
1,1,2-Trichloroethane	1966591	1966591	< 0.04	< 0.04	NA	< 0.04	99%	50%	140%	94%	60%	130%	105%	50%	140%
Toluene	1966591	1966591	< 0.05	< 0.05	NA	< 0.05	93%	50%	140%	73%	60%	130%	74%	50%	140%
Dibromochloromethane	1966591	1966591	< 0.05	< 0.05	NA	< 0.05	75%	50%	140%	79%	60%	130%	74%	50%	140%
Ethylene Dibromide	1966591	1966591	<0.04	<0.04	NA	< 0.04	88%	50%	140%	82%	60%	130%	96%	50%	140%
Tetrachloroethylene	1966591	1966591	<0.05	<0.05	NA	< 0.05	85%	50%	140%	71%	60%	130%	75%	50%	140%
1,1,1,2-Tetrachloroethane	1966591	1966591	< 0.04	< 0.04	NA	< 0.04	75%	50%	140%	76%	60%	130%	76%	50%	140%
Chlorobenzene	1966591	1966591	< 0.05	< 0.05	NA	< 0.05	92%	50%	140%	77%	60%	130%	82%	50%	140%
Ethylbenzene	1966591	1966591	< 0.05	< 0.05	NA	< 0.05	86%	50%	140%	71%	60%	130%	88%	50%	140%
m & p-Xylene	1966591	1966591	<0.05	<0.05	NA	< 0.05	94%	50%	140%	76%	60%	130%	87%	50%	140%
Bromoform	1966591	1966591	<0.05	<0.05	NA	< 0.05	72%	50%	140%	73%	60%	130%	81%	50%	140%
Styrene	1966591	1966591	< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	84%	60%	130%	83%	50%	140%
1,1,2,2-Tetrachloroethane	1966591	1966591	< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	109%	60%	130%	118%	50%	140%
o-Xylene	1966591	1966591	< 0.05	< 0.05	NA	< 0.05	95%	50%	140%	77%	60%	130%	79%	50%	140%
1,3-Dichlorobenzene	1966591	1966591	<0.05	<0.05	NA	< 0.05	98%	50%	140%	83%	60%	130%	92%	50%	140%
1,4-Dichlorobenzene	1966591	1966591	<0.05	<0.05	NA	< 0.05	99%	50%	140%	85%	60%	130%	95%	50%	140%
1,2-Dichlorobenzene	1966591	1966591	< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	85%	60%	130%	96%	50%	140%
n-Hexane	1966591	1966591	<0.05	<0.05	NA	< 0.05	71%	50%	140%	74%	60%	130%	74%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Method Summary

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B

AGAT WORK ORDER: 21T700748
ATTENTION TO: Fernando Contento

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER

Method Summary

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B

SAMPLING SITE:

AGAT WORK ORDER: 21T700748
ATTENTION TO: Fernando Contento

OAIMI LING OITE.		O/ tivil ELD D1.				
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE			
Trace Organics Analysis	·					
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS			
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS			
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS			
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS			
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS			
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS			
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS			
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS			
Benz(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS			
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS			
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS			
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS			
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS			
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS			
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS			
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS			
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS			
Moisture Content	ORG-91-5106	Tier 1 Method	BALANCE			
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS			
Acenaphthene-d10	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS			
Chrysene-d12	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS			
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID			
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID			
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID			
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID			
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID			
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE			
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE			
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID			
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS			
Vinyl Chloride	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS			

Method Summary

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B

SAMPLING SITE:

AGAT WORK ORDER: 21T700748

ATTENTION TO: Fernando Contento

AGAT S.O.P	LITEDATI IDE DECEDENCE	A NIA I N/TIO A 1 TE 01 11 11 01 11
AGA1 3.0.1	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
	VOL-91-5002	VOL-91-5002 modified from EPA 5035C and EPA 8260D VOL-91-5002 modified from EPA 5035C and EPA 8260D

Method Summary

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B

AGAT WORK ORDER: 21T700748 ATTENTION TO: Fernando Contento

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Bromoform	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Moisture Content		Tier 1 method	BALANCE

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905 712 5100 Fax: 905 712 5122

Laboratory Use Only Work Order #: 21 T 700 748

Chain of Custody Pager			loora			-		earth aga		com		oler Qua	antity:	es:	1 2.3	12-4		2.6
Chain of Custody Record Report Information: Company: Contact: Address: Phone: Reports to be sent to: 1. Email: 2. Email:	nto d. Unit[2,	Missission		Reg (Please	CCME Fine Custody Form Custo	- B	Sewe	er Use iltary Region Water Qu ctives (PW	Storm		Tui Re; Rus	rnarougular Tash TAT	Und Ti	ime (TA	AT) Req	quired:	o Siness Day	□N/A ys Business
Project Information: Project: Site Location: Sampled By:	98			ls Red	this submission for a cord of Site Condition?	Cer	eport 6 tificat	Ruldeling of An			0. Re	* <i>TA</i> 1	Please ¡	provide pri usive of we	ior notifica eekends a	ation for and statu	rush TAT tory holid	lays
Invoice Information: Company: Contact: Addrose: Email: Please note: If quotation number is Please note: If quotation number is	FAC	ill To Same: \	Yes □ No □	В	nple Matrix Legend Biota Ground Water Oil Paint Soil Sediment Surface Water	Field Filtered - Metals, Hg, CrVI, DOC	& Inorganics	Metals - □ CrVI, □ Hg, □ HWSB BTEX, F1-F4 PHCs Analyze F4G if required □ Yes □ No		CBs	osal Characterization TCLP:	s SPLP Rainwater Leach	Excess Soils Characterization Package pH, ICPMS Metals, BTEX, F1-F4	C/SAR	700			Ily Hazardous or High Concentration (Y/
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix	Comments/ Special Instructions	Y/N	Metals	Metals BTEX, F	PAHs	Total PCBs	Landfill Disp	Excess SPLP: [Excess pH, ICP	Salt - EC/SAR				Potentia
BH101-551	Jan 13, 2021		2	5			V		V									
BH101-552	1	9:35 6	3	1				V		V								
BH102-551			2				/		/		li i							
BH102-552		11:05					1000	V		V								
BH103 -551			32				-		V		Į.							
BH104 - 551	V	2:00 8	2			4-11	/		V									
Bi1105-551	Jon 14, 2001		2 3			1	/		~									
BH105-653	4	7.65		1				V		V								
		A P	M		V.	18 mg	75 34	Hinge		o Ho	de ju		or positi		ille		08	mis
		- A	PM				-											
		A P	M				line of	91101					1111111					1100
Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign): Samples Relinquished By (Print Name and Sign):	Malot	Date Date Date	Time	16 pm	Samples Received By (Print Name and Sign): Samples Received By (Print Name and Sign): Camples Received By (Print Name and Sign):		E.		£	Date Date	/- B	Time Time Time	વેલ) N°:	Page	JAN 1	66	O SPA

CLIENT NAME: B.I.G. CONSULTING INC. 12-5500 TOMKEN ROAD MISSISSAUGA, ON L4W 2Z4

416-214-4880

ATTENTION TO: Fernando Contento PROJECT: BIGC-ENV-349B

AGAT WORK ORDER: 21T703878

SOIL ANALYSIS REVIEWED BY: Yris Verastegui, Report Reviewer TRACE ORGANICS REVIEWED BY: Pinkal Patel, Report Reviewer

DATE REPORTED: Feb 02, 2021

PAGES (INCLUDING COVER): 19 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

*Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This report shall not be reproduced or distributed, in whole or in part, without the prior written consent of AGAT Laboratories.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the information
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 19

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

CLIENT NAME: B.I.G. CONSULTING INC.

Certificate of Analysis

AGAT WORK ORDER: 21T703878

PROJECT: BIGC-ENV-349B

ATTENTION TO: Fernando Contento

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

SAMPLING SITE:

O Reg. 153(511) - Metals & Inorganics (Soil)

DATE DECENTED, 2024 24 22										-D. 2024 02 22	
DATE RECEIVED: 2021-01-26								L	DATE REPORT	ED: 2021-02-02	
		SAMPLE DESC	CRIPTION:	BH106-SS2	BH107-SS1	BH108-SS1	BH109-SS1	BH110-SS1	BH111-SS1	BH112-SS1	BH113-SS
		SAM	PLE TYPE:	Soil							
		DATE S	SAMPLED:	2021-01-20 08:45	2021-01-20 10:10	2021-01-20 11:45	2021-01-21 13:30	2021-01-21 09:15	2021-01-21 11:00	2021-01-21 13:00	2021-01-21 15:00
Parameter	Unit	G/S	RDL	2011445	2011446	2011447	2011448	2011449	2011451	2011452	2011454
Antimony	μg/g	7.5	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Arsenic	μg/g	18	1	7	6	7	7	7	7	6	10
Barium	μg/g	390	2.0	72.2	99.3	78.2	92.3	46.4	65.6	89.5	109
Beryllium	μg/g	4	0.4	0.6	0.6	0.6	0.6	<0.4	0.4	0.6	0.4
Boron	μg/g	120	5	10	7	8	9	9	10	9	9
Boron (Hot Water Soluble)	μg/g	1.5	0.10	0.62	0.37	0.39	0.28	0.29	0.31	0.64	0.57
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chromium	μg/g	160	5	22	23	23	24	10	17	24	19
Cobalt	μg/g	22	0.5	13.6	14.2	14.3	14.0	6.0	9.1	14.6	10.5
Copper	μg/g	140	1.0	188	46.9	37.9	43.3	25.4	47.7	37.4	62.3
Lead	μg/g	120	1	12	13	17	14	19	17	14	47
Molybdenum	μg/g	6.9	0.5	0.7	<0.5	0.5	<0.5	0.9	1.0	<0.5	0.9
Nickel	μg/g	100	1	27	30	29	30	11	21	30	22
Selenium	μg/g	2.4	0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8	<0.8
Silver	μg/g	20	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Thallium	μg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Uranium	μg/g	23	0.50	0.78	0.73	0.80	0.66	0.51	0.77	1.05	0.85
Vanadium	µg/g	86	0.4	29.8	32.6	29.2	33.1	15.1	25.3	31.7	27.0
Zinc	µg/g	340	5	66	68	74	75	77	84	74	96
Chromium, Hexavalent	μg/g	8	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Cyanide, Free	μg/g	0.051	0.040	<0.040	<0.040	<0.040	<0.040	< 0.040	<0.040	<0.040	< 0.040
Mercury	μg/g	0.27	0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.402	0.386	0.331	0.362	0.648	0.444	0.267	0.808
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	4.81	4.25	1.83	2.08	1.33	1.99	0.911	1.25
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.93	7.80	7.70	7.76	7.99	7.70	7.67	7.70

Certified By:

Yrus Verastegui

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21T703878

PROJECT: BIGC-ENV-349B

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

http://www.agatlabs.com

TEL (905)712-5100 FAX (905)712-5122

ATTENTION TO: Fernando Contento

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

				• •	•		,	
DATE RECEIVED: 2021-01-26								DATE REPORTED: 2021-02-02
		SAMPLE DESCR	RIPTION:	BH114-SS1	BH114-SS2	BH115-SS1	BH115-SS2	
		SAMPL	E TYPE:	Soil	Soil	Soil	Soil	
		DATE SA	AMPLED:	2021-01-21	2021-01-21	2021-01-22	2021-01-22	
				16:00	16:15	09:00	09:15	
Parameter	Unit	G/S	RDL	2011456	2011457	2011458	2011459	
Antimony	μg/g	7.5	8.0	<0.8	<0.8	<0.8	<0.8	
Arsenic	μg/g	18	1	7	6	7	6	
Barium	μg/g	390	2.0	85.2	76.5	67.5	62.4	
Beryllium	μg/g	4	0.4	0.5	0.5	<0.4	0.6	
Boron	μg/g	120	5	8	7	10	8	
Boron (Hot Water Soluble)	μg/g	1.5	0.10	0.54	0.45	0.54	0.31	
Cadmium	μg/g	1.2	0.5	<0.5	<0.5	0.7	<0.5	
Chromium	μg/g	160	5	19	21	10	23	
Cobalt	μg/g	22	0.5	9.7	12.1	5.8	15.0	
Copper	μg/g	140	1.0	70.7	59.7	37.2	34.6	
Lead	μg/g	120	1	29	13	34	16	
Molybdenum	μg/g	6.9	0.5	0.8	0.7	1.1	<0.5	
Nickel	μg/g	100	1	22	26	12	30	
Selenium	μg/g	2.4	8.0	<0.8	<0.8	<0.8	<0.8	
Silver	μg/g	20	0.5	<0.5	<0.5	<0.5	<0.5	
Thallium	μg/g	1	0.5	<0.5	<0.5	<0.5	<0.5	
Uranium	μg/g	23	0.50	0.86	0.77	0.80	0.59	
/anadium	μg/g	86	0.4	26.4	31.4	16.6	29.3	
Zinc	μg/g	340	5	81	62	238	72	
Chromium, Hexavalent	μg/g	8	0.2	<0.2	<0.2	<0.2	<0.2	
Cyanide, Free	μg/g	0.051	0.040	< 0.040	<0.040	<0.040	<0.040	
Mercury	μg/g	0.27	0.10	<0.10	<0.10	<0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.319	0.371	1.63	0.248	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	0.595	0.864	0.332	1.24	
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.66	7.60	7.66	7.71	

Certified By:

Yrus Verastegui

AGAT WORK ORDER: 21T703878

PROJECT: BIGC-ENV-349B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:

ATTENTION TO: Fernando Contento

SAMPLED BY:

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2021-01-26 DATE REPORTED: 2021-02-02

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2011445-2011459 EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter.

Analysis performed at AGAT Toronto (unless marked by *)

Certified By:

Tris Verastegui

AGAT WORK ORDER: 21T703878

PROJECT: BIGC-ENV-349B

ATTENTION TO: Fernando Contento

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:

O. Reg. 153(511) - PAHs (Soil)

DATE RECEIVED: 2021-01-26								[DATE REPORTE	ED: 2021-02-02	
		SAMPLE DESCRIF	PTION:	BH106-SS2	BH107-SS1	BH108-SS1	BH109-SS1	BH110-SS1	BH111-SS1	BH112-SS1	BH113-SS1
		SAMPLE	TYPE:	Soil							
		DATE SAM	IPLED:	2021-01-20 08:45	2021-01-20 10:10	2021-01-20 11:45	2021-01-21 13:30	2021-01-21 09:15	2021-01-21 11:00	2021-01-21 13:00	2021-01-21 15:00
Parameter	Unit	G/S F	RDL	2011445	2011446	2011447	2011448	2011449	2011451	2011452	2011454
Naphthalene	μg/g	0.6	0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05	<0.05
Acenaphthylene	μg/g	0.15	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Acenaphthene	μg/g	7.9	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluorene	μg/g	62 (0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05
Phenanthrene	μg/g	6.2	0.05	<0.05	<0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05	< 0.05
Anthracene	μg/g	0.67	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Fluoranthene	μg/g	0.69	0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Pyrene	μg/g	78 (0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05
Benz(a)anthracene	μg/g	0.5	0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05
Chrysene	μg/g	7 (0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05
Benzo(b)fluoranthene	μg/g	0.78	0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05
Benzo(k)fluoranthene	μg/g	0.78	0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05
Benzo(a)pyrene	μg/g	0.3	0.05	<0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05
Dibenz(a,h)anthracene	μg/g	0.1	0.05	< 0.05	< 0.05	< 0.05	< 0.05	<0.05	< 0.05	< 0.05	< 0.05
Benzo(g,h,i)perylene	μg/g	6.6	0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05
1 and 2 Methlynaphthalene	μg/g	0.99	0.05	< 0.05	<0.05	< 0.05	< 0.05	<0.05	<0.05	< 0.05	< 0.05
Moisture Content	%		0.1	13.1	11.6	9.8	10.9	6.2	8.4	11.0	10.6
Surrogate	Unit	Acceptable Li	imits								
Naphthalene-d8	%	50-140		91	80	77	86	85	81	92	85
Acenaphthene-d10	%	50-140		80	82	82	80	79	77	87	79
Chrysene-d12	%	50-140		110	98	100	100	119	110	116	110

AGAT WORK ORDER: 21T703878

PROJECT: BIGC-ENV-349B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:

ATTENTION TO: Fernando Contento

SAMPLED BY:

				O. Re	g. 153(511)	- PAHs (So	il)	
DATE RECEIVED: 2021-01-26								DATE REPORTED: 2021-02-02
		SAMPLE DESC	CRIPTION:	BH114-SS1	BH114-SS2	BH115-SS1	BH115-SS2	
		SAMF	PLE TYPE:	Soil	Soil	Soil	Soil	
		DATE S	SAMPLED:	2021-01-21 16:00	2021-01-21 16:15	2021-01-22 09:00	2021-01-22 09:15	
Parameter	Unit	G/S	RDL	2011456	2011457	2011458	2011459	
Naphthalene	μg/g	0.6	0.05	< 0.05	<0.05	<0.05	<0.05	
Acenaphthylene	μg/g	0.15	0.05	< 0.05	<0.05	<0.05	<0.05	
Acenaphthene	μg/g	7.9	0.05	< 0.05	<0.05	<0.05	<0.05	
Fluorene	μg/g	62	0.05	< 0.05	<0.05	<0.05	<0.05	
Phenanthrene	μg/g	6.2	0.05	< 0.05	<0.05	<0.05	<0.05	
Anthracene	μg/g	0.67	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Fluoranthene	μg/g	0.69	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Pyrene	μg/g	78	0.05	< 0.05	< 0.05	< 0.05	< 0.05	
Benz(a)anthracene	μg/g	0.5	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Chrysene	μg/g	7	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Benzo(b)fluoranthene	μg/g	0.78	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Benzo(k)fluoranthene	μg/g	0.78	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Benzo(a)pyrene	μg/g	0.3	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Indeno(1,2,3-cd)pyrene	μg/g	0.38	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Dibenz(a,h)anthracene	μg/g	0.1	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Benzo(g,h,i)perylene	μg/g	6.6	0.05	< 0.05	< 0.05	< 0.05	<0.05	
1 and 2 Methlynaphthalene	μg/g	0.99	0.05	<0.05	< 0.05	< 0.05	<0.05	
Moisture Content	%		0.1	8.3	13.7	10.1	13.6	
Surrogate	Unit	Acceptabl	e Limits					
Naphthalene-d8	%	50-1	40	88	79	96	111	
Acenaphthene-d10	%	50-1	40	83	75	93	85	
Chrysene-d12	%	50-1	40	110	100	100	100	

Comments:

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2011445-2011459 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

Analysis performed at AGAT Toronto (unless marked by *)

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:

Certificate of Analysis

AGAT WORK ORDER: 21T703878

PROJECT: BIGC-ENV-349B

ATTENTION TO: Fernando Contento

SAMPLED BY:

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil)

			Ο.	rteg. 155(5	11) - 1 1103 1	1 - 1 - 1 (-D1	LX) (0011)	
DATE RECEIVED: 2021-01-26								DATE REPORTED: 2021-02-02
		SAMPLE DES	CRIPTION:	BH106-SS1	BH110-SS2	BH112-SS2	BH113-SS2	
		SAMI	PLE TYPE:	Soil	Soil	Soil	Soil	
		DATES	SAMPLED:	2021-01-20 08:30	2021-01-21 09:30	2021-01-21 13:15	2021-01-21 15:15	
Parameter	Unit	G/S	RDL	2011444	2011450	2011453	2011455	
F1 (C6 to C10)	μg/g	55	5	<5	<5	<5	<5	
F1 (C6 to C10) minus BTEX	μg/g	55	5	<5	<5	<5	<5	
F2 (C10 to C16)	μg/g	98	10	<10	<10	<10	<10	
F3 (C16 to C34)	μg/g	300	50	<50	<50	<50	<50	
F4 (C34 to C50)	μg/g	2800	50	<50	<50	<50	<50	
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA	NA	NA	NA	
Moisture Content	%		0.1	11.9	12.0	11.1	11.6	
Surrogate	Unit	Acceptab	le Limits					
Terphenyl	%	60-1	40	86	82	79	87	
1								

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2011444-2011455 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6–C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are accredited

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons >C50 are present. The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor.

nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 21T703878

PROJECT: BIGC-ENV-349B

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:

ATTENTION TO: Fernando Contento

O Reg. 153(511) - VOCs (Soil)

DATE RECEIVED: 2021-01-26								DATE REPORTED: 2021-02-02
		SAMPLE DESCR	PIPTION:	BH106-SS1	BH110-SS2	BH112-SS2	BH113-SS2	27.12.12.13.1.12.132.132.132.132.132.132.1
			E TYPE:	Soil	Soil	Soil	Soil	
		DATE SA		2021-01-20	2021-01-21	2021-01-21	2021-01-21	
		DATE SA	NIVIF LLD.	08:30	09:30	13:15	15:15	
Parameter	Unit	G/S	RDL	2011444	2011450	2011453	2011455	
Dichlorodifluoromethane	μg/g	16	0.05	<0.05	<0.05	<0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	<0.02	<0.02	<0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	<0.05	< 0.05	< 0.05	<0.05	
Trichlorofluoromethane	ug/g	4	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Acetone	ug/g	16	0.50	<0.50	<0.50	<0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Methylene Chloride	ug/g	0.1	0.05	< 0.05	< 0.05	<0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	<0.05	<0.05	< 0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.75	0.05	<0.05	< 0.05	< 0.05	<0.05	
1,1-Dichloroethane	ug/g	0.47	0.02	<0.02	< 0.02	<0.02	<0.02	
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	<0.50	<0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	1.9	0.02	<0.02	< 0.02	<0.02	<0.02	
Chloroform	ug/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	< 0.03	< 0.03	< 0.03	< 0.03	
1,1,1-Trichloroethane	ug/g	0.38	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	<0.05	
Benzene	ug/g	0.21	0.02	<0.02	< 0.02	<0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	< 0.03	< 0.03	< 0.03	< 0.03	
Trichloroethylene	ug/g	0.061	0.03	< 0.03	< 0.03	< 0.03	< 0.03	
Bromodichloromethane	ug/g	1.5	0.05	<0.05	<0.05	< 0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	<0.50	<0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	< 0.04	<0.04	<0.04	
Toluene	ug/g	2.3	0.05	<0.05	<0.05	< 0.05	<0.05	
Dibromochloromethane	ug/g	2.3	0.05	<0.05	<0.05	< 0.05	<0.05	
thylene Dibromide	ug/g	0.05	0.04	<0.04	<0.04	<0.04	<0.04	
Tetrachloroethylene	ug/g	0.28	0.05	<0.05	< 0.05	< 0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	< 0.04	< 0.04	<0.04	<0.04	
Chlorobenzene	ug/g	2.4	0.05	< 0.05	<0.05	< 0.05	<0.05	
Ethylbenzene	ug/g	1.1	0.05	< 0.05	< 0.05	< 0.05	<0.05	

AGAT WORK ORDER: 21T703878

PROJECT: BIGC-ENV-349B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE:

ATTENTION TO: Fernando Contento

SAMPLED BY:

O. Reg. 153(511) - VOCs (Soil)											
DATE RECEIVED: 2021-01-26								DATE REPORTED: 2021-02-02			
	S	AMPLE DESC	CRIPTION:	BH106-SS1	BH110-SS2	BH112-SS2	BH113-SS2				
		SAME	PLE TYPE:	Soil	Soil	Soil	Soil				
		DATE S	SAMPLED:	2021-01-20 08:30	2021-01-21 09:30	2021-01-21 13:15	2021-01-21 15:15				
Parameter	Unit	G/S	RDL	2011444	2011450	2011453	2011455				
m & p-Xylene	ug/g		0.05	<0.05	< 0.05	< 0.05	<0.05				
Bromoform	ug/g	0.27	0.05	< 0.05	< 0.05	< 0.05	< 0.05				
Styrene	ug/g	0.7	0.05	< 0.05	<0.05	<0.05	< 0.05				
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05	< 0.05	< 0.05	< 0.05				
o-Xylene	ug/g		0.05	< 0.05	< 0.05	< 0.05	< 0.05				
1,3-Dichlorobenzene	ug/g	4.8	0.05	< 0.05	< 0.05	< 0.05	<0.05				
1,4-Dichlorobenzene	ug/g	0.083	0.05	< 0.05	< 0.05	< 0.05	< 0.05				
1,2-Dichlorobenzene	ug/g	1.2	0.05	< 0.05	< 0.05	< 0.05	< 0.05				
Xylenes (Total)	ug/g	3.1	0.05	< 0.05	< 0.05	< 0.05	< 0.05				
1,3-Dichloropropene (Cis + Trans)	μg/g	0.05	0.04	<0.04	< 0.04	< 0.04	<0.04				
n-Hexane	μg/g	2.8	0.05	< 0.05	< 0.05	< 0.05	<0.05				
Moisture Content	%		0.1	11.9	12.0	11.1	11.6				
Surrogate	Unit	Acceptab	le Limits								
Toluene-d8	% Recovery	50-1	40	106	105	104	102				
4-Bromofluorobenzene	% Recovery	50-1	40	92	90	91	91				

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2011444-2011455 The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

Guideline Violation

AGAT WORK ORDER: 21T703878

PROJECT: BIGC-ENV-349B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

ATTENTION TO: Fernando Contento

SAMPLEID	SAMPLE TITLE	GUIDELINE	ANALYSIS PACKAGE	PARAMETER	UNIT	GUIDEVALUE	RESULT
2011445	BH106-SS2	ON T2 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Copper	μg/g	140	188
2011454	BH113-SS1	ON T2 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	0.808
2011458	BH115-SS1	ON T2 S RPI CT	O. Reg. 153(511) - Metals & Inorganics (Soil)	Electrical Conductivity (2:1)	mS/cm	0.7	1.63

Quality Assurance

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B

SAMPLING SITE:

AGAT WORK ORDER: 21T703878
ATTENTION TO: Fernando Contento

SAMPLED BY:

				Soi	l Ana	alysis	6								
RPT Date: Feb 02, 2021				UPLICATI	<u> </u>		REFERE	NCE MA	TERIAL	METHOD	BLANK	(SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured	Acceptable Limits		Recovery		eptable nits	Recovery		ptable nits
		ld	''	''			Value	Lower	Upper	,	Lower	Upper		Lower	Upper
O. Reg. 153(511) - Metals & Inor	ganics (Soil)														
Antimony	2011458 2	2011458	<0.8	<0.8	NA	< 0.8	97%	70%	130%	101%	80%	120%	88%	70%	130%
Arsenic	2011458 2	2011458	7	8	13.3%	< 1	109%	70%	130%	99%	80%	120%	104%	70%	130%
Barium	2011458 2	2011458	67.5	66.1	2.1%	< 2.0	100%	70%	130%	96%	80%	120%	106%	70%	130%
Beryllium	2011458 2	2011458	<0.4	< 0.4	NA	< 0.4	95%	70%	130%	102%	80%	120%	81%	70%	130%
Boron	2011458 2	2011458	10	10	NA	< 5	101%	70%	130%	97%	80%	120%	74%	70%	130%
Boron (Hot Water Soluble)	2011458 2	2011458	0.54	0.58	7.1%	< 0.10	99%	60%	140%	102%	70%	130%	101%	60%	140%
Cadmium	2011458 2	2011458	0.7	< 0.5	NA	< 0.5	104%	70%	130%	98%	80%	120%	94%	70%	130%
Chromium	2011458 2	2011458	10	10	NA	< 5	97%	70%	130%	98%	80%	120%	100%	70%	130%
Cobalt	2011458 2	2011458	5.8	5.8	0.0%	< 0.5	95%	70%	130%	100%	80%	120%	100%	70%	130%
Copper	2011458 2	2011458	37.2	36.8	1.1%	< 1.0	90%	70%	130%	105%	80%	120%	99%	70%	130%
Lead	2011458 2	2011458	34	37	8.5%	< 1	105%	70%	130%	98%	80%	120%	94%	70%	130%
Molybdenum	2011458 2	2011458	1.1	1.2	NA	< 0.5	100%	70%	130%	95%	80%	120%	104%	70%	130%
Nickel	2011458 2	2011458	12	11	8.7%	< 1	95%	70%	130%	102%	80%	120%	93%	70%	130%
Selenium	2011458 2	2011458	<0.8	<0.8	NA	< 0.8	113%	70%	130%	93%	80%	120%	102%	70%	130%
Silver	2011458 2	2011458	<0.5	<0.5	NA	< 0.5	94%	70%	130%	106%	80%	120%	91%	70%	130%
Thallium	2011458 2	2011458	<0.5	<0.5	NA	< 0.5	106%	70%	130%	97%	80%	120%	95%	70%	130%
Uranium	2011458 2	2011458	0.80	0.85	NA	< 0.50	112%	70%	130%	100%	80%	120%	103%	70%	130%
Vanadium	2011458 2	2011458	16.6	16.5	0.6%	< 0.4	94%	70%	130%	94%	80%	120%	106%	70%	130%
Zinc	2011458 2	2011458	238	199	17.8%	< 5	99%	70%	130%	105%	80%	120%	118%	70%	130%
Chromium, Hexavalent	2015817		<0.2	<0.2	NA	< 0.2	93%	70%	130%	96%	80%	120%	94%	70%	130%
Cyanide, Free	2011445 2	2011445	<0.040	<0.040	NA	< 0.040	92%	70%	130%	92%	80%	120%	97%	70%	130%
Mercury	2011458 2	2011458	<0.10	<0.10	NA	< 0.10	99%	70%	130%	97%	80%	120%	93%	70%	130%
Electrical Conductivity (2:1)	2023492		0.191	0.191	0.0%	< 0.005	109%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	2011458 2	2011458	0.332	0.358	7.5%	N/A	NA								
pH, 2:1 CaCl2 Extraction	2011445 2	2011445	7.93	7.96	0.4%	NA	100%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

Certified By:

Inis Verástegui

Quality Assurance

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B

AGAT WORK ORDER: 21T703878
ATTENTION TO: Fernando Contento

SAMPLING SITE: SAMPLED BY:

Trace Organics Analysis															
RPT Date: Feb 02, 2021				UPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLAN	(SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		eptable nits	Recovery		eptable mits	Recovery		ptable
		Iu	·						Lower Upper			Lower	Upper		
O. Reg. 153(511) - VOCs (Soil)															
Dichlorodifluoromethane	2011403		< 0.05	< 0.05	NA	< 0.05	76%	50%	140%	86%	50%	140%	71%	50%	140%
Vinyl Chloride	2011403		< 0.02	< 0.02	NA	< 0.02	98%	50%	140%	74%	50%	140%	76%	50%	140%
Bromomethane	2011403		< 0.05	< 0.05	NA	< 0.05	104%	50%	140%	71%	50%	140%	80%	50%	140%
Trichlorofluoromethane	2011403		< 0.05	< 0.05	NA	< 0.05	98%	50%	140%	83%	50%	140%	73%	50%	140%
Acetone	2011403		<0.50	<0.50	NA	< 0.50	86%	50%	140%	97%	50%	140%	102%	50%	140%
1,1-Dichloroethylene	2011403		<0.05	<0.05	NA	< 0.05	95%	50%	140%	94%	60%	130%	73%	50%	140%
Methylene Chloride	2011403		< 0.05	< 0.05	NA	< 0.05	107%	50%	140%	97%	60%	130%	99%	50%	140%
Trans- 1,2-Dichloroethylene	2011403		< 0.05	< 0.05	NA	< 0.05	87%	50%	140%	84%	60%	130%	81%	50%	140%
Methyl tert-butyl Ether	2011403		< 0.05	< 0.05	NA	< 0.05	118%	50%	140%	116%	60%	130%	118%	50%	140%
1,1-Dichloroethane	2011403		<0.02	<0.02	NA	< 0.02	80%	50%	140%	81%	60%	130%	89%	50%	140%
Methyl Ethyl Ketone	2011403		<0.50	<0.50	NA	< 0.50	95%	50%	140%	99%	50%	140%	85%	50%	140%
Cis- 1,2-Dichloroethylene	2011403		< 0.02	< 0.02	NA	< 0.02	81%	50%	140%	79%	60%	130%	88%	50%	140%
Chloroform	2011403		< 0.04	< 0.04	NA	< 0.04	76%	50%	140%	79%	60%	130%	87%	50%	140%
1,2-Dichloroethane	2011403		< 0.03	< 0.03	NA	< 0.03	79%	50%	140%	76%	60%	130%	92%	50%	140%
1,1,1-Trichloroethane	2011403		<0.05	<0.05	NA	< 0.05	81%	50%	140%	93%	60%	130%	91%	50%	140%
Carbon Tetrachloride	2011403		<0.05	<0.05	NA	< 0.05	72%	50%	140%	74%	60%	130%	73%	50%	140%
Benzene	2011403		< 0.02	< 0.02	NA	< 0.02	81%	50%	140%	80%	60%	130%	89%	50%	140%
1,2-Dichloropropane	2011403		< 0.03	< 0.03	NA	< 0.03	84%	50%	140%	84%	60%	130%	93%	50%	140%
Trichloroethylene	2011403		< 0.03	< 0.03	NA	< 0.03	81%	50%	140%	77%	60%	130%	80%	50%	140%
Bromodichloromethane	2011403		<0.05	<0.05	NA	< 0.05	70%	50%	140%	77%	60%	130%	77%	50%	140%
Methyl Isobutyl Ketone	2011403		<0.50	<0.50	NA	< 0.50	88%	50%	140%	84%	50%	140%	96%	50%	140%
1,1,2-Trichloroethane	2011403		< 0.04	< 0.04	NA	< 0.04	89%	50%	140%	84%	60%	130%	100%	50%	140%
Toluene	2011403		< 0.05	< 0.05	NA	< 0.05	80%	50%	140%	71%	60%	130%	75%	50%	140%
Dibromochloromethane	2011403		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	74%	60%	130%	79%	50%	140%
Ethylene Dibromide	2011403		<0.04	<0.04	NA	< 0.04	89%	50%	140%	82%	60%	130%	93%	50%	140%
Tetrachloroethylene	2011403		<0.05	<0.05	NA	< 0.05	77%	50%	140%	70%	60%	130%	74%	50%	140%
1,1,1,2-Tetrachloroethane	2011403		< 0.04	< 0.04	NA	< 0.04	84%	50%	140%	77%	60%	130%	76%	50%	140%
Chlorobenzene	2011403		< 0.05	< 0.05	NA	< 0.05	76%	50%	140%	71%	60%	130%	76%	50%	140%
Ethylbenzene	2011403		< 0.05	< 0.05	NA	< 0.05	70%	50%	140%	73%	60%	130%	81%	50%	140%
m & p-Xylene	2011403		<0.05	<0.05	NA	< 0.05	73%	50%	140%	101%	60%	130%	96%	50%	140%
Bromoform	2011403		<0.05	<0.05	NA	< 0.05	80%	50%	140%	79%	60%	130%	81%	50%	140%
Styrene	2011403		<0.05	< 0.05	NA	< 0.05	89%	50%		71%		130%	78%		140%
1,1,2,2-Tetrachloroethane	2011403		<0.05	< 0.05	NA	< 0.05	103%	50%		88%		130%	106%	50%	140%
o-Xylene	2011403		<0.05	< 0.05	NA	< 0.05	76%	50%		76%	60%	130%	74%	50%	140%
1,3-Dichlorobenzene	2011403		<0.05	<0.05	NA	< 0.05	80%	50%		87%		130%	78%		140%
1,4-Dichlorobenzene	2011403		<0.05	<0.05	NA	< 0.05	81%	50%	140%	72%	60%	130%	81%	50%	140%
1,2-Dichlorobenzene	2011403		<0.05	< 0.05	NA	< 0.05	85%	50%		72%	60%	130%	78%	50%	140%
n-Hexane	2011403		<0.05	<0.05	NA	< 0.05	113%		140%	103%		130%	74%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 12 of 19

Quality Assurance

CLIENT NAME: B.I.G. CONSULTING INC.

AGAT WORK ORDER: 21T703878
ATTENTION TO: Fernando Contento

PROJECT: BIGC-ENV-349B SAMPLING SITE:

SAMPLED BY:

Trace Organics Analysis (Continued)																							
RPT Date: Feb 02, 2021			С	UPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE								
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits		Limita		Limita		sured Limits				Recovery	1 :-	ptable	Recovery		ptable
		lu		•			value	Lower	Upper		Lower	Upper		Lower	Upper								
O. Reg. 153(511) - PHCs F1 - F4 (-	BTEX) (So	il)																					
F1 (C6 to C10)	2011403		< 5	< 5	NA	< 5	89%	60%	140%	111%	60%	140%	110%	60%	140%								
F2 (C10 to C16)	2004390		< 10	< 10	NA	< 10	112%	60%	140%	96%	60%	140%	78%	60%	140%								
F3 (C16 to C34)	2004390		< 50	< 50	NA	< 50	109%	60%	140%	95%	60%	140%	71%	60%	140%								
F4 (C34 to C50)	2004390		< 50	< 50	NA	< 50	101%	60%	140%	87%	60%	140%	82%	60%	140%								
O. Reg. 153(511) - PAHs (Soil)																							
Naphthalene	2011449 2	2011449	< 0.05	< 0.05	NA	< 0.05	109%	50%	140%	83%	50%	140%	78%	50%	140%								
Acenaphthylene	2011449 2	2011449	< 0.05	< 0.05	NA	< 0.05	114%	50%	140%	79%	50%	140%	82%	50%	140%								
Acenaphthene	2011449 2	2011449	< 0.05	< 0.05	NA	< 0.05	114%	50%	140%	82%	50%	140%	81%	50%	140%								
Fluorene	2011449 2	2011449	< 0.05	< 0.05	NA	< 0.05	99%	50%	140%	81%	50%	140%	75%	50%	140%								
Phenanthrene	2011449 2	2011449	<0.05	<0.05	NA	< 0.05	93%	50%	140%	71%	50%	140%	75%	50%	140%								
Anthracene	2011449 2	2011449	<0.05	<0.05	NA	< 0.05	111%	50%	140%	81%	50%	140%	99%	50%	140%								
Fluoranthene	2011449 2	2011449	< 0.05	< 0.05	NA	< 0.05	105%	50%	140%	82%	50%	140%	93%	50%	140%								
Pyrene	2011449 2	2011449	< 0.05	< 0.05	NA	< 0.05	112%	50%	140%	77%	50%	140%	90%	50%	140%								
Benz(a)anthracene	2011449 2	2011449	< 0.05	< 0.05	NA	< 0.05	111%	50%	140%	76%	50%	140%	106%	50%	140%								
Chrysene	2011449 2	2011449	<0.05	<0.05	NA	< 0.05	102%	50%	140%	99%	50%	140%	105%	50%	140%								
Benzo(b)fluoranthene	2011449 2	2011449	<0.05	<0.05	NA	< 0.05	69%	50%	140%	79%	50%	140%	74%	50%	140%								
Benzo(k)fluoranthene	2011449 2	2011449	< 0.05	< 0.05	NA	< 0.05	77%	50%	140%	85%	50%	140%	84%	50%	140%								
Benzo(a)pyrene	2011449 2	2011449	< 0.05	< 0.05	NA	< 0.05	60%	50%	140%	76%	50%	140%	77%	50%	140%								
Indeno(1,2,3-cd)pyrene	2011449 2	2011449	< 0.05	< 0.05	NA	< 0.05	67%	50%	140%	72%	50%	140%	93%	50%	140%								
Dibenz(a,h)anthracene	2011449 2	2011449	<0.05	<0.05	NA	< 0.05	64%	50%	140%	80%	50%	140%	78%	50%	140%								
Benzo(g,h,i)perylene	2011449 2	2011449	<0.05	<0.05	NA	< 0.05	77%	50%	140%	82%	50%	140%	78%	50%	140%								

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

Jinkal Jata

Method Summary

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B

AGAT WORK ORDER: 21T703878
ATTENTION TO: Fernando Contento

SAMPLING SITE: SAMPLED BY:

PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER

Method Summary

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B

SAMPLING SITE:

AGAT WORK ORDER: 21T703878
ATTENTION TO: Fernando Contento

OAIMI LING OITE.		O/ tivil ELD D1.	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	·		
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benz(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Moisture Content	ORG-91-5106	Tier 1 Method	BALANCE
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene-d10	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene-d12	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009 modified from CCME Tier 1 Metho		GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Vinyl Chloride	(P&T)GC/MS		

Method Summary

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B

SAMPLING SITE:

AGAT WORK ORDER: 21T703878
ATTENTION TO: Fernando Contento

AGAT S.O.P	LITEDATI IDE DECEDENCE	A NIA I N/TIO A 1 TE 01 11 11 01 11
AGA1 3.0.1	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
	VOL-91-5002	VOL-91-5002 modified from EPA 5035C and EPA 8260D VOL-91-5002 modified from EPA 5035C and EPA 8260D

Method Summary

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B

AGAT WORK ORDER: 21T703878 ATTENTION TO: Fernando Contento

SAMPLING SITE:		SAMPLED BY:	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Bromoform	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Moisture Content		Tier 1 method	BALANCE

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth.agatlabs.com
 Laboratory Use Only
 8 78

 Work Order #:
 21 7 7 0 3 3 4 8

Cooler Quantity:

Report Infor						Regulatory Requirements:	□ No	Regu	ulator	y Requir	ement		Custo	dy Sea	al Inta	ict:		Yes		□No		□N/A
Company:	B.I.G. Consulting Inc					(Please check all applicable boxes)		_				11	Notes		-	I	18	ee		1	F	2
Contact:	Fernando Contento					Regulation 153/04 Sewe	r Use	1 0	Regu	ulation 558		Turnaround Time (TAT) Required:										
Address:	5500 Tomken Road,	Unit 12, Mississaug	a, ON		_	Table Indicate One Sar	.Nam.	1 -	ССМ	1F		П	urna	arou	nd T	ſime	e (TA	IT) R	equir	ed:		
					-	Initial contraction		-				R	egul	ar T	AT.		V	5 to 7	Busine	ss Day	5	
Phone:	6479666894	Fax:			_	☑Res/Park ☐Sto	rm	[Prov	. Water Qua	ality	R	Rush TAT (Rush Surcha			rcharg	harges Apply)					
Reports to be sent to 1. Email:	fcontento@brownfie	eldigi.com				Soil Texture (Check One) Region		Ιc	Objectives (PWQO)					3 Ru	siness	c	_	2 Bus	iness		Next Bo	icinecc
					-		atc One	1				Ш		Days		5		Days			Day	23111033
2. Email:					-	☐Fine ☐MISA		ļ	_	Indicate One	-			OR	Date R	Requi	red (R	ush Su	urcharg	es May	Apply):	
Project Infor	mation:					Is this submission for a	16-39	Repoi	rt Gul	Ideline o	n											
Project:	BIGC-ENV-349B					Record of Site Condition?	C	ertific	cate	of Analys	sis								fication			
Site Location:	Cros Avenue					☑ Yes ☐ No	-	☑ Ye	es		lo						e of weekends and statutory holidays					
Sampled By:	TVH											For	'Same) Day'	апа	lysis, p	please	contac	ct your	AGAT C	PM	
AGAT Quote #:		PO:				Sample Matrix Legend	_	0.	Reg 15	3								LPCBs				(N)
	Please note: If quotation n	umber is not provided, ellent v	vill be billed full price	for analysis.	_	B Biota	C.C.	100	rides)				т									tion (
Invoice Infor	mation:		Bill To Same:	Yes □ No		GW Ground Water	Fiftered - Metals, Hg,	/drides}	H Hyd		2	HH						□ B(a)P			1	entra
Company:	B.I.G. Consulting In-	c.				O Oil	etals	(excl. Hydr	S (Fig	題	als				П	S		ş			4 1	Conc
Contact:	Laine Dougherty					P Paint	Σ-		Metal	3 🗖	Meta	NO3+NO				☐ Aroclors	Pesticides	□ ABNs			1 1	過
Address:					S Soil SD Sediment	terec	gani	153	1 E	E C			0		JArc	Pest	၂ ၁				us or	
Email:	ldougherty@brownfi	ieldigi.com			_	SW Surface Water	AF B	and Inorganics	Metals D	Scar	Cust		F4			<u>a</u>	rine	NOCs			1 1	zardo
							Fleid	and tals	e Met	ISAR Stals	tion/					1 I	chlo	M&I Use				F Ha
Sam	ple Identification	Date Sampled	Time Sampled	# of Containers	Sampl Matri		Y/N	Metals and	□ Hydrid	Correction of the Correction o	Regulation/Custom Metals	ONO, ONO, ONO,+ÑO,	PHCs F1 -	ABNS	PAHS	PCBs: ☐ Total	Organochlorine	TCLP: LI M&I				Potentially
BH106-SS1		20 Jan 20	08:30	3	S				100			Ū										
BH106-SS2		20 Jan 2021	08:45	2	S			V				100			Ø				13			
BH107-SS1		20 Jan 2021	10:10	2	S			V	18			1	T		Ø	3			67.5			
BH108-SS1		20 Jan 2021	11:45	2	S			7						E	Ø							
BH109-SS1		20 Jan 2021	13:30	2	S																	10
BH110-SS1		21 Jan 2021	09:15	2	S		-															0
BH110-SS2		21 Jan 2021	09:30	3	S							[8							1	
BH111-SS1		21 Jan 2021	11:00	2	S			7							Ø							
BH112-SS1		21 Jan 2021	13:00	2	S	1						\neg						+				
BH112-SS2		21 Jan 2021	13:15	3	S			41											-	+	+	-
BH113-SS1		21 Jan 2021	15:00	2	S			7				-	-					-	10	1.10	N Oc	
	Film Nump and Sign):	-1 Juli 2021	Tuote	1 Trin	ne	Complex Received DV Diget Name and Tides	-	<u> </u>		700	Date	_	1	Time				201	1	I JH	MSH	Fil
PRINCIPLE LEGISLATOR PRINCIPLE	San		26/Jan	/2021	14:2	25 NEAC	(-)		4	A	Date			Tante.								
Sai S	LA.					74	-/						_	Time			_		_		_	
	Print Name and Sign):		Date	Tim	ne	Samples Receited By (Print Name and Sien):					Date			Hunki				Pa	ge 1	of	2	

no out thought the

5835 Coopers Avenue Micsissauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webearth,agatlabs,com

O. Reg 153

□Ct □CN FOC □Hg

Laboratory Use	Only		
Work Order #:			
Cooler Quantity: Arrival Temperatures:	Se	e po	1
Custody Seal Intact:	Yes	□No	□N/A

Chain of Custody Record If this is a Drinking Water sample, please use Drinking Water Chain of Custody Form (potable water consumed by humans) Report Information: B.I.G. Consulting Inc. Company: Fernando Contento Contact: 5500 Tomken Road, Unit 12, Mississauga, ON Address: 6479666894 Phone: - Fax: _ Reports to be sent to:

1. Email:	fcontento@brownfieldigi.com	
2. Email:	-	
Project Inform	nation:	
Project:	BIGC-ENV-349B	
Site Location:	Cros Avenue	
Sampled By:	TVII	
AGAT Quote #:		_ PO:
	Please note: If quotation number is not pro	ovided, client will be billed full price for analysis
Invoice Inform	mation:	Bill To Same: Yes ☐ No ☐
Company:	B.I.G. Consulting Inc.	
Contact:	Laine Dougherty	

5500 Tomken Road, Unit 12, Mississauga, ON

Is this submission Record of Site Co		Report Guldeline on Certificate of Analysis
□Fine	MISA	Indicate One
Soil Texture (Check One)	Region	Other
☑Res/Park □Agriculture	Storm	Prov. Water Quality Objectives (PWQO)
Table Indicate One	Sanitary	ССМЕ
Regulation 153/04	Sewer Use	Regulation 558

ed - Metals, Hg, CrVI

Regulatory Requirements:

No Regulatory Requirement

5 to 7 Business Days 2 Business Next E Days Day ush Surcharges May Apply)	usine
2 Business Next E	usine
Days Day	usine
ior notification for rush TAT eekends and statutory holid	ays
96	r notification for rush TAT ekends and statutory holida ease contact your AGAT C

□B(a)P

☐ ABNS

Email: Idougherty@brownfieldigi.com				Sediment Surface Water	Field Fitte	and Inorg		OEC OF	0 6	tion/cusit.	9	1 - F4] Total	chlorine P	M&I DVOC	Use				Potentially Hazardou	
Sample Identification	Date Sampled	Time Sampled	# of Containers	Sample Matrix		Y/N	Metafs	☐ All Metals ☐ Hydride Me	ORPS:	Full Metals	Nutrients: TT	Volatiles:	PHCs F	ABNS	PCBs:[Organo		Sewer				Potential
BH113-SS2	21 Jan 20	15:15	3	S						- 10		V	V						30			
BH114-SS1	21 Jan 2021	16:00	2	S			Ø							G								3
BH114-SS2	21 Jan 2021	16:15	2	S			Ø			1										200	W	
BH115-SS1	22 Jan 2021	09:00	2	S			Ø			- 1		18						19				8/ - 2
BH115-SS2	22 Jan 2021	09:15	2	S			V							Į.								
		2																	8			
																			*21	. Ah	Total Control	2:5

Samples Received By (Print Name and Sign)

Sample Matrix Legend

Ground Water

Sediment

14:25

26/Jan/2021

Biota

N: Det - Hon - 50 Pink Copy - Client | Yellow Copy - AGAT | White Copy- AGAT

THM

Samples Relinquished By (Print Name and Sign):

Address:

of 2

Page 2

CLIENT NAME: B.I.G. CONSULTING INC. 12-5500 TOMKEN ROAD MISSISSAUGA, ON L4W 2Z4 416-214-4880

ATTENTION TO: Fernando Contento

PROJECT: BIGC-ENV-349B AGAT WORK ORDER: 21T705007

SOIL ANALYSIS REVIEWED BY: Nivine Basily, Inorganics Report Writer TRACE ORGANICS REVIEWED BY: Neli Popnikolova, Senior Chemist

DATE REPORTED: Feb 05, 2021

PAGES (INCLUDING COVER): 16 VERSION*: 1

Should you require any information regarding this analysis please contact your client services representative at (905) 712-5100

Notes	

Disclaimer:

- All work conducted herein has been done using accepted standard protocols, and generally accepted practices and methods. AGAT test methods may
 incorporate modifications from the specified reference methods to improve performance.
- All samples will be disposed of within 30 days following analysis, unless expressly agreed otherwise in writing. Please contact your Client Project Manager if you require additional sample storage time.
- AGAT's liability in connection with any delay, performance or non-performance of these services is only to the Client and does not extend to any other
 third party. Unless expressly agreed otherwise in writing, AGAT's liability is limited to the actual cost of the specific analysis or analyses included in the
 services.
- This report shall not be reproduced or distributed, in whole or in part, without the prior written consent of AGAT Laboratories.
- The test results reported herewith relate only to the samples as received by the laboratory.
- Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to, warranties of
 merchantability, fitness for a particular purpose, or non-infringement. AGAT assumes no responsibility for any errors or omissions in the information
 contained in this document.
- All reportable information as specified by ISO/IEC 17025:2017 is available from AGAT Laboratories upon request.

AGAT Laboratories (V1)

Page 1 of 16

Member of: Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Western Enviro-Agricultural Laboratory Association (WEALA) Environmental Services Association of Alberta (ESAA)

AGAT WORK ORDER: 21T705007

PROJECT: BIGC-ENV-349B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

ATTENTION TO: Fernando Contento

SAMPLING SITE:Cros Aven	ue				SAMPLED BY:TVH
			0.	Reg. 153(511) - Metals & Inorganics (Soil)
DATE RECEIVED: 2021-01-28					DATE REPORTED: 2021-02-05
	S	AMPLE DESC	CRIPTION:	DUP011402	
			PLE TYPE:	Soil	
		DATE S	SAMPLED:	2021-01-21 16:15	
Parameter	Unit	G/S	RDL	2020967	
Antimony	μg/g	7.5	8.0	<0.8	
Arsenic	μg/g	18	1	5	
Barium	μg/g	390	2.0	70.6	
Beryllium	μg/g	4	0.4	0.5	
Boron	μg/g	120	5	10	
Boron (Hot Water Soluble)	μg/g	1.5	0.10	0.35	
Cadmium	μg/g	1.2	0.5	<0.5	
Chromium	μg/g	160	5	19	
Cobalt	μg/g	22	0.5	10.2	
Copper	μg/g	140	1.0	42.6	
Lead	μg/g	120	1	10	
Molybdenum	μg/g	6.9	0.5	0.6	
Nickel	μg/g	100	1	21	
Selenium	μg/g	2.4	8.0	<0.8	
Silver	μg/g	20	0.5	<0.5	
Thallium	μg/g	1	0.5	<0.5	
Uranium	μg/g	23	0.50	0.67	
Vanadium	μg/g	86	0.4	30.1	
Zinc	μg/g	340	5	53	
Chromium, Hexavalent	μg/g	8	0.2	<0.2	
Cyanide, Free	μg/g	0.051	0.040	< 0.040	
Mercury	μg/g	0.27	0.10	<0.10	
Electrical Conductivity (2:1)	mS/cm	0.7	0.005	0.300	
Sodium Adsorption Ratio (2:1) (Calc.)	N/A	5	N/A	0.925	
pH, 2:1 CaCl2 Extraction	pH Units	5.0-9.0	NA	7.37	

AGAT WORK ORDER: 21T705007

PROJECT: BIGC-ENV-349B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE: Cros Avenue

ATTENTION TO: Fernando Contento

SAMPLED BY:TVH

O. Reg. 153(511) - Metals & Inorganics (Soil)

DATE RECEIVED: 2021-01-28 DATE REPORTED: 2021-02-05

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

EC was determined on the DI water extract obtained from the 2:1 leaching procedure (2 parts DI water:1 part soil). pH was determined on the 0.01M CaCl2 extract prepared at 2:1 ratio. SAR is a calculated

parameter.

2020967

Analysis performed at AGAT Toronto (unless marked by *)

CHEMIST OF CHEMIST

AGAT WORK ORDER: 21T705007

PROJECT: BIGC-ENV-349B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE: Cros Avenue

ATTENTION TO: Fernando Contento

SAMPLED BY:TVH

O. Reg. 153(511) - PAHs (Soil) DATE RECEIVED: 2021-01-28 **DATE REPORTED: 2021-02-05** SAMPLE DESCRIPTION: DUP011402 SAMPLE TYPE: Soil DATE SAMPLED: 2021-01-21 16:15 Parameter Unit G/S **RDL** 2020967 Naphthalene μg/g 0.6 0.05 < 0.05 Acenaphthylene μg/g 0.15 0.05 < 0.05 7.9 0.05 < 0.05 Acenaphthene µg/g Fluorene 62 0.05 μg/g < 0.05 6.2 0.05 < 0.05 Phenanthrene μg/g Anthracene 0.67 0.05 < 0.05 μg/g Fluoranthene µg/g 0.69 0.05 < 0.05 Pvrene 78 0.05 < 0.05 μg/g Benz(a)anthracene μg/g 0.5 0.05 < 0.05 Chrysene μg/g 7 0.05 < 0.05 Benzo(b)fluoranthene μg/g 0.78 0.05 < 0.05 Benzo(k)fluoranthene μg/g 0.78 0.05 < 0.05 Benzo(a)pyrene 0.3 0.05 < 0.05 μg/g 0.38 0.05 Indeno(1,2,3-cd)pyrene μg/g < 0.05 Dibenz(a,h)anthracene μg/g 0.1 0.05 < 0.05 6.6 0.05 < 0.05 Benzo(g,h,i)perylene μg/g 1 and 2 Methlynaphthalene µg/g 0.99 0.05 < 0.05 Moisture Content 0.1 14.2 % Surrogate Unit Acceptable Limits Naphthalene-d8 % 92 50-140 Acenaphthene-d10 % 50-140 87

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

50-140

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2020967 Results are based on the dry weight of the soil.

Note: The result for Benzo(b)Fluoranthene is the total of the Benzo(b)&j)Fluoranthene isomers because the isomers co-elute on the GC column.

2- and 1-Methyl Naphthalene is a calculated parameter. The calculated value is the sum of 2-Methyl Naphthalene and 1-Methyl Naphthalene.

82

Analysis performed at AGAT Toronto (unless marked by *)

Chrysene-d12

AGAT WORK ORDER: 21T705007

PROJECT: BIGC-ENV-349B

TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

5835 COOPERS AVENUE

MISSISSAUGA, ONTARIO CANADA L4Z 1Y2

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE: Cros Avenue

ATTENTION TO: Fernando Contento

SAMPLED BY:TVH

	O. Reg. 153(511) - PHCs F1 - F4 (-BTEX) (Soil)												
DATE RECEIVED: 2021-01-28					DATE REPORTED: 2021-02-05								
		SAMPLE DESC	RIPTION:	DUP011002									
		SAMP	LE TYPE:	Soil									
		DATE S	AMPLED:	2021-01-21 09:30									
Parameter	Unit	G/S	RDL	2020966									
F1 (C6 to C10)	μg/g	55	5	<5									
F1 (C6 to C10) minus BTEX	μg/g	55	5	<5									
F2 (C10 to C16)	μg/g	98	10	<10									
F3 (C16 to C34)	μg/g	300	50	<50									
F4 (C34 to C50)	μg/g	2800	50	<50									
Gravimetric Heavy Hydrocarbons	μg/g	2800	50	NA									
Moisture Content	%		0.1	12.3									
Surrogate	Unit	Acceptabl	e Limits										
Terphenyl	%	60-1	40	115									

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -

Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

2020966 Results are based on sample dry weight.

The C6-C10 fraction is calculated using toluene response factor.

C6-C10 (F1 minus BTEX) is a calculated parameter. The calculated value is F1 minus BTEX. The calculated parameter is non-accredited. The parameters that are components of the calculation are

accredited

The C10 - C16, C16 - C34, and C34 - C50 fractions are calculated using the average response factor for n-C10, n-C16, and n-C34.

Gravimetric Heavy Hydrocarbons are not included in the Total C16-C50 and are only determined if the chromatogram of the C34 - C50 hydrocarbons indicates that hydrocarbons > C50 are present.

The chromatogram has returned to baseline by the retention time of nC50.

Total C6 - C50 results are corrected for BTEX contribution.

This method complies with the Reference Method for the CWS PHC and is validated for use in the laboratory.

nC6 and nC10 response factors are within 30% of Toluene response factor. nC10, nC16 and nC34 response factors are within 10% of their average.

C50 response factor is within 70% of nC10 + nC16 + nC34 average.

Linearity is within 15%.

Extraction and holding times were met for this sample.

Fractions 1-4 are quantified without the contribution of PAHs. Under Ontario Regulation 153, results are considered valid without determining the PAH contribution if not requested by the client.

Analysis performed at AGAT Toronto (unless marked by *)

AGAT WORK ORDER: 21T705007

PROJECT: BIGC-ENV-349B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE: Cros Avenue

ATTENTION TO: Fernando Contento

SAMPLING SITE:Cros Avenu	e				SAMPLED BY:TVH
				O. Reg. 15	3(511) - VOCs (Soil)
DATE RECEIVED: 2021-01-28					DATE REPORTED: 2021-02-05
	\$		CRIPTION: PLE TYPE: SAMPLED:	DUP011002 Soil 2021-01-21 09:30	
Parameter	Unit	G/S	RDL	2020966	
Dichlorodifluoromethane	μg/g	16	0.05	<0.05	
Vinyl Chloride	ug/g	0.02	0.02	<0.02	
Bromomethane	ug/g	0.05	0.05	<0.05	
Trichlorofluoromethane	ug/g	4	0.05	<0.05	
Acetone	ug/g	16	0.50	<0.50	
1,1-Dichloroethylene	ug/g	0.05	0.05	<0.05	
Methylene Chloride	ug/g	0.1	0.05	<0.05	
Trans- 1,2-Dichloroethylene	ug/g	0.084	0.05	<0.05	
Methyl tert-butyl Ether	ug/g	0.75	0.05	<0.05	
1,1-Dichloroethane	ug/g	0.47	0.02	<0.02	
Methyl Ethyl Ketone	ug/g	16	0.50	<0.50	
Cis- 1,2-Dichloroethylene	ug/g	1.9	0.02	<0.02	
Chloroform	ug/g	0.05	0.04	<0.04	
1,2-Dichloroethane	ug/g	0.05	0.03	<0.03	
1,1,1-Trichloroethane	ug/g	0.38	0.05	<0.05	
Carbon Tetrachloride	ug/g	0.05	0.05	<0.05	
Benzene	ug/g	0.21	0.02	<0.02	
1,2-Dichloropropane	ug/g	0.05	0.03	<0.03	
Trichloroethylene	ug/g	0.061	0.03	<0.03	
Bromodichloromethane	ug/g	1.5	0.05	<0.05	
Methyl Isobutyl Ketone	ug/g	1.7	0.50	<0.50	
1,1,2-Trichloroethane	ug/g	0.05	0.04	<0.04	
Toluene	ug/g	2.3	0.05	<0.05	
Dibromochloromethane	ug/g	2.3	0.05	<0.05	
Ethylene Dibromide	ug/g	0.05	0.04	<0.04	
Tetrachloroethylene	ug/g	0.28	0.05	<0.05	
1,1,1,2-Tetrachloroethane	ug/g	0.058	0.04	<0.04	
Chlorobenzene	ug/g	2.4	0.05	<0.05	
Ethylbenzene	ug/g	1.1	0.05	<0.05	

AGAT WORK ORDER: 21T705007

PROJECT: BIGC-ENV-349B

5835 COOPERS AVENUE MISSISSAUGA, ONTARIO CANADA L4Z 1Y2 TEL (905)712-5100 FAX (905)712-5122 http://www.agatlabs.com

CLIENT NAME: B.I.G. CONSULTING INC.

SAMPLING SITE: Cros Avenue

ATTENTION TO: Fernando Contento SAMPLED BY:TVH

SAMPLING SITE.CIUS AVEIN	ue				SAMFLED BILIVII
				O. Reg	g. 153(511) - VOCs (Soil)
DATE RECEIVED: 2021-01-28					DATE REPORTED: 2021-02-05
	S	AMPLE DESC	RIPTION:	DUP011002	
		SAMP	LE TYPE:	Soil	
		DATE S	AMPLED:	2021-01-21 09:30	
Parameter	Unit	G/S	RDL	2020966	
m & p-Xylene	ug/g		0.05	< 0.05	
Bromoform	ug/g	0.27	0.05	< 0.05	
Styrene	ug/g	0.7	0.05	< 0.05	
1,1,2,2-Tetrachloroethane	ug/g	0.05	0.05	< 0.05	
o-Xylene	ug/g		0.05	< 0.05	
1,3-Dichlorobenzene	ug/g	4.8	0.05	< 0.05	
1,4-Dichlorobenzene	ug/g	0.083	0.05	< 0.05	
1,2-Dichlorobenzene	ug/g	1.2	0.05	< 0.05	
Xylenes (Total)	ug/g	3.1	0.05	< 0.05	
1,3-Dichloropropene (Cis + Trans)	μg/g	0.05	0.04	< 0.04	
n-Hexane	μg/g	2.8	0.05	< 0.05	
Moisture Content	%		0.1	12.3	
Surrogate	Unit	Acceptable	e Limits		
Toluene-d8	% Recovery	50-14	40	104	
4-Bromofluorobenzene	% Recovery	50-14	40	85	

RDL - Reported Detection Limit; G / S - Guideline / Standard: Refers to Table 2: Full Depth Generic Site Condition Standards in a Potable Ground Water Condition - Soil -Comments:

Residential/Parkland/Institutional Property Use - Coarse Textured Soils **pH range listed applies to surface soil only**

Guideline values are for general reference only. The guidelines provided may or may not be relevant for the intended use. Refer directly to the applicable standard for regulatory interpretation.

The sample was analyzed using the high level technique. The sample was extracted using methanol, a small amount of the methanol extract was diluted in water and the purge & trap GC/MS analysis was performed. Results are based on the dry weight of the soil.

Xylenes total is a calculated parameter. The calculated value is the sum of m&p-Xylene + o-Xylene.

1,3-Dichloropropene total is a calculated parameter. The calculated value is the sum of Cis-1,3-Dichloropropene and Trans-1,3-Dichloropropene.

The calculated parameters are non-accredited. The parameters that are components of the calculation are accredited.

Analysis performed at AGAT Toronto (unless marked by *)

2020966

Quality Assurance

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B SAMPLING SITE:Cros Avenue AGAT WORK ORDER: 21T705007
ATTENTION TO: Fernando Contento

SAMPLED BY:TVH

57 (VIII 211 C 011 21 C 100 7 (V 011								, (11111							
				Soi	l Ana	alysis	6								
RPT Date: Feb 05, 2021				UPLICATI	Ē		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	KE	
PARAMETER	Batch	Sample	Dup #1	Dup #2	RPD	Method Blank	Measured		eptable mits	Recovery		ptable	Recovery	Lin	ptable nits
. ,		ld					Value	Lower	Upper	, ,	Lower	Upper	, , ,	Lower	Upper
O. Reg. 153(511) - Metals & Inor					•									•	
Antimony	2023842		<0.8	<0.8	NA	< 0.8	107%	70%	130%	98%	80%	120%	100%	70%	130%
Arsenic	2023842		9	9	0.0%	< 1	112%	70%	130%	100%	80%	120%	98%	70%	130%
Barium	2023842		51.2	52.2	1.9%	< 2.0	109%	70%	130%	100%	80%	120%	105%	70%	130%
Beryllium	2023842		8.0	8.0	NA	< 0.4	75%	70%	130%	112%	80%	120%	74%	70%	130%
Boron	2023842		11	12	NA	< 5	81%	70%	130%	114%	80%	120%	102%	70%	130%
Boron (Hot Water Soluble)	2028652		0.13	0.13	NA	< 0.10	102%	60%	140%	104%	70%	130%	103%	60%	140%
Cadmium	2023842		<0.5	< 0.5	NA	< 0.5	90%	70%	130%	101%	80%	120%	103%	70%	130%
Chromium	2023842		30	30	0.0%	< 5	102%	70%	130%	105%	80%	120%	99%	70%	130%
Cobalt	2023842		22.2	22.2	0.0%	< 0.5	96%	70%	130%	103%	80%	120%	92%	70%	130%
Copper	2023842		36.7	35.8	2.5%	< 1.0	88%	70%	130%	106%	80%	120%	96%	70%	130%
Lead	2023842		5	5	0.0%	< 1	105%	70%	130%	102%	80%	120%	95%	70%	130%
Molybdenum	2023842		<0.5	< 0.5	NA	< 0.5	104%	70%	130%	102%	80%	120%	96%	70%	130%
Nickel	2023842		37	36	2.7%	< 1	92%	70%	130%	103%	80%	120%	89%	70%	130%
Selenium	2023842		<0.8	<0.8	NA	< 0.8	138%	70%	130%	102%	80%	120%	98%	70%	130%
Silver	2023842		<0.5	<0.5	NA	< 0.5	99%	70%	130%	101%	80%	120%	97%	70%	130%
Thallium	2023842		<0.5	<0.5	NA	< 0.5	110%	70%	130%	100%	80%	120%	95%	70%	130%
Uranium	2023842		0.65	0.63	NA	< 0.50	109%	70%	130%	104%	80%	120%	102%	70%	130%
Vanadium	2023842		39.6	38.8	2.0%	< 0.4	104%	70%	130%	104%	80%	120%	105%	70%	130%
Zinc	2023842		76	75	1.3%	< 5	100%	70%	130%	110%	80%	120%	115%	70%	130%
Chromium, Hexavalent	2042170		<0.2	<0.2	NA	< 0.2	98%	70%	130%	99%	80%	120%	82%	70%	130%
Cyanide, Free	2036707		<0.040	<0.040	NA	< 0.040	90%	70%	130%	103%	80%	120%	109%	70%	130%
Mercury	2023842		<0.10	<0.10	NA	< 0.10	115%	70%	130%	100%	80%	120%	100%	70%	130%
Electrical Conductivity (2:1)	2023784		0.176	0.180	2.2%	< 0.005	108%	80%	120%						
Sodium Adsorption Ratio (2:1) (Calc.)	2023784		1.18	1.15	2.6%	NA									
pH, 2:1 CaCl2 Extraction	2023262		7.22	7.27	0.7%	NA	100%	80%	120%						

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

Quality Assurance

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B SAMPLING SITE:Cros Avenue AGAT WORK ORDER: 21T705007
ATTENTION TO: Fernando Contento

SAMPLED BY:TVH

			Trac	e Or	ganio	cs Ar	alysi	S							
RPT Date: Feb 05, 2021				UPLICAT	E		REFEREN	NCE MA	TERIAL	METHOD BLANK SPIK			MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value	Acceptable Limits Lower Upper		Recovery		eptable nits Upper	Recovery		ptable nits Upper
O. Reg. 153(511) - VOCs (Soil)						1						9775			
Dichlorodifluoromethane	2023833		<0.05	< 0.05	NA	< 0.05	84%	50%	140%	76%	50%	140%	109%	50%	140%
Vinyl Chloride	2023833		<0.02	<0.02	NA	< 0.02	73%	50%	140%	88%	50%	140%	93%	50%	140%
Bromomethane	2023833		<0.05	< 0.05	NA	< 0.05	90%	50%	140%	96%	50%	140%	104%	50%	140%
Trichlorofluoromethane	2023833		< 0.05	<0.05	NA	< 0.05	90%	50%	140%	85%	50%	140%	89%	50%	140%
Acetone	2023833		<0.50	<0.50	NA	< 0.50	99%	50%	140%	97%	50%	140%	96%	50%	140%
1,1-Dichloroethylene	2023833		<0.05	<0.05	NA	< 0.05	72%	50%	140%	70%	60%	130%	80%	50%	140%
Methylene Chloride	2023833		< 0.05	< 0.05	NA	< 0.05	113%	50%	140%	107%	60%	130%	105%	50%	140%
Trans- 1,2-Dichloroethylene	2023833		< 0.05	< 0.05	NA	< 0.05	91%	50%	140%	87%	60%	130%	83%	50%	140%
Methyl tert-butyl Ether	2023833		< 0.05	< 0.05	NA	< 0.05	110%	50%	140%	99%	60%	130%	108%	50%	140%
1,1-Dichloroethane	2023833		<0.02	<0.02	NA	< 0.02	89%	50%	140%	86%	60%	130%	91%	50%	140%
Methyl Ethyl Ketone	2023833		<0.50	<0.50	NA	< 0.50	101%	50%	140%	99%	50%	140%	92%	50%	140%
Cis- 1,2-Dichloroethylene	2023833		< 0.02	< 0.02	NA	< 0.02	90%	50%	140%	82%	60%	130%	89%	50%	140%
Chloroform	2023833		< 0.04	< 0.04	NA	< 0.04	89%	50%	140%	85%	60%	130%	94%	50%	140%
1,2-Dichloroethane	2023833		< 0.03	< 0.03	NA	< 0.03	99%	50%	140%	90%	60%	130%	99%	50%	140%
1,1,1-Trichloroethane	2023833		<0.05	<0.05	NA	< 0.05	87%	50%	140%	76%	60%	130%	92%	50%	140%
Carbon Tetrachloride	2023833		<0.05	<0.05	NA	< 0.05	76%	50%	140%	75%	60%	130%	70%	50%	140%
Benzene	2023833		< 0.02	< 0.02	NA	< 0.02	83%	50%	140%	78%	60%	130%	82%	50%	140%
1,2-Dichloropropane	2023833		< 0.03	< 0.03	NA	< 0.03	85%	50%	140%	82%	60%	130%	86%	50%	140%
Trichloroethylene	2023833		< 0.03	< 0.03	NA	< 0.03	74%	50%	140%	71%	60%	130%	81%	50%	140%
Bromodichloromethane	2023833		<0.05	<0.05	NA	< 0.05	75%	50%	140%	76%	60%	130%	78%	50%	140%
Methyl Isobutyl Ketone	2023833		<0.50	<0.50	NA	< 0.50	86%	50%	140%	95%	50%	140%	98%	50%	140%
1,1,2-Trichloroethane	2023833		< 0.04	< 0.04	NA	< 0.04	103%	50%	140%	99%	60%	130%	99%	50%	140%
Toluene	2023833		< 0.05	< 0.05	NA	< 0.05	78%	50%	140%	77%	60%	130%	73%	50%	140%
Dibromochloromethane	2023833		< 0.05	< 0.05	NA	< 0.05	79%	50%	140%	74%	60%	130%	71%	50%	140%
Ethylene Dibromide	2023833		<0.04	<0.04	NA	< 0.04	99%	50%	140%	93%	60%	130%	90%	50%	140%
Tetrachloroethylene	2023833		<0.05	<0.05	NA	< 0.05	77%	50%	140%	76%	60%	130%	80%	50%	140%
1,1,1,2-Tetrachloroethane	2023833		<0.04	<0.04	NA	< 0.04	103%	50%	140%	75%	60%	130%	86%	50%	140%
Chlorobenzene	2023833		< 0.05	< 0.05	NA	< 0.05	81%	50%	140%	81%	60%	130%	85%	50%	140%
Ethylbenzene	2023833		< 0.05	<0.05	NA	< 0.05	85%	50%	140%	72%	60%	130%	79%	50%	140%
m & p-Xylene	2023833		<0.05	<0.05	NA	< 0.05	72%	50%	140%	108%	60%	130%	103%	50%	140%
Bromoform	2023833		<0.05	<0.05	NA	< 0.05	81%	50%	140%	75%	60%	130%	71%	50%	140%
Styrene	2023833		<0.05	<0.05	NA	< 0.05	83%	50%	140%	85%	60%	130%	73%	50%	140%
1,1,2,2-Tetrachloroethane	2023833		<0.05	< 0.05	NA	< 0.05	88%	50%	140%	108%	60%	130%	104%	50%	140%
o-Xylene	2023833		<0.05	<0.05	NA	< 0.05	77%	50%	140%	75%	60%	130%	80%	50%	140%
1,3-Dichlorobenzene	2023833		<0.05	<0.05	NA	< 0.05	81%	50%	140%	78%	60%	130%	81%	50%	140%
1,4-Dichlorobenzene	2023833		<0.05	<0.05	NA	< 0.05	87%	50%	140%	79%	60%	130%	87%	50%	140%
1,2-Dichlorobenzene	2023833		<0.05	<0.05	NA	< 0.05	81%	50%	140%	76%	60%	130%	83%	50%	140%
n-Hexane	2023833		< 0.05	< 0.05	NA	< 0.05	84%	50%	140%	77%	60%	130%	117%	50%	140%

AGAT QUALITY ASSURANCE REPORT (V1)

Page 9 of 16

AGAT Laboratories is accredited to ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA) and/or Standards Council of Canada (SCC) for specific tests listed on the scope of accreditation. AGAT Laboratories (Mississauga) is also accredited by the Canadian Association for Laboratory Accreditation Inc. (CALA) for specific drinking water tests. Accreditations are location and parameter specific. A complete listing of parameters for each location is available from www.cala.ca and/or www.scc.ca. The tests in this report may not necessarily be included in the scope of accreditation. RPDs calculated using raw data. The RPD may not be reflective of duplicate values shown, due to rounding of final results.

Quality Assurance

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B SAMPLING SITE:Cros Avenue AGAT WORK ORDER: 21T705007
ATTENTION TO: Fernando Contento

SAMPLED BY:TVH

	7	race	Orga	anics	Ana	lysis	(Cor	ntin	ued)					
RPT Date: Feb 05, 2021			С	UPLICATI	E		REFERE	NCE MA	TERIAL	METHOD	BLANK	SPIKE	MAT	RIX SPI	KE
PARAMETER	Batch	Sample Id	Dup #1	Dup #2	RPD	Method Blank	Measured Value		ptable	Recovery	1 :-	ptable	Recovery		ptable
		iu		•			value	Lower	Upper		Lower	Upper		Lower	Upper
O. Reg. 153(511) - PHCs F1 - F4 (-	BTEX) (So	il)													
F1 (C6 to C10)	2023833		< 5	< 5	NA	< 5	99%	60%	140%	110%	60%	140%	95%	60%	140%
F2 (C10 to C16)	2036904		< 10	< 10	NA	< 10	106%	60%	140%	100%	60%	140%	86%	60%	140%
F3 (C16 to C34)	2036904		< 50	< 50	NA	< 50	104%	60%	140%	94%	60%	140%	87%	60%	140%
F4 (C34 to C50)	2036904		< 50	< 50	NA	< 50	92%	60%	140%	114%	60%	140%	91%	60%	140%
O. Reg. 153(511) - PAHs (Soil)															
Naphthalene	2021830		< 0.05	< 0.05	NA	< 0.05	96%	50%	140%	74%	50%	140%	112%	50%	140%
Acenaphthylene	2021830		< 0.05	< 0.05	NA	< 0.05	110%	50%	140%	78%	50%	140%	75%	50%	140%
Acenaphthene	2021830		< 0.05	< 0.05	NA	< 0.05	118%	50%	140%	86%	50%	140%	86%	50%	140%
Fluorene	2021830		< 0.05	< 0.05	NA	< 0.05	108%	50%	140%	83%	50%	140%	89%	50%	140%
Phenanthrene	2021830		0.18	0.22	NA	< 0.05	83%	50%	140%	72%	50%	140%	96%	50%	140%
Anthracene	2021830		0.10	0.15	NA	< 0.05	111%	50%	140%	81%	50%	140%	96%	50%	140%
Fluoranthene	2021830		0.36	0.44	NA	< 0.05	115%	50%	140%	75%	50%	140%	85%	50%	140%
Pyrene	2021830		0.29	0.34	NA	< 0.05	110%	50%	140%	75%	50%	140%	89%	50%	140%
Benz(a)anthracene	2021830		0.09	0.10	NA	< 0.05	78%	50%	140%	70%	50%	140%	74%	50%	140%
Chrysene	2021830		0.10	0.11	NA	< 0.05	104%	50%	140%	70%	50%	140%	105%	50%	140%
Benzo(b)fluoranthene	2021830		0.12	0.12	NA	< 0.05	72%	50%	140%	98%	50%	140%	108%	50%	140%
Benzo(k)fluoranthene	2021830		0.10	0.11	NA	< 0.05	87%	50%	140%	85%	50%	140%	100%	50%	140%
Benzo(a)pyrene	2021830		0.06	0.06	NA	< 0.05	68%	50%	140%	75%	50%	140%	88%	50%	140%
Indeno(1,2,3-cd)pyrene	2021830		0.06	0.05	NA	< 0.05	65%	50%	140%	71%	50%	140%	79%	50%	140%
Dibenz(a,h)anthracene	2021830		< 0.05	<0.05	NA	< 0.05	69%	50%	140%	91%	50%	140%	82%	50%	140%
Benzo(g,h,i)perylene	2021830		0.06	0.06	NA	< 0.05	74%	50%	140%	88%	50%	140%	81%	50%	140%

Comments: When the average of the sample and duplicate results is less than 5x the RDL, the Relative Percent Difference (RPD) will be indicated as Not Applicable (NA).

QA Violation

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B

AGAT WORK ORDER: 21T705007

ATTENTION TO: Fernando Contento

RPT Date: Feb 05, 2021				REFERENCE MATERIAL METHOD BLANK SPIKE MATRIX SPIR							
PARAMETER	Sample Id	Sample Description	mple Description Measured		le Recovery	Acceptable Limits		Recovery	Lin	eptable nits	
			Value	Lower Upp	,		Upper	, ,		Upper	

O. Reg. 153(511) - Metals & Inorganics (Soil)

Selenium DUP011402 138% 70% 130% 102% 80% 120% 98% 70% 130%

Comments: NA signifies Not Applicable.

pH duplicates QA acceptance criteria was met relative as stated in Table 5-15 of Analytical Protocol document.

Duplicate NA: results are under 5X the RDL and will not be calculated.

More than 90% of the elements met acceptance limits and overall data quality is acceptable for use. For a multi-element scan up to 10% of analytes may exceed the quoted limits by up to 10% absolute.

Method Summary

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B SAMPLING SITE:Cros Avenue AGAT WORK ORDER: 21T705007 ATTENTION TO: Fernando Contento

		*******	•
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Soil Analysis			
Antimony	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Arsenic	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Barium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Beryllium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Boron (Hot Water Soluble)	MET-93-6104	modified from EPA 6010D and MSA PART 3, CH 21	ICP/OES
Cadmium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Cobalt	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Copper	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Lead	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Molybdenum	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Nickel	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Selenium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Silver	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Thallium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Uranium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Vanadium	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Zinc	MET 93 -6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Chromium, Hexavalent	INOR-93-6068	modified from EPA 3060 and EPA 7196	SPECTROPHOTOMETER
Cyanide, Free	INOR-93-6052	modified from ON MOECC E3015, SM 4500-CN- I, G-387	TECHNICON AUTO ANALYZER
Mercury	MET-93-6103	modified from EPA 3050B and EPA 6020B and ON MOECC	ICP-MS
Electrical Conductivity (2:1)	INOR-93-6036	modified from MSA PART 3, CH 14 and SM 2510 B	EC METER
Sodium Adsorption Ratio (2:1) (Calc.)	INOR-93-6007	modified from EPA 6010D & Analytical Protocol	ICP/OES
pH, 2:1 CaCl2 Extraction	INOR-93-6031	modified from EPA 9045D and MCKEAGUE 3.11	PH METER

Method Summary

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B SAMPLING SITE:Cros Avenue AGAT WORK ORDER: 21T705007 ATTENTION TO: Fernando Contento

OAMI EINO OITE.OIO3 AVCIIGO		OAIMI EED DT.TV	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Trace Organics Analysis	-		
Naphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluorene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Phenanthrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benz(a)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(b)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(k)fluoranthene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(a)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Indeno(1,2,3-cd)pyrene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Dibenz(a,h)anthracene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Benzo(g,h,i)perylene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
1 and 2 Methlynaphthalene	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Moisture Content	ORG-91-5106	Tier 1 Method	BALANCE
Naphthalene-d8	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Acenaphthene-d10	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
Chrysene-d12	ORG-91-5106	modified from EPA 3570 and EPA 8270E	GC/MS
F1 (C6 to C10)	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F1 (C6 to C10) minus BTEX	VOL-91-5009	modified from CCME Tier 1 Method	(P&T)GC/FID
F2 (C10 to C16)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F3 (C16 to C34)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
F4 (C34 to C50)	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Gravimetric Heavy Hydrocarbons	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Moisture Content	VOL-91-5009	modified from CCME Tier 1 Method	BALANCE
Terphenyl	VOL-91-5009	modified from CCME Tier 1 Method	GC/FID
Dichlorodifluoromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Vinyl Chloride	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B SAMPLING SITE:Cros Avenue AGAT WORK ORDER: 21T705007 ATTENTION TO: Fernando Contento

OAIVII EIIVO OITE.OIOS AVCITAC		OAMI ELD DI.IV	
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Bromomethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Trichlorofluoromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Acetone	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methylene Chloride	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Trans- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methyl tert-butyl Ether	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1-Dichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methyl Ethyl Ketone	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Cis- 1,2-Dichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Chloroform	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,2-Dichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,1-Trichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Carbon Tetrachloride	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Benzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,2-Dichloropropane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Trichloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Bromodichloromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Methyl Isobutyl Ketone	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,2-Trichloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Toluene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Dibromochloromethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Ethylene Dibromide	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Tetrachloroethylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,1,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Chlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Ethylbenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
m & p-Xylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS

Method Summary

CLIENT NAME: B.I.G. CONSULTING INC.

PROJECT: BIGC-ENV-349B

AGAT WORK ORDER: 21T705007 ATTENTION TO: Fernando Contento

SAMPLING SITE:Cros Avenue		SAMPLED BY:TV	/H
PARAMETER	AGAT S.O.P	LITERATURE REFERENCE	ANALYTICAL TECHNIQUE
Bromoform	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Styrene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,1,2,2-Tetrachloroethane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
o-Xylene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,3-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,4-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,2-Dichlorobenzene	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Xylenes (Total)	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
1,3-Dichloropropene (Cis + Trans)	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
n-Hexane	VOL-91-5002	modified from EPA 5035C and EPA 8260D	(P&T)GC/MS
Toluene-d8	VOL-91-5002	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
4-Bromofluorobenzene	VOL-91-5002	modified from EPA 5030B & EPA 8260D	(P&T)GC/MS
Moisture Content		Tier 1 method	BALANCE

5835 Coopers Avenue Mississauga, Ontario L4Z 1Y2 Ph: 905.712.5100 Fax: 905.712.5122 webeartn_agatlans.com

Laboratory Use Only Work Order #: 21T 705007 Cooler Quantity:

Chain	of	Custody	Record
-------	----	---------	--------

Discourage of the College College

Chain of C	ustody Reco	rd If this is a	Drinking Wat	er sample, pl	oaso us	e Drinking Water Chain of	Custody Form (potable wa	ter cor	nsumed)	y humans)			Arriva	al Term	peral	ures:	-	10	51	lal	0	طيا	- 1
Report Inform	nation: B.I.G. Consulting Inc.					Regulatory Requirements: No Regulatory Requirement (Please check all applicable boves)						Custody Seal Intact: Yes No Notes:													
Contact:	Fernando Contento					Regulation 153/04	Sewe	rllee	1	□Re	gulation :	558		-				-							
Address:	5500 Tomken Road, Un	it 12, Mississauga	, ON			0.2	Поеме						11.	Turnaround Time (TAT) Required:											
ridareos.						Table Indicate One	□Sar	_		CC				1	Regu	lar T	ΑT		7	5 tc	7 Bus	iness	Days		
Phone:	6479666894	Fax:			_2	☑Res/Park ☑Agriculture	□Sto	rm			ov. Water jectives (111	Rush	TAT	Rush 5	urchar	ges App	ρly)					
Reports to be sent to: 1, Email:	fcontento@brownfieldi	igi.com			_	Soil Texture (Check One) Coarse	Region	ate One	-	Oti		PWQC	')			3 B Day	usine: s	SS] ^{2 B} Day	Busines ys	is	□ Ne	ext Buşii ay	ness
2. Email:						Fine	MISA		1	-	Indicate C	ne	-	Ш		OR	Date	Requ	iired ((Rush	Surch	arges I	May Apı	ρly):	
Project Inform	nation: BIGC-ENV-349B					Is this submissio					uldelin of Ana		5										r rush i		
Project: Site Location:	Cros Avenue			-		☑ Yes □	No		77	Yes	П	No		Ш										olidays	
Sampled By:	TVH						110		123	103		1.40			Fo	'San	e Day	y' ana	lysis	, plea	ase cor	ntact y	our AG	AT CPN	1
AGAT Quote #:	Please note: If quotation numb	PO: per is not provided, client w	ill be billed full price	for analysis.		Sample Matrix Leg	(end	Ig, crvI		ides) () Hydrices;	hä				5					□ B(a)P □PCBs					tration (Y/N
Invoice Inform			Bill To Same:	Yes 🔲 No		GW Ground Water		H. H			Z.			INO +NO.	₩ H H					å					lee lee
Company:	B.I.G. Consulting Inc.					O Oil P Paint		Mega		ls (E Se		tals	٠٥ [<u>.</u>			ors	des	□ ABNs				3.1	High Co
Contact:	Laine Dougherty			-	- 1	S Soll		9	Sic	3 Me	500		Me	+	□BTEX			☐ Aroclors	Pesticides		1				立
Address:	5500 Tomken Road, Ur		a, ON	-		SD Sediment		ittere	Inorganics	☐ 153 Metals stals ☑ 153 Me	2 S	ᇤ	ston	ď	8					VOCS				113	qons
Email:	ldougherty@brownfield	ligi.com			-	SW Surface Water		Field Filtered - Metals, Hg,		Is 11	DEC OF	als Sca	on/Cu	No.	II voc	† L		Total	Mortin	18kl	8			2	у Нахаг
Sampl	le Identification	Date Sampled	Time Sampled	# of Containers	Samp			Y/N	Metals a	☐ All Metals ☐ Hydride Me	ORPS: C	Full Metals Scan	Regulation/Custom Metals	ONO, DNO, DN	Volatiles: E	ABNS	PAHs	PCBs: ☐ Total	Organochlorine	TCLP: ☐ M&I ☐ VOCs	Sewer Use				Potential
DUP011002		21Jan 2021	09:30	3	S											7									
DUP011402		21 Jan 2021	16:15	2	S				Ø		Ju - 1						V						77		
								(27)																- 100	
				-						-		\vdash		-		+	-	-	H			-			+
											102														-
																			_						-
											-			_		-	-		-		Н			-	+
Samples Relinquished By (Pr	(Cara)		I Baro	I To	The state of the s	Surrentee Parallied the III	vint Name apg Sign)			-	71	-	Date			Time	1_		1			71	JAN	28	8:5
Samples Relinquished By (Pr	fint Name and Sign):		28/Jar	7/2021	18:3		AC	6		1	10	1	T												-
Samples Relinquished By (Pr			Date	Tie	me.	Samnles Received by 0	rint Name and Sign)	(Date			Time	1				Page	1	_ of _1		
Samples Relinquished By (Pr	rint Name and Sign):		Usta	Tir	me	Samples Received By (F	Print Name and Sign)	:					Date			Time			N	No.					